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We obtain the symmetry algebra of multimatrix models in the planar la¥gdimit. We use
this algebra to associate these matrix models with quantum spin chains. In particular, certain
multimatrix models are exactly solved by using known results of solvable spin chain systems. [S0031-
9007(98)05585-9]
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Quantum systems whose degrees of freedom are matri- The path integral over matrix valued functions of time,
ces appear in several areas of mathematics and physidy ( j, 1), Q4 (j, 1) with Lagrangian
for example, Yang-Mills theory [1—4], string theory [5,6], M d
and M-theory [7,8]. Of particular interest is the limitas L(P,Q) = Z PY(j,t) — Q. (j,1) — H(P(1), 0(t))
the dimensionv, of the matrices goes to infinity. In this j=1 dt

limit the dynamics is expected to simplify; for example, gives an equivalent theory, with the identifications

the quantum fluctuations of the invariants are of the or- », . L. T ut, . L. T

o av(j) = Qv (j) + iPv(j), av (j) = Qv (j) — iPv(j);
der I/NC' The algel_)ra of |nva_r|ant observables become%ut the canonical formulation is more convenient for our
a Poisson algebra discovered in [9]. For the general larg urposes

N, limit, these Poisson brackets are very nonlinear. Th Define th f1h . fh
lanar large N. limit is equivalent to a further approxi- efine the vacuum state of the representation of these
P ¢ relations bya|0) = 0. In the limit of largeN, the color

mation that replacgs this P.O'SSOO algebra by a Lie algebr?hvariant states of the system are the “closed string” (or
In this paper we will describe this Lie algebra of observ-, ,,
glueball”) states such as

ables of the matrix model in the planar limit, by a direct
argument. VE = NZPalr(kpalt (k) - - all(k)|0) .

As an illustration of the power of this new symmetry ’ ’
algebra, we will use it to solve some matrix models in

the largeN, limit. More precisely, we will map certain | ) ) Do ;
matrix models to quantum spin chains and use resyilivariant under cyclic permutations; the equivalence class

from the theory of spin chains to solve them. This iSof permutations related t& by cyclic permutations is

reminiscent of the work [5] that connects some integralsdenOted bY(K). . .

over finite chains of matrices witkslassical integrable The operators that dominate the ladge limit are

systems. From this point of view, our result is that g§ = N[(”bﬂ)/za):’f‘(il)a;iﬁ“(iz)---alh““(ia)

certain path integralsover matrices can be mapped into DU .

guantumintegrable systems. However, we will mostly X ay, (p)ay, y(p-1) - ay, (j1)-

use the canonical formulation rather than the path integra\otice the reversal of order in the indices in the string

formulation of these systems. J; this definition serves to simplify some later equations.)
We will study a class of matrix models whose de-A|l observables of a matrix model which survive in the

grees of freedom are a set of matrix-valued bosonigarge N, limit—the Hamiltonian of regularized QCD,

variabIeSaﬁ(i),aI“(i) satisfying the canonical commuta- for example—are linear combinations of such operators.

tion relations[at (i), a5 (j)] = [as*(i),at’(j)] = 0 and  These states and operators were previously studied in

[a,’f(i),alp(j)] — 5(i, )6k 55, Here,u,v = 1,2,... or Ref. [2],' where an elegant application to larlye QCD

N.. The position of the indices indicates the transformalS described. _

tion properties undet/(N..): at = gﬁgﬁ"aﬁ, etc. The The fa(_:to_rs .of_NC have been chosen_ to obtain _the

“planar” limit; it is so called because in perturbation

degree of freedom labeled by the indigesv, etc., will be ) ,
called “color” in analogy with quantum chromodynamics theory, the Feynman diagrams that survive can be drawn

(QCD). Indeed our matrix model can be thought of as 2N & plane. There are other ways of taking the lavge
regularized version of pure QCD, with the variableg! ~ IMit, but the planar limit is the simplest. _
representing gluons. The indicés= 1,...,M describe In the limit asN. — < these operators will map single
the degrees of freedom (other than color) of the systenﬁlo_sed string ﬁtates to I|I1ear combinations of single closed
The Hamiltonian (along with all other observables) will Sting states (“glueballs”):

be required to be color invariant: i.e., invariant under the ghw &) = 55)\1,0) + Z SKp UK

adjoint action ofU(N,) ona andat. K e (K)

Here strings of indices are denoted by capital letters.
For example,K stands forkg,...,k.. The state is
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This is the key simplification of the planar limit. (To that only a finite number of the coefficient$ is nonzero.)
higher orders in thd /N, expansion, there will be terms The discovery of this Lie algebra is our main result. We
that correspond to splitting a glueball into several glue-will see that it has powerful consequences: For example,
balls.) Hereﬁg) is equal to the number of different cyclic we can solve some matrix models exactly using this newly
permutations of/ such that each permuted sequence igliscovered dynamical symmetry.

identical toK. Also, in the second term we sum over all Before we describe the commutation relations between
ways of splitting the sequend&) into nonemptysubse-  two g’'s, it is convenient to introduce another kind of op-

quencesk; andK,. A graphical representation of (1) is erator]‘((;; on closed string states. The defining equation

given in Fig. 1. f 2D (K) — sK (D)
I . : or these operators i) V" = 5, ¥'". These are thus
The operatorsg; are like matrices except that they éhe Weyl matrices in the basig) of closed string states
operate on the space of cyclically symmetric tensors. W : 7
up to constant multiples. Rather than being independent

will call them “cyclix” operators. The producg)gh . JOHE o
of two of the above operators is not a finite IinearOPeratorS' they are in fact just linear combinationg ff

o 70 _ T M Ik 2D _ 1 Mkl
combination of theg’s themselves. But the commutator f() = &7 — 2= &x and fj) = g7 — 24— gw- The
is indeed such a finite linear combinatiofinite linear  two different ways of Writing]fg; imply that the operators
combinations of the operatorg) form a Lie algebra. ¢} are not linearly independent.

(By finite linear combinations we mean a sum over all Now we can state the commutation relations of our Lie
sequences of indices and J, of the form) ¢; g;, such | algebra:

K, IK K, IK K, K;I
[g).eF1=06fg] + Z 6£g51L + Z 6;'gr " + Z 8y, 851 t+ Z 5f8£12 + Z 7 8L

JiJ,=J K K,=K IZIII?ZJK JiJ,=J K\ K,=J
1K2=
K, Kl K I K, K\IK;3 Ky oKy 2(I) Ky oK, (1)
> Sen Y g, . Srel U+ D 8L T+ > 881
e Jiads=J K K K;=K e Tizda=1
Ki1K2=K K1K2=K K1K2=K
K| o K3 7(IK3) K| o K3 %(IK>)
+ Z 512 511 f(L) + Z 513 511 f(JzL) (= K.J<L).
J1J2=J J1J2J3=J
K1 Ko K3=K K1 K2K3=K

Although it appears complicated when written this wa{y,(gloo can also be defined as the Lie algebra of matrices
these commutation relations have a rather natural graphwith only a finite number of nonzero entries.)

cal interpretation which we will describe in a longer paper We can quotientC,, by this ideal to get another Lie
[10]. We will call the Lie algebra defined by these com-algebraC,,, which is the essentially new object we have

mutation relations the “cyclix Lie algebra” @, . discovered. However, it is only the extensiyy that has
The above deﬁne(jr((j; span an ideal of this algebra @ representation on th(_e space of closed.strmg states.
isomorphic to the inductive limit of linear algebrgs.. In the simplest special case of a matrix model with just

one degree of freedo@ = 1), the algebraC, is just the
algebra of (polynomial) vector fields on the circl€, is
then the extension of this algebra by the algebra of finite

I * K ::j:' — 1 rank matrices [11]. Perhaps, the@,, can be realized
) as the Lie algebra of vector fields on a honcommutative
. manifold.
(@) (K) = () We will now show how some larg®, matrix models

can be solved by using this new symmetry algebra.
Suppose the Hamiltonian of a matrix model is a linear
combinationH = Y;; hj ¢} whereh]{ = 0 unless/ and
Ky — 1 K, J have the same number of indices. (This means that
the “gluon number” is a conserved quantity: regularized
QCD is not of this type.) Such linear combinations form
(b) K;=1J a subalgebra; let us caIIﬁOM.
There is an isomorphism between multimatrix models

FIG. 1. The action of a gluonic operator on a single glueball : : 20 : :
state. The gluonic operatqy, searches for a substring & whose Hamiltonians are it',, and guantum spin chains.

that agrees witty. If found, it replaces each such substring by Now, there are some We-II—k.nown e)_(amples of exactly
I; otherwise, we get zero. Herg? denotes the reverse of the 50|V§d quantum spin chains; they yield exactly solved
sequence. matrix models.

2286



VOLUME 80, NUMBER 11 PHYSICAL REVIEW LETTERS 16 MRcH 1998

More explicitly, consider a spin chain with sites: at S v bl i "
any sitea = 1,..., or v, there is a variable, (called Hopin =D h{ Y. Xj(@Xji(a + 1)
“spin” for historical reasons) that can take the valye. ., u i a=1
or M. We will impose the periodic boundary condition. e Xjla+ b —1).

A basis of states is given ¥ - - - k,,).

. Thus matrix models conserving the gluon number corre-
Define the operator

spond to quantum spin systems with interactions involv-

Xi(a)lk;---k,) = 5,]?" ky--kq—rikgs1---ky). ing neighborhoods of spinga,a + 1,a + 2,...,a +
This is just the Weyl matrix at site. Now we can check b — 1}. )
that if  andJ have the same length < v, Let us look at some examples of solvable spin models
v bil and their associated matrix models. The simplest solvable

r(gh) = Z X}:(a)X;j(a + 1)"'X/if(a +b-1) guantum spin crlain is perhast the Ising model [12,13]:

L ! . . 0 Hitng = D 75(a) + A D 8 (@)r(a + 1).
satisfies the commutation relations of the algebtg. a=1 a=1
If we also setr,(gh) =0 for b > v, we will have a
representation, of C,,. The states of the periodic spin
chain with zero total momentum correspond to cyclically
symmetric tensors which are the states of the matri¥
model. matrix _ 1 2 2 21 12 11

To each matrix model whose Hamiltoniafl = Hisne™ = &1 = &2 + Algii + g1 + &2 + 4]
>, high is in Qf;, we can associate a quantum spinThis is the largeN, limit of the matrix model with
chain with Hamiltonian Hamiltonian

Here 7o are Pauli matrices at site. Using the fact

that 72 = X{(a) — X3(a) and 7 + iTa = 2X3(j), we
et the corresponding eIement@O:

H = tfat(1)a(l) - at(2)a(2)]

+ Nitr[aTQ)a*(Z)a(l)a(l) + at@at(Da@2)a(l) + at'(Dat2)a(1)a2) + at(Dat(1)a2)a(2)].

Our results, along with known results on the Ising splinand[V,[V,[V,Ho]]] = 16[V, Hy]. For the Ising model,
chain [13] give the spectrum of this matrix model inthe Hy, = H = gi — g5 and V = gi1 + gh + gi1 + gm.

large N, limit: Clearly, the Onsager algebra is a sub-algebraht In
v particular, all conserved quantities of the Ising model are
E(n,,v) = —2 Z contained in our cyclix Lie algebra. It is not known
p==v whether this Ising matrix model is solvable for an arbi-
2mp , ]2 trary finite value ofN..
X [1 +2A Co<zy + 1) +A } np To every solved spin chain there is thus a corresponding

] o solved matrix model. Instead of a comprehensive list, we
where is any positive integer and, = 0 or 1. AlSO, e just going to give a few illustrative examples.

i 1 v — - - . - - .
we must impose the conditioh.,__, n,p = 0 to get The generalization of the Ising model with Hamiltonian
cyclically symmetric states. In particular, we see that[15]

the valuex = 1 is the critical value of the matrix model , ,

at which the spectrum (in the planar limit) is that of a pspin _ z X, x x Y _ o y.x

massless free fermion field on a lattice. Har ; Ta AZ‘I[T‘I Tart Ve T TaTan)]
.It IS Interesting to ask whether the symmetries of thealso has the Onsager algebra as a dynamical symmetry. It

Ising spin chain can be understood within our formal'corresponds to the element

ism. Recall that [12,14] the solvability of the Ising

model is due to the existence of an infinite number of ~HEUX = ol — o2 + A[ g3 + (1 — 2iv)gl}

conserved quantities. They form an infinite dimensional

Lie algebra, the Onsager algebra. This is the Lie al-

gebra generated by iterating commutators of two operasf the cyclix Lie algebra, and hence to the exactly solvable

tors Hy andV satisfying[Hy, [Ho,[Ho, V]]] = 16[Hy, V] | matrix model

+ (1 + 2iv)gyi + g

HEauwx — trlat(Da(1) — at(2)a(2)] + Nitr[aT(Z)aT(Z)a(l)a(l) + (1 = 2iv)at@at(Da@)a(1)

c

+ (1 + 2iv)at(Mat@)a(D)a@2) + at(Dat(Da(2)a(2)].
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) v v in M-theory.
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