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We propose a new solution to the cosmological monopole problem in which domain walls sw
away the magnetic monopoles and subsequently decay. The solution does not require extensiv
tuning or model building; it works for the prototype SUs5d grand unification model. More generally,
it shows that defect interactions can lead to “defect erasure” in phase transitions and that this c
relevant to early universe physics. [S0031-9007(98)05517-3]
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All known attempts to unify the fundamental force
of nature predict the existence of magnetic monopo
[1]. In fact, in a cosmological context, all such attemp
predict the existence of too many magnetic monopo
[2]. This is the monopole problem.

The monopole problem has at least three known so
tions. The first is the inflationary solution to the monopo
problem [3] whereby the universe inflates and dilut
the monopole density to acceptable levels. The s
ond is called the Langacker-Pi mechanism [4] in whic
monopoles and antimonopoles get connected by stri
which draw them together, leading to annihilation. Th
third mechanism [5] relies on nonrestoration of the gra
unified symmetry and so there never was a phase tra
tion in which monopoles were produced.

Here we show that there is yet another mechanism
solving the magnetic monopole problem that is econom
cal—does not require complicated particle physics mod
building—and does not suffer from fine-tuning of th
kind encountered in generic inflationary models. Indee
the simplest concrete realization of the model is no
other than the prototype grand unified SUs5d model that
first inspired the inflationary solution.

The basic idea of this new mechanism is quite simp
The phase transition that produces magnetic monopo
also produces domain walls. The domain walls mo
through space and sweep up all the monopoles. Wh
a monopole encounters a wall, it unwinds and dissipa
and, in this way, the walls sweep away the monopo
from the universe. The alert reader would have realiz
at once that a danger in this scheme is that the monop
problem may have been replaced by a domain w
problem. This would be true if the walls were stabl
However, as we discuss below, the walls in this sche
can be unstable at a lower energy scale and hence colla
and go away. The reason for the instability is that th
discrete symmetry responsible for the walls is chosen
be approximate, or, in another rendering of the scena
instanton effects violate theZ2 symmetry and destabilize
the walls.
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The constraints on the model come from requiring th
domain walls do not dominate the universe but live lon
enough to solve the monopole problem. As we sha
see, these constraints can be met without any sev
fine-tuning.

Let us now describe a concrete realization of th
scenario. We consider the SUs5d grand unified model
with an adjoint,F, (and a fundamental) scalar field. The
Higgs potential forF is the standard [6]

V sFd ­ 2
1
2

m2 Tr F2 1
h
4

sTr F2d2

1
l

4
Tr F4 1

g

3
m Tr F3,

whereg is the dimensionless parameter that characteriz
the explicit violation of theZ2 symmetry:F ! 2F.

Consider the caseg ­ 0, in which case the sponta-
neous symmetry breaking

SUs5d 3 Z2 ! fSUs3dc 3 SUs2dL 3 Us1dY gyZ6 (1)

occurs whenF acquires a vacuum expectation valu
(VEV) F0 ­ y diags2, 2, 2, 23, 23dy

p
30, where y ­

my
p

l0 with l0 ; h 1 7ly30. To pick out this direction
for the VEV, we need the following constraints on the
parameters in the Higgs potential:l . 0, h . 27ly30
(i.e., l0 . 0). The VEV F ­ 2F0 also leads to the
symmetry breaking in (1). The two discrete vacu
F ­ 6F0 are degenerate due to the exactZ2 symmetry.

If g is nonzero but small enough to lead to the sym
metry breaking in (1), the potential will continue to have
two discrete minima which will now be nondegenerate
(Our scheme should also work for domain walls inter
polating between vacuua with different symmetries bu
for simplicity, we do not consider this possibility.) These
minima will survive as long as the cubic term in the po
tential is small compared to the other terms and so lea
to an order of magnitude constraint ong: it should be less
than the other coupling constants in the model. Deno
the VEV of F in the lower energy minimum byF1 and
© 1998 The American Physical Society 2281
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that in the higher energy minimum byF2. In the limit of
vanishingg, F6 ! 6F0.

It is well known that the symmetry breaking (1) lead
to magnetic monopoles andZ2 domain walls. What is
less appreciated is that, ifg fi 0, the symmetry breaking
still leads to the formation of cosmological domain wal
that interpolate between the two nondegenerate disc
minima denoted by1 and2. In a cosmological setting,
if the Z2 symmetry is exact (g ­ 0), we know that
regions of the1 and2 vacuua will percolate [7] and the
domain wall network will consist of an infinite domain
wall and (very few) small isolated walls [8,9]. When
g fi 0, the universe relaxes into the1 vacuum with
higher probability than in the2 vacuum leading to
“biased” domain wall formation [10]. If we denote the
probability of a spatial domain being in the1 vacuum
by P1 and that of being in the2 vacuum byP2, we
have P2 ­ P1 expf2DFV yTcg, where DFV is the free
energy difference between two domains of volumeV of
the 6 vacuua, andTc is the freeze-out temperature of th
domains during the phase transition [11]. The free ener
difference is given byDFV . 2gmy3V y3

p
30. If P2 is

not too small, the walls will still percolate. For example
if percolation on a cubic lattice is a good description of th
phase transition, the walls will percolate ifP6 . 0.31.
Using P2 ­ 1 2 P1, and requiring wall percolation
imposes a constraint,DFV , 0.8Tc, which translates
into the constraint:g & 7TcymVy3. For weakly first
order and second order phase transitions, on dimensio
grounds,V , m23, Tc , m and for values ofh and l

that are not too extreme, we havey , m. Hence the
constraint ong is quite mild and no fine-tuning is neede
to get infinite walls to be produced. For strongly firs
order transitions,V can be as large as the horizon volum
at the grand unified phase transition and the constraint
g is very strong. Here we will consider only the weakl
first order or second order phase transition for whichVm3

is not too large.
The energy difference across the walls forg fi 0

implies a force that drives the walls into the2 regions.
For example, a straight infinite wall would be pressu
driven so that the volume in the higher energy2 vacuum
gets smaller. However, in a cosmological setting a
at early times, the force of tension,syR (where s ­
4m3y3l0 is the energy per unit area of the wall andR
is the radius of curvature) can be large compared to
pressure difference,DFV yV , across the wall. The radius
of curvature of the wallsR is of order T21

c for second
order phase transitions. Hence, the pressure contribu
to the dynamics of the walls is subdominant provided

g &
10

p
l0

Rm
, (2)

which givesg & 10
p

l0. With this constraint satisfied,
the wall evolution is just as in the exactZ2 symmetry
case where there is no pressure difference. As the w
are two dimensional surfaces moving in three spat
2282
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dimensions and are infinite in extent with no spatia
symmetries, they will sweep out the entire volume of th
universe in a timet , Ryyw sinceR is also the interwall
distance and whereyw , c is the wall velocity.

As the walls sweep the universe, they also sweep u
the monopoles. Now what happens when a monopole h
a domain wall? Here there are two parameter depende
possibilities that we must discuss separately. The fir
is when F ­ 0 and the other is whenF fi 0 inside
the wall. To see that both cases are possible, consid
the Higgs potential when we restrictF to lie along the
diagonal,al3 1 bl8 1 ct3 1 yY , wherel3 andl8 are
matrices from the SUs3dc Cartan subalgebra,t3 is the weak
isospin, andY is the hypercharge generator, all matrice
being normalized to unity. Usually one assumes that sinc
F ! 2F across the wall, we must haveF ­ 0 at the
center of the wall and the SUs5d must be restored on the
wall. However, for a wide range of parameter space th
is not the case because some other component(s) ofF

(which vanish in the vacuum) can pick up a VEV and
break the gauge symmetry inside the wall in a differen
fashion. This can be simply understood by examinin
the linearized Schrödinger equation for small excitation
e ­ e0sxde2ivt (e is either thea, b, or c component) in
the wall background

s2≠2
x 1 h2m2 1 fysxdg2sh 1 lrdjde0 ­ v2e0 ,

where the wall is taken to lie in thex ­ 0 plane
and for e being in the a, b, c directions we have
r ­ 2y5, 2y5, and9y10, respectively. The function
ȳsxd is the profile of the wall which for a planar in-
finite wall can be approximated by a kink solution
ȳsxd ­ y tanhsmxy

p
2d. When l ­ 12l0 and r ­ 2y5,

the Schrödinger equation is identical to the equatio
obtained when solving for perturbations around the kin
solution [12]. Then there is a zero mode correspondin
to the translation of the kink. From this we deduce tha
the domain wall will haveF ­ 0 at the center only if
l0 , ly12 as there are no bound state (negativev2)
solutions to the Schrödinger equation if this condition
holds.

We must comment here that even if one forgets th
monopole problem, from the cosmological viewpoint one
prefers the range of parameters for whichF vanishes on
the wall. The reason is that ifF is nowhere zero in
space, then the domain walls may never collapse ev
though theZ2 is only approximate [13]. To see this,
let b be a component that is nonzero on the wall an
define a complex numberc ­ ȳ 1 ib with the boundary
conditionsc ­ 6y on opposite sides of the wall. This
configuration is equivalent to the winding of the phase
of c by D ­ p through the wall. Since the expectation
value jcj is nowhere zero, the winding of the phase is
well defined and one can distinguish walls withD ­ 6p

when one crosses them in one direction. Now walls wit
opposite winding can annihilate each other and disappe
but pairs with the same winding cannot. So when tw
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[1]

)
me
neighboring walls with equal winding are pushed towar
each other due to the pressure differences, they can
annihilate, but instead form a “bound state”: aD ­ 2p

domain wall [13]. Although not truly stable (these ca
decay via quantum nucleation of holes [14]) they can
stable for all practical purposes if the expectation val
of the Higgs field in the core is large. This consideratio
disfavors (but does not exclude) the range of paramet
for which F fi 0 inside the wall.

If F ­ 0 inside the wall, the full SUs5d symmetry is
restored there. If, however,F fi 0 inside the wall, the
symmetry inside the wall is not the full SUs5d but only a
subgroup which is different from the unbroken subgrou
in the vacuum. We expect that our mechanism will wo
as long as the symmetry inside the wall is large enough
that monopoles can unwind there. To keep the discuss
simple, we will consider only theF ­ 0 case here.

The interaction of monopoles and domain walls h
not been investigated in detail but there are stro
indications that the monopoles will unwind on enterin
the wall where the full SUs5d symmetry is restored. These
indications are as follows.

(i) There is an attractive force between the monopo
and the walls since monopoles can save the expense
having to go off the vacuum in their core by moving on t
the wall. So the monopoles can form bound states w
the walls. [We observe here that the domain wall a
monopole bound state can lead to a classical realizat
of a D-brane if the SUs3dc symmetry group further breaks
to Z3 since now the monopoles bound to the walls w
be connected by strings. Related constructions may a
be found in [15].]. Then, as there is no topologica
obstruction to the unwinding of monopoles on the wa
the monopoles on the wall can continuously relax into t
vacuum state.

(ii) The investigation of a similar system—Skyrmion
and walls—has been dealt with in full detail in Ref. [16
These authors find that the Skyrmion hits the wall, se
up traveling waves on the wall, and dissipates. Th
also find that, even though it is topologically possible fo
the Skyrmion to penetrate and pass through the dom
wall, this never happens. They attribute their finding
the coherence required for producing a Skyrmion. Th
is, the penetration of a Skyrmion may be viewed as t
annihilation of the incoming Skyrmion on the wall an
the subsequent creation of a Skyrmion on the other si
However, the annihilation results in traveling waves alon
the wall that carry off a bit of the coherence require
to produce a Skyrmion on the other side. Hence, ev
though there is enough energy in the vicinity of th
collision, a Skyrmion is unable to be created on th
other side of the wall. We think that these consideratio
apply equally well to monopole-wall interactions and th
monopoles will—for all cosmological purposes—neve
penetrate the wall.

(iii) Energetically, the most favored state is where th
monopole unwinds. Even if this does not happen
ds
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a single monopole-wall collision, it will occur if there
are several interactions. Given that the walls are ve
efficient at sweeping the universe, multiple monopo
wall interactions can easily occur.

(iv) The interactions of vortices and domain wal
separating theA and B phases of3He have been studied
and also observed experimentally. It is found that singu
vortices do not penetrate from theB phase into theA
phase [17].

Based on the arguments above, we conjecture that
monopoles are trapped on the walls and since they
unwind on the wall, will spread out as traveling wave
Eventually, as we will see below, the percolated wall w
collapse and all the monopoles will be eliminated. (Th
will be simplest to see in a closed universe in which t
total magnetic charge must vanish.)

In view of the fact that we have not proved tha
monopoles will unwind, it is useful to derive constrain
on the probability of unwinding that will enable a succes
ful resolution of the monopole problem. Letjstd be the
average wall separation at timet. Then the time for the
wall to move a distancejstd is tstd ­ jstdyyw . We will
further assume that the wall network at timet0 1 tst0d
is completely independent of the network at timet0 and
provides a “fresh” (uncorrelated) set of walls that swe
the universe. The number of “correlation times” betwe
wall formation at timetf and wall decay at timetd is
N ­ log2fstd 2 tfdytstf dg. Let 1 2 p denote the proba-
bility that a monopole will survive for a correlation time
(This includes both the possibility that the monopole m
not encounter a wall and that it may not unwind after b
ing hit by a wall.) We will assume thatp anda ­ tyjstd
are constants which is reasonable if the wall netwo
scales. Then the probability that a monopole will su
vive until the timetd is S ­ s1 2 pdN and this is con-
strained by cosmology to be less than a critical val
Sp , 10212. Hence we needp . 1 2 S

1yN
p . To derive

a numerical estimate of the upper bound onN , we take
td , sGsd21 (the time at which walls would start domi
nating [1]) andtstf d , MPyy2, whereMP , 1019 GeV
is the Plank scale. This givesN , log2fMPy

p
l0 yg. For

yyMP ­ 1024 and l0 ­ 0.1, N is about 15. Therefore,
with these parameters, we needp . 0.8 for a cosmologi-
cally acceptable number of monopoles to have survive

After the monopoles have been swept up by the wa
we are left with walls that are continually straightenin
out [18]. At a certain time, the condition in Eq. (2) i
violated, and the walls start collapsing due to the press
difference between the two sides. The walls will dec
before they come to dominate the universe provided
DFV . Gs2V . This gives an additional constraint ong:

g .
10Gs

p
l0

m
,

10
p

l0

√
MG

MP

!2

,

whereMG , 1014 GeV is the grand unified theory (GUT
scale. Once the walls are pressure driven, the volu
2283
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n,

l,
fraction in theF1 vacuum will increase at the expense
of theF2 vacuum. Finally all of space will be in theF1

vacuum and no domain walls will remain.
Summarizing the strongest constraints ong, we need

1029l021y2 & g & 10l011y2

for the domain walls to sweep away the monopoles a
subsequently decay safely. The lower bound comes fro
requiring that the walls never dominate the universe a
the upper bound comes from requiring that the wal
percolate and that there is a period during which th
wall evolution is tension dominated. (If the walls do
not percolate, they will all be finite and will collapse
without sweeping through the whole volume of th
universe. If the pressure term becomes important befo
the monopoles have been swept away, some of t
monopoles that were formed in theF1 vacuum will
not be swept up by the walls and will survive. In
these cases, depending on the fraction of space t
remains unswept, we may or may not have a monopo
problem.)

The domain walls in theg ­ 0 case can also be
eliminated if the Z2 symmetry is anomalous under a
strongly coupled SUsNd gauge group [19]. This can be
the case ifF gives mass to an odd number of fermioni
flavors transforming in the fundamental representation
SUsNd. Then, if there is no extra matter charged unde
SUsNd, the Z2 symmetry is expected to be explicitly
broken by instantons. Provided the strong scale
SUsNd, L, is smaller thanMG, and the Yukawa coupling
constants of fermions are of order one, the instanto
induced energy difference between the6 vacua is,L4.
This bias will turn on only at a timetanom ­ MPyL2 and
the requirement that walls never dominate the univer
leads to the boundL2 . M3

GyMP . (This rules out QCD
as the source for an explicit bias.)

Yet another source of bias [20] can be a higher dime
sional gravity-induced Planck scale suppressed operat
that, on general grounds, are expected not to respect
global symmetries of the theory.

This resolution of the monopole problem frees inflatio
from having to occur during or after the GUT phase tran
sition. Our considerations also show that the interactio
of various defects produced during a phase transition c
be vital to cosmology. In particular, one class of defec
can erase another class.
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