
VOLUME 80, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 16 MARCH 1998

nds

sate
the
xci-
om

of
amp-
]

Damping of Low-Energy Excitations of a Trapped Bose-Einstein Condensate
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We present the theory of damping of low-energy excitations of a trapped Bose-Einstein conden
at finite temperatures, where the damping is provided by the interaction of these excitations with
thermal excitations. We emphasize the key role of stochastization in the behavior of the thermal e
tations for damping in nonspherical traps. The damping rates of the lowest excitations, following fr
our theory, are in fair agreement with the data of recent JILA and MIT experiments. The damping
quasiclassical excitations is determined by the condensate boundary region, and the result for the d
ing rate is drastically different from that in a spatially homogeneous gas. [S0031-9007(98)05601-4
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After the discovery of Bose-Einstein condensatio
(BEC) [1–3], one of the major directions in the physic
of ultracold gases has been the investigation of collecti
many-body effects. Especially interesting is the behavi
of low-energy collective excitations of a trapped conden
sate. The JILA [4,5] and MIT [6,7] experiments show
that these excitations are damped and provide us w
interesting results on the temperature dependence of
damping rates and frequency shifts.

In this Letter we develop the theory of damping of ex
citations of a trapped condensate in the Thomas-Fer
regime at finite temperatures, where the presence o
thermal component is important. We confine ourselves
the damping of low-energy excitations, i.e., the excitation
with energiesEn ø m, wherem is the chemical poten-
tial, and consider temperaturesT ¿ h̄v (v is the char-
acteristic trap frequency) ranging almost up to the BE
transition temperatureTc. Thus far, theoretical and nu-
merical investigations of elementary excitations of trappe
Bose-condensed gases predominantly remained on
mean-field level [8–17]. The investigation of dampin
phenomena requires analysis beyond the ordinary me
field approach [18]. It should be emphasized that th
damping of low-energy excitations in a trapped Bose
condensed gas differs fundamentally from the dampin
of Bogolyubov excitations in an infinitely large spatially
homogeneous gas. In the latter case, characterized b
continuum of excitations, any given excitation can deca
into two excitations of lower energy and momentum. Th
damping mechanism, first discussed by Beliaev forT  0
[19] and employed by Popov [20] at finite temperature
proves to be dominant atT ø m. In a trapped Bose-
condensed gas the character of the discrete structure of
spectrum of low-energy excitations makes Beliaev dam
ing impossible under conservation of energy. Therefor
irrespective of the relation betweenT andm, the damping
of excitations with energies

En ø m, T (1)
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has to be provided by their interaction with the therma
excitations. The damping mechanism involves process
in which the low-energy excitationsnd and the thermal
excitationsgd are annihilated (created) and another the
mal excitationsg0d is created (annihilated):

n 1 g $ g0. (2)

We will discuss the case where the thermal excitationsg,
g0 are in the collisionless regime. Under the condition (1
the energiesEg of these excitations are much larger than
the energiesEn of the low-energy excitations. There-
fore, the damping mechanism governed by the process
(2) can be treated as Landau damping. For spatial
homogeneous gases this mechanism was first discus
by Szepfalusy and Kondor [21,22].

It is worth noting that inside the condensate spatia
region, atT & m the density of occupied states of therma
excitations peaks at the energiesEg , T , whereas for
T ¿ m this happens atEg , m. As just the excitations
with Eg , m give the main contribution to the damping
rate, the collective character of the thermal excitation
remains important even atT ¿ m (cf. [21]).

In a trapped Bose-condensed gas the damping of lo
energy excitations is determined by the behavior of th
wave functions and by the distribution of the level spacing
of thermal excitations with energiesEg & m, which de-
pends on the trap symmetry. We emphasize that stoch
tization in the behavior of these thermal excitations plays
key role for damping in nonspherical traps. For quasicla
sical sEn ¿ h̄vd low-energy excitations the main contri-
bution to the damping rateGn comes from the boundary
region of the condensate, which makesGn completely dif-
ferent from that in a spatially homogeneous gas. Th
damping of the lowest excitationssEn , h̄vd is deter-
mined by the behavior of the excitations in the entire con
densate region. For this case the damping rates followi
from our theory are in fair agreement with the data of th
JILA [5] and MIT [7] experiments.
© 1998 The American Physical Society 2269
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Elementary excitations of a Bose condensate trapped
an external potentialV srd are commonly defined within the
Bogolyubov–de Gennes approach (see [24]) on the ba
of the grand canonical Hamiltonian

Ĥ 
Z

dr Ĉysrd
∑

2
h̄2

2m
D 1 V srd

1
Ũ
2

ĈysrdĈsrd 2 m

∏
Ĉsrd (3)

assuming a point interaction between atoms, withŨ 
4p h̄2aym, m the atom mass, anda the (positive) scat-
tering length. The field operator of atomŝC is repre-
sented as the sum of the above-condensate partĈ0 and
the condensate wave functionC0  kĈl. Omitting the
terms proportional toĈ03 andĈ04 and using the general-
ized Bogolyubov transformation̂C0srd 

P
n b̂nunsrd 2

b̂y
n yp

nsrd, whereb̂n, b̂y
n are annihilation and creation op

erators of elementary excitations, the Hamiltonian (3)
reduced to the diagonal form̂H  Ĥ0 1

P
n En b̂y

n b̂n, if
the functionsun, yn satisfy the equations∑

2h̄2D

2m
1 V srd 2 m

∏ ∑
un

yn

∏
1

ŨjC0j
2

µ
2

∑
un

yn

∏
2

∑
yn

un

∏∂
 En

∑
un

2yn

∏
. (4)

The condensate wave functionC0 is determined by the
well-known Gross-Pitaevskii equation. In the Thoma
Fermi regime, wherem ø n0mŨ (n0m is the maximum
condensate density) greatly exceedsh̄v, one has [25]:
C0srd  fsm 2 V srddyŨg1y2 for m $ V srd and zero oth-
erwise. The low-energy excitationssEn ø md are local-
ized in the condensate spatial region, and in a harmo
potentialV srd the functionsf6

n  un 6 yn are [16]

f6
n 

"
2n0srdŨ

En

#61y2√Y
i

li

!21y2

Wnsriylid , (5)

where n0srd  jC0srdj2 is the condensate density,li 
s2mymv

2
i d1y2 the characteristic size of the condensate

the ith direction, andvi the ith trap frequency.
Interaction between the excitations, caused by the ter

proportional toĈ03 andĈ04 in Eq. (3), leads to damping.
Below we will assume the inequality

sTyn0mŨd sn0ma3d1y3 ø 1 , (6)

which is fulfilled up to T ø 0.9Tc for the conditions
of the JILA [6] and MIT [7] experiments. Just Eq. (6
ensures that the contribution to the damping rate of lo
energy excitations from thêC03 terms is the largest, i.e.,
the damping is actually caused by the interaction of t
low-energy excitations with thermal excitations throug
the condensate and governed by the processes (2).
2270
in

sis

is

s-

nic

in

ms

w-

he
h
The

corresponding interaction Hamiltonian reads

Ĥint  Ũ
Z

d3r C0Ĉ0ysĈ0y 1 Ĉ0dĈ0. (7)

Second, under condition (6) the damping rate can b
found within the first-order perturbation theory inHint:

Gn  Im
X
gg0

1
h̄

jkg0jĤintjnglj2

Eg 2 Eg0 1 En 1 i0
sNg 2 Ng0d ,

(8)

whereNg  fexpsEgyT d 2 1g21 are equilibrium occupa-
tion numbers for the thermal excitations. The transition
matrix element can be represented in the form

kg0jĤintjngl 
Ũ
2

f3Hngg0 2 sHng
g0 2 Hng0

g 2 Hgg0

n dg ,

(9)

where Hngg0 
R

d3r C0srdf2
n srdf2

g srdf2p
g0 srd and

H
gg0

n 
R

d3r C0srdf2
n srdf1

g srdf1p
g0 srd.

Since energies of the thermal excitationsEg ¿ h̄v,
these excitations are quasiclassical and, similarly to th
spatially homogeneous case, one can write

f6
g srd  sEgyh

p
E2

g 1 fn0srdŨg2 2 n0srdŨjd61y2fgsrd .

Then, using Eq. (5), from Eq. (9) we obtain

kg0jĤintjngl 

µ
EnŨ

2
Q

i li

∂1y2 Z
d3r Fngsrdfgsrdfp

g0 srd ,

(10)

whereFngsrd  WnsriylidFgsrd, and

Fgsrd 
2E2

g 1 fn0srdŨg2 2 n0srdŨ
p

E2
g 1 fn0srdŨg2

Eg

p
E2

g 1 fn0srdŨg2
.

(11)

For the distribution of energy levels of the thermal ex-
citations with a given set of quantum numbersg̃ deter-
mined by the trap symmetry (in cylindrically symmetric
traps g̃ is the projectionM of the orbital angular mo-
mentum on the symmetry axis) we will use the statistica
Wigner-Dyson [26,27] approach which assumes ergodi
behavior of the excitations. Then, the quantum spectrum
of the thermal excitations is random and the sum in Eq. (8
can be replaced by the integral

R
dEg dEg0

P
g̃g̃0 gggg0 Rgg0

in which ggsEgd is the density of states for the excita-
tions with a given set̃g, and Rgg0 the level correlation
function. In nonspherical harmonic trapsggEn ¿ 1 and,
hence,Rgg0 ø 1. Then, puttingNg 2 Ng0  EnsdNgy
dEgd and writing sEg 2 Eg0 1 En 1 i0d21 as the inte-
gral over timei

R`

0 dt exphisEg 2 Eg0 1 En 1 i0dtyh̄j,
from Eqs. (8) and (10) we obtain
Gn 
E2

nŨ

2h̄2
Q

i li
Re

X
g̃

Z
gg

dNg

dEg

dEg

Z `

0
dt exp

Ω
i

sEn 1 i0dt
h̄

æ Z
d3r d3r 0 FngsrdFp

ngsr0dKgsr, r0, td , (12)
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where the quantum-mechanical correlation function

Kgsr, r0, td 
X
g̃0

Z
gg0 dEg0 exp

Ω
i

sEg 2 Eg0 dt
h̄

æ
3 fgsrdfp

gsr0dfp
g0 srdfg0 sr0d . (13)

In our calculation of the damping rateGn we will
turn from the integration over the quantum states of t
quasiclassical thermal excitations to the integration alo
the classical trajectories of motion of Bogolyubov-typ
quasiparticles in the trap. Following a general metho
he
ng
e
d

(see [28–30]), forKgsr, r0, td we can writeX
g̃

ggKgsr, r0, td 
Z

dsr00 2 rddsssrclstjr00, pd 2 r0ddd

3 dsssEg 2 Hsp, r00dddd
d3p d3r 00

s2p h̄d3 ,

(14)

whereHsp, rd 
p

sp2y2md2 1 2n0srdŨsp2y2md is the
Bogolyubov Hamiltonian, andrclstjr, pd the coordinate
of the classical trajectory with initial momentump and
coordinater. Then Eq. (12) is reduced to the form
Gn 
E2

nŨ

2h̄2
Q

i li
Re

Z
dEg

dNg

dEg

Z `

0
dt exp

µ
i

Ent
h̄

∂ Z
FngsrdFp

ngsssrclstjr, pdddddsssEg 2 Hsp, rdddd
d3r d3p
s2p h̄d3

. (15)
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We first consider temperaturesT ¿ m, where the main
contribution to the integral in Eq. (15) is provided by th
thermal excitations with energiesEg & m. In this case
the use of the statistical approach in nonspherical traps
justified by the fact that, as shown in [31], the motion o
corresponding classical Bogolyubov-type quasiparticles
strongly chaotic at energies of orderm. The characteristic
values ofp andt in Eq. (15) are of orderfmn0srdŨg1y2 and
h̄yEn, respectively. For quasiclassical low-energy excit
tionssEn ¿ h̄vd this time scale is much shorter thanv21

and important is only a small part of the classical traje
tory, where the condensate density is practically const
and rclstjr, pd  r 1 vt, with v  ≠Hy≠p. Represent-
ing FngsrdFp

ngsssrclstjr, pdddd asj fnsrdj2F2srd cosspnvtyh̄d,
wherepn is a classical momentum of the Bogolyubov-typ
quasiparticle, from Eq. (15) we obtain

Gn 
Z

d3r j fnsrdj2Gnhsrd . (16)

Here Gnhsrd is the damping rate of the excitation with
energy En in a spatially homogeneous condensate
densityn0srd. For En ø n0srdŨ we have [32]: Gnh 
En3p3y2sn0a3d1y2Tys4n0Ũh̄d.

For a trapped gas the result of integration in Eq. (1
drastically depends on the trapping geometry. For e
ample, in cylindrically symmetric harmonic traps
j fnsrdj2 ~ hE2

n 1 fn0srdŨg2j21y2 and strongly increases
near the boundary of the condensate spatial region, wh
n0Ũ & En . Just this region of distances determines th
density of statesgM and the damping rateGn . Here the
contribution toGn from the thermal excitations withEg

of orderEn is important, and one should also include th
Beliaev damping processesn $ g 1 g0. This requires
a generalization of Eqs. (10)–(15). Omitting the detai
of the calculation which will be published elsewhere, w
present here the result forM  0:

Gn ø 9

µ
En

m

∂1y2 T
h̄

sn0ma3d1y2

lns2myEnd
. (17)

For the lowest excitationssEn , h̄vd the characteristic
values ofp in Eq. (15) are of ordersmmd1y2, and the result
of integration can be represented in the form
is
f
is

-

-
nt

e

f

)
x-

ere
e

e

ls
e

Gn  An

En

h̄
T
m

sn0ma3d1y2, (18)

whereAn is a numerical coefficient which depends on the
form of the wave function of the low-energy excitation
n. In contrast to the case ofEn ¿ h̄v, the calculation
of An requires a full knowledge of classical trajectories o
(stochastic) motion of Bogolyubov-type quasiparticles in
the spatially inhomogeneous Bose-condensed gas.

The criterion of the collisionless regime for the excita-
tions with energiesEg , m assumes that their damping
time G21

m is much larger than the oscillation period in the
trap v21 and, hence, the mean free path greatly exceed
the size of the condensate. From Eq. (16) we findGm ,
sTyh̄d sn0ma3d1y2 and obtain the collisionless criterion

sTyh̄vd sn0ma3d1y2 ø 1 . (19)

Because of collective character of the excitations Eq. (19
is different from the Knudsen criterion in ordinary gases.

Remarkably, both Eq. (19) and the assumption of sto
chastic behavior of thermal excitations with energies o
order m are well satisfied in the conditions of the JILA
[6] and MIT [7] experiments, where the temperature de
pendent damping of the lowest quadrupole excitation
in cylindrically symmetric traps has been measured a
temperatures significantly larger thanm. The JILA ex-
periment [6], where the ratio of the axial to radial fre-
quencyb  vzyvr 

p
8, concerns the damping of two

quadrupole excitations:M  2, En 
p

2 vr, and M 
0, En  1.8vr. Our numerical calculation of Eq. (15),
with Wn from [16], givesAn ø 7 for M  2 andAn ø 5
for M  0. This leads to the damping rateGnsT d which
is in agreement with the experimental data [6] (see Fig. 1
In the MIT experiment [7], whereb  0.08, the damping
rate has been measured for the quadrupole excitation w
M  0, En  1.58vz. In this case we obtainAn ø 10.
The corresponding damping rateGnsT d monotonously in-
creases withT and for the conditions of the MIT experi-
ment [7] ranges from4 s21 at T ø 200 nK to 18 s21 at
T ø 800 nK, which is in fair agreement with the prelimi-
nary experimental data.

Importantly, under the condition (19) the damping rate
Gn of the low-energy excitations is much larger than the
2271
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FIG. 1. The damping rateGn versusT for the JILA trapping
geometry. The solid (dashed) curve and boxes (triangle
correspond to our calculation and the experimental data [6] f
the excitations withM  2 sM  0d, respectively.

damping rateGT of the oscillations of the thermal cloud.
This phenomenon was observed at JILA [6]. One ca
easily find that forT ¿ m the damping rateGT , nsyT ,
wheren , smTy2p h̄2d3y2 is the characteristic density of
the thermal cloud,s  8pa2 the elastic cross section,
andyT ,

p
Tym the thermal velocity. Accordingly, the

ratio GT yGn is just of order the left-hand side of Eq. (19)
In spherically symmetric traps at any excitation energie

one has a complete separation of variables, which mea
that the classical motion of Bogolyubov-type quasiparticle
is regular. The excitations are characterized by the orbi
angular momentuml and its projectionM, and for given
l, M the level spacingg21

g , h̄v can greatly exceed the
interactions provided by the non-Bogolyubov Hamiltonia
terms proportional toC03 and C04. In such a situation
the discrete structure of the energy spectrum of therm
excitations becomes important, and one can get nonline
resonances instead of damping. On the other hand, s
chastization of motion of thermal excitations can be pro
vided by their interaction with each other or with the hea
bath. In this case the damping rateGn (18) follows di-
rectly from Eq. (12) by using the Dyson relation for the
level correlation function [27]sggEn , 1d and fg from
the WKB analysis of Eq. (4).

For T & m the picture of damping of low-energy exci-
tations changes, sinceGn will be determined by the con-
tribution of thermal excitations with energiesEg , T . In
this case, the lower is the ratioTym, the more question-
able is the assumption of ergodic behavior of the therm
excitations. But, even if the stochastization is present,
T significantly lower thanm the temperature dependen
damping of the lowest excitations will be rather small. Fo
cylindrically symmetric traps from Eqs. (12) and (15) on
can findGn , sEnyh̄d sTymd3y2sn0ma3d1y2.
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