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We propose a new solution to the cosmological monopole problem in which domain walls sweep
away the magnetic monopoles and subsequently decay. The solution does not require extensive fine-
tuning or model building; it works for the prototype 81 grand unification model. More generally,
it shows that defect interactions can lead to “defect erasure” in phase transitions and that this can be
relevant to early universe physics. [S0031-9007(98)05517-3]

PACS numbers: 98.80.Cq, 11.30.Er, 14.80.Hv

All known attempts to unify the fundamental forces The constraints on the model come from requiring that
of nature predict the existence of magnetic monopoleslomain walls do not dominate the universe but live long
[1]. In fact, in a cosmological context, all such attemptsenough to solve the monopole problem. As we shall
predict the existence of too many magnetic monopolesee, these constraints can be met without any severe
[2]. This is the monopole problem. fine-tuning.

The monopole problem has at least three known solu- Let us now describe a concrete realization of the
tions. The firstis the inflationary solution to the monopolescenario. We consider the &) grand unified model
problem [3] whereby the universe inflates and diluteswith an adjoint,®, (and a fundamental) scalar field. The
the monopole density to acceptable levels. The sedHiggs potential for® is the standard [6]
ond is called the Langacker-Pi mechanism [4] in which

monopoles and antimonopoles get connected by strings V(D) = LIS S ﬁ(Tr(DZ)Z

which draw them together, leading to annihilation. The 2 4

third mechanism [5] relies on nonrestoration of the grand + A Tro* + L mTrd3,

unified symmetry and so there never was a phase transi- 4

tion in which monopoles were produced. wherey is the dimensionless parameter that characterizes

Here we show that there is yet another mechanism fofhe explicit violation of theZ, symmetry:® — —®.
solving the magnetic monopole problem that is economi- Consider the case = 0, in which case the sponta-
cal—does not require complicated particle physics modeheous symmetry breaking
building—and does not suffer from fine-tuning of the
kind encountered in generic inflationary models. Indeed, SU(5) X Z, — [SU3). X SUQ); X U(1)yl/Zs (1)
the simplest concrete realization of the model is none
other than the prototype grand unified SUmodel that occurs when® acquires a vacuum expectation value
first inspired the inflationary solution. (VEV) @, = vdiag2,2,2, -3, —3)/+/30, where v =

The basic idea of this new mechanism is quite simplem/+/A’ with A’ = h + 7A/30. To pick out this direction
The phase transition that produces magnetic monopoldsr the VEV, we need the following constraints on the
also produces domain walls. The domain walls moveparameters in the Higgs potential:> 0, & > —71/30
through space and sweep up all the monopoles. Whefie., A’ > 0). The VEV ® = —d, also leads to the
a monopole encounters a wall, it unwinds and dissipatesymmetry breaking in (1). The two discrete vacua
and, in this way, the walls sweep away the monopolesb = =®d, are degenerate due to the exdgtsymmetry.
from the universe. The alert reader would have realized If y is nonzero but small enough to lead to the sym-
at once that a danger in this scheme is that the monopolaetry breaking in (1), the potential will continue to have
problem may have been replaced by a domain waltwo discrete minima which will now be nondegenerate.
problem. This would be true if the walls were stable.(Our scheme should also work for domain walls inter-
However, as we discuss below, the walls in this schemeolating between vacuua with different symmetries but,
can be unstable at a lower energy scale and hence collapfe simplicity, we do not consider this possibility.) These
and go away. The reason for the instability is that theminima will survive as long as the cubic term in the po-
discrete symmetry responsible for the walls is chosen téential is small compared to the other terms and so leads
be approximate, or, in another rendering of the scenaridp an order of magnitude constraint gnit should be less
instanton effects violate th&, symmetry and destabilize than the other coupling constants in the model. Denote
the walls. the VEV of ®@ in the lower energy minimum by, and
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that in the higher energy minimum kiy_. Inthe limit of  dimensions and are infinite in extent with no spatial
vanishingy, ®.- — *=d. symmetries, they will sweep out the entire volume of the
It is well known that the symmetry breaking (1) leads universe in a timer ~ R/v,, sinceRr is also the interwall
to magnetic monopoles and, domain walls. What is distance and where,, ~ c is the wall velocity.
less appreciated is that, if # 0, the symmetry breaking As the walls sweep the universe, they also sweep up
still leads to the formation of cosmological domain wallsthe monopoles. Now what happens when a monopole hits
that interpolate between the two nondegenerate discrete domain wall? Here there are two parameter dependent
minima denoted by+ and —. In a cosmological setting, possibilities that we must discuss separately. The first
if the Z, symmetry is exact f{ = 0), we know that is when ® = 0 and the other is wherP # 0 inside
regions of the+ and — vacuua will percolate [7] and the the wall. To see that both cases are possible, consider
domain wall network will consist of an infinite domain the Higgs potential when we restridt to lie along the
wall and (very few) small isolated walls [8,9]. When diagonal,aA; + bAg + c13 + vY, where; and Ag are
v # 0, the universe relaxes into the vacuum with matrices from the S3). Cartan subalgebra; is the weak
higher probability than in the— vacuum leading to isospin, andY is the hypercharge generator, all matrices
“biased” domain wall formation [10]. If we denote the being normalized to unity. Usually one assumes that since
probability of a spatial domain being in the vacuum & — —® across the wall, we must hawe = 0 at the
by P, and that of being in the- vacuum byP_, we center of the wall and the S8) must be restored on the
have P_ = P, exd—AFy/T.], where AFy is the free wall. However, for a wide range of parameter space this
energy difference between two domains of volumesf  is not the case because some other component(d) of
the = vacuua, and’. is the freeze-out temperature of the (which vanish in the vacuum) can pick up a VEV and
domains during the phase transition [11]. The free energbreak the gauge symmetry inside the wall in a different
difference is given byAFy = 2ymv3V /3+/30. If P_is  fashion. This can be simply understood by examining
not too small, the walls will still percolate. For example, the linearized Schrddinger equation for small excitations
if percolation on a cubic lattice is a good description of thee = €(x)e " “! (e is either thea, b, or ¢ component) in
phase transition, the walls will percolate #- > 0.31.  the wall background
Using P- =1 — P, and requiring wall percolation 2 2 .\ s
impogses a constraintAFy, < g.STC,g which ptranslates (=ay + {=m” + [WWF(h + Ar)heo = w”eo,
into the constrainty < 77./mVv>. For weakly first where the wall is taken to lie in ther = 0 plane
order and second order phase transitions, on dimensionahd for € being in the a,b,c directions we have
grounds,V ~ m 3, T. ~ m and for values ofr and A r =2/5,2/5, and9/10, respectively. The function
that are not too extreme, we hawve~ m. Hence the w»(x) is the profile of the wall which for a planar in-
constraint ony is quite mild and no fine-tuning is needed finite wall can be approximated by a kink solution
to get infinite walls to be produced. For strongly first o(x) = v tanHmx/v2). WhenA = 12A’ and r = 2/5,
order transitionsy can be as large as the horizon volumethe Schrédinger equation is identical to the equation
at the grand unified phase transition and the constraint oobtained when solving for perturbations around the kink
v is very strong. Here we will consider only the weakly solution [12]. Then there is a zero mode corresponding
first order or second order phase transition for whigh®  to the translation of the kink. From this we deduce that
is not too large. the domain wall will have® = 0 at the center only if
The energy difference across the walls fgr# 0 A’ < A/12 as there are no bound state (negativeé)
implies a force that drives the walls into the regions.  solutions to the Schrédinger equation if this condition
For example, a straight infinite wall would be pressureholds.

driven so that the volume in the higher energyacuum We must comment here that even if one forgets the
gets smaller. However, in a cosmological setting andnonopole problem, from the cosmological viewpoint one
at early times, the force of tensiow;/R (where o =  prefers the range of parameters for whibhvanishes on

4m3/3)’ is the energy per unit area of the wall akd the wall. The reason is that &> is nowhere zero in

is the radius of curvature) can be large compared to thepace, then the domain walls may never collapse even

pressure difference)Fy/V, across the wall. The radius though theZ, is only approximate [13]. To see this,

of curvature of the wallsR is of order7. ! for second let b be a component that is nonzero on the wall and

order phase transitions. Hence, the pressure contributiasiefine a complex numbe¥r = v + ib with the boundary

to the dynamics of the walls is subdominant provided  conditionsy = *v on opposite sides of the wall. This

10X configuration is equivalent to the winding of the phase

R (2)  of ¢ by A = 7 through the wall. Since the expectation
value |¢| is nowhere zero, the winding of the phase is

which givesy =< 10+/A’. With this constraint satisfied, well defined and one can distinguish walls with= + 7

the wall evolution is just as in the exaZb symmetry  when one crosses them in one direction. Now walls with

case where there is no pressure difference. As the wallspposite winding can annihilate each other and disappear,

are two dimensional surfaces moving in three spatiabut pairs with the same winding cannot. So when two
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neighboring walls with equal winding are pushed towardsa single monopole-wall collision, it will occur if there
each other due to the pressure differences, they cannate several interactions. Given that the walls are very
annihilate, but instead form a “bound state”Aa= 27  efficient at sweeping the universe, multiple monopole-
domain wall [13]. Although not truly stable (these canwall interactions can easily occur.

decay via quantum nucleation of holes [14]) they can be (iv) The interactions of vortices and domain walls
stable for all practical purposes if the expectation valueseparating thel and B phases ofHe have been studied
of the Higgs field in the core is large. This considerationand also observed experimentally. It is found that singular
disfavors (but does not exclude) the range of parametensortices do not penetrate from the phase into theA

for which ® # 0 inside the wall. phase [17].

If & = 0 inside the wall, the full SF) symmetry is Based on the arguments above, we conjecture that the
restored there. If, howeve® # 0 inside the wall, the monopoles are trapped on the walls and since they can
symmetry inside the wall is not the full 8) but only a  unwind on the wall, will spread out as traveling waves.
subgroup which is different from the unbroken subgroupEventually, as we will see below, the percolated wall will
in the vacuum. We expect that our mechanism will workcollapse and all the monopoles will be eliminated. (This
as long as the symmetry inside the wall is large enough swill be simplest to see in a closed universe in which the
that monopoles can unwind there. To keep the discussiototal magnetic charge must vanish.)
simple, we will consider only thé = 0 case here. In view of the fact that we have not proved that

The interaction of monopoles and domain walls hagnonopoles will unwind, it is useful to derive constraints
not been investigated in detail but there are strongn the probability of unwinding that will enable a success-
indications that the monopoles will unwind on enteringful resolution of the monopole problem. Létr) be the
the wall where the full S(F) symmetry is restored. These average wall separation at time Then the time for the
indications are as follows. wall to move a distancé(z) is 7(¢) = £(¢)/v,,. We will

() There is an attractive force between the monopolegurther assume that the wall network at timg+ 7(z)
and the walls since monopoles can save the expense isf completely independent of the network at timeand
having to go off the vacuum in their core by moving on to provides a “fresh” (uncorrelated) set of walls that sweep
the wall. So the monopoles can form bound states witlthe universe. The number of “correlation times” between
the walls. [We observe here that the domain wall andvall formation at times, and wall decay at time, is
monopole bound state can lead to a classical realizatioN = log,[(r; — t7)/7(t¢)]. Letl — p denote the proba-
of a D-brane if the S(B). symmetry group further breaks bility that a monopole will survive for a correlation time.
to Z; since now the monopoles bound to the walls will (This includes both the possibility that the monopole may
be connected by strings. Related constructions may alswot encounter a wall and that it may not unwind after be-
be found in [15].]. Then, as there is no topologicaling hit by a wall.) We will assume that anda = 1/£(¢)
obstruction to the unwinding of monopoles on the wall,are constants which is reasonable if the wall network
the monopoles on the wall can continuously relax into thescales. Then the probability that a monopole will sur-
vacuum state. vive until the timez; is S = (1 — p)V and this is con-

(i) The investigation of a similar system— Skyrmions strained by cosmology to be less than a critical value
and walls—has been dealt with in full detail in Ref. [16]. 5, ~ 10 !2. Hence we nee¢p > 1 — S’ To derive

These authors find that the Skyrmion hits the wall, set$ numerical estimate of the upper bound Mpwe take

up traveling waves on the wall, and dissipates. They, ~ (Go)~! (the time at which walls would start domi-
also find that, even though it is topologically possible fOFnating [1]) andr(s;) ~ Mp/v?, whereMp ~ 10" GeV

the Skyrmion to penetrate and pass through the domaig the Plank scale. This gives ~ log,[Mp//N v]. For
wall, this never happens. They attribute their finding 10y /Mp = 107* and X’ = 0.1, N is about 15. Therefore,
the coherence required for producing a Skyrmion. Tha{yith these parameters, we nepd> 0.8 for a cosmologi-

is, the penetration of a Skyrmion may be viewed as thga|ly acceptable number of monopoles to have survived.
annihilation of the incoming Skyrmion on the wall and  After the monopoles have been swept up by the walls,
the subsequent creation of a Skyrmion on the other sidgye are left with walls that are continually straightening
However, the annihilation results in traveling waves alongg,¢ [18]. At a certain time, the condition in Eq. (2) is
the wall that carry off a bit of the coherence requiredyjpjated, and the walls start collapsing due to the pressure
to produce a Skyrmion on the other side. Hence, evegijfference between the two sides. The walls will decay
though there is enough energy in the vicinity of thepefore they come to dominate the universe provided [1]

collision, a Skyrmion is unable to be created on thexr, > G42v. This gives an additional constraint gn
other side of the wall. We think that these considerations

— 2
apply equally well to monopole-wall interactions and that < 10GaVA 10 (Mg
monopoles will—for all cosmological purposes—never Y m A\ Mp )
penetrate the wall.

(iii) Energetically, the most favored state is where thewhereM; ~ 10'* GeV is the grand unified theory (GUT)
monopole unwinds. Even if this does not happen inscale. Once the walls are pressure driven, the volume
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fraction in the®, vacuum will increase at the expense defects in*He and providing references, and, to the DoE
of thed_ vacuum. Finally all of space will be inth&,;  for support.
vacuum and no domain walls will remain.

Summarizing the strongest constraintsygnwve need
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