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Damping of Low-Energy Excitations of a Trapped Bose-Einstein Condensate
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We present the theory of damping of low-energy excitations of a trapped Bose-Einstein condensate
at finite temperatures, where the damping is provided by the interaction of these excitations with the
thermal excitations. We emphasize the key role of stochastization in the behavior of the thermal exci-
tations for damping in nonspherical traps. The damping rates of the lowest excitations, following from
our theory, are in fair agreement with the data of recent JILA and MIT experiments. The damping of
guasiclassical excitations is determined by the condensate boundary region, and the result for the damp-
ing rate is drastically different from that in a spatially homogeneous gas. [S0031-9007(98)05601-4]

PACS numbers: 03.75.Fi, 34.20.Cf

After the discovery of Bose-Einstein condensationhas to be provided by their interaction with the thermal
(BEC) [1-3], one of the major directions in the physicsexcitations. The damping mechanism involves processes
of ultracold gases has been the investigation of collectivin which the low-energy excitatioiw) and the thermal
many-body effects. Especially interesting is the behavioexcitation(y) are annihilated (created) and another ther-
of low-energy collective excitations of a trapped conden-mal excitation(y’) is created (annihilated):
sate. The JILA [4,5] and MIT [6,7] experiments show ,
that these excitations are damped and provide us with vtyevy. (2)
interesting results on the temperature dependence of t
damping rates and frequency shifts.

In this Letter we develop the theory of damping of ex-
citations of a trapped condensate in the Thomas-Fer

rWe will discuss the case where the thermal excitatipns
v’ are in the collisionless regime. Under the condition (1)
the energies, of these excitations are much larger than

. 7 he energiesE, of the low-energy excitations. There-
regime at finite temperatures, where thg presence of fore, the damping mechanism governed by the processes
thermal component is important. We confine ourselves t ’

) I ) o ?2) can be treated as Landau damping. For spatially
the damping of low-energy excitations, i.e., the exc'tat'on%omogeneous gases this mechanism was first discussed

with energiesk, < u, where i is the chemical poten- by Szepfalusy and Kondor [21,22]

tial, and consider temperaturés> /i (w is the char- It is worth noting that inside the condensate spatial

acterisftic trap frequency) ranging almost up to the BECregion atl < u the density of occupied states of thermal
transition temperatur@,.. Thus far, theoretical and nu- xcitat,ions peaks at the energigs ~ T, whereas for

merical investigations of elementary excitations of trappe > u this happens aE., ~ . As just the excitations
Bose-c_ondensed gases predo_mman_tly .remamed on t E, ~ u give the mgin contribution to the damping
mean-field level [8_17]' The Investigation Of_ OI""mpmgrate, the collective character of the thermal excitations
phenomena requires analysis beyond the ordinary meaps 1 qins important even at > u (cf. [21])

field approach [18]. It should be emphasized that the In a trapped Bose-condensed gas the damping of low-

damping of Iow-e.nergy excitations in a trapped Bos.e'energy excitations is determined by the behavior of the

o . P NPINGave functions and by the distribution of the level spacings
of Bogolyubov excitations in an infinitely large spatlally of thermal excitations with energieB, < u, which de-
homogeneous gas. In the latter case, characterized by &nds on the trap symmetry. We emphasize that stochas-

.C(int;nuum 9{ (Excnatlfolns, any given e>(;C|tat|on (t:an d?l_(r:]"?‘ ization in the behavior of these thermal excitations plays a
INto two excitations ot lower energy and momentum. ISkey role for damping in nonspherical traps. For quasiclas-

dlzmping meclhanizrr;), ﬁerSt diSCUZSSEdtbfY !?t>elitaevﬁ04&t() sical (E, > hw) low-energy excitations the main contri-
[19] and employed by Popov [20] at finite tempera UreSyution to the damping rat€, comes from the boundary

proves to be dominant af <« u. In'a trapped Bose- egion of the condensate, which malgscompletely dif-
condensed gas the character of the discrete structure of t ent from that in a spatially homogeneous gas. The

spegtrum o_f low-energy excitatipns makes Beliaev dampdamping of the lowest excitationd, ~ fiw) is deter-

Ing 'mp?[.SS'bk:tﬁndeT ct:pnsgr\:atlc;% ofdene{t?y.d The_reforemined by the behavior of the excitations in the entire con-

w;esp(_atc t|_ve 0 'tﬁ relation betweghandu, the damping — yensate region. For this case the damping rates following

of excitations with energies from our theory are in fair agreement with the data of the
E, < u,T (1) JILA[5] and MIT [7] experiments.
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Elementary excitations of a Bose condensate trapped icorresponding interaction Hamiltonian reads
an external potentidf (r) are commonly defined within the
Bogolyubov—de Gennes approach (see [24]) on the basis Hy = f]f Sr bt (Pt + g, @
of the grand canonical Hamiltonian
. N 2 Second, under condition (6) the damping rate can be
= T - )
H fdrq, (r)[ om A+ V(r) found within the first-order perturbation theory Hy,,:

N N N 1 £ 2
S ACL R IC RO R y L Moty ),
Yy y y! v i0
assuming a point interaction between atoms, wWith= (8)
47 h*a/m, m the atom mass, and the (positive) scat-
tering length. The field operator of atom is repre-
sented as the sum of the above-condensate pamnd
the condensate wave functiohiy, = (¥). Omitting the

whereN, = [exp(E,/T) — 1]~! are equilibrium occupa-
tion numbers for the thermal excitations. The transition
matrix element can be represented in the form

terms proportional tob”® and¥'* and using the general- , , . _ g Y ey vy
ized Bogolyubov transformatio®’(r) = ¥, b,u, (r) — ' Hinlvy) = 2 [3H,yy — (Hy" — H, Hy7)],
blvi(r), whereb,, b} are annihilation and creation op- )

erators of elementary excitations, the Hamiltonian (3) is .,
reduced to the diagonal fordl = Ay + ¥, E,blb,, if ~where H,,, = [d*r Wy(r)f, (r)f, (r)f, (r) and

the functionsu,, v, satisfy the equations HY = J &) f, @®)f; (0)f 5 (r).
—i2A u Since energies of the thermal excitatioAs > /iw,
[ o + V(r) - MMUV} + these excitations are quasiclassical and, similarly to the

spatially homogeneous case, one can write
o2 2 [ <[ ]) =Bl ] @ e = B VB T TP - mh ).

The condensate wave functiol, is determined by the Then, using Eq. (5), from Eq. (9) we obtain

well-known Gross-Pitaevskii equation. In the Thomas- . 1/2 5
Fermi regime, whereuw = ngnU (nom is the maximum  <¥'[Hinlvy) = <21—[ L > fd r @, (r)f, ) f,(r),
condensate density) greatly excedis, one has [25]:

Wo(r) = [(n — V(r))/U]"/?* for u = V(r) and zero oth- (10)
erwise. The low-energy excitationig, <« w) are local- where®,,, (r) = W,(r;/1;)F,(r), and
ized in the condensate spatial region, and in a harmonic
potentialV (r) the functionsf; = u, = v, are [16] Foe) 2E3 + [no()UF = no(r)UVES + [no(r)UT
r)= .
sl —1/2 4 ENES + [no(r)UT
N 2no(r)U YV Ty

fr = [%} (l_[ li) W, (ri/li), (5) (11)

l For the distribution of energy levels of the thermal ex-
where ng(r) = |W,(r)|? is the condensate density},= citations with a given set of quantum numbersdeter-
(2u/mw?)/? the characteristic size of the condensate inmined by the trap symmetry (in cylindrically symmetric
theith direction, andw; theith trap frequency. traps ¥ is the projectionM of the orbital angular mo-

Interaction between the excitations, caused by the termsentum on the symmetry axis) we will use the statistical
proportional to¥” and ¥ in Eq. (3), leads to damping. Wigner-Dyson [26,27] approach which assumes ergodic
Below we will assume the inequality behavior of the excitations. Then, the quantum spectrum

~ 3n1/3 of the thermal excitations is random and the sum in Eq. (8)

(T /non0) (nona)'* < 1, ©®)  canbe replaced by the integtBlE, dEy > 55 88y Ryy
which is fulfilled up to T =~ 09T, for the conditions in which g,(E,) is the density of states for the excita-
of the JILA [6] and MIT [7] experiments. Just Eq. (6) tions with a given sety, and R,  the level correlation
ensures that the contribution to the damping rate of lowfunction. In nonspherical harmonic trapsE, > 1 and,
energy excitations from thd&” terms is the largest, i.e., hence,R,, =~ 1. Then, puttingN, — N, = E,(dN,/
the damping is actually caused by the interaction of thelE,) and writing (E, — E,» + E, + i0)"! as the inte-
low-energy excitations with thermal excitations throughgral over timei [, dt expli(E, — E, + E, + i0)t/h},
the condensate and governed by the processes (2). |Tfrem Egs. (8) and (10) we obtain

_ GiVy (E + lO)l 3 3 «
r, = 2ﬁ21_[ 7 ReZ/‘g7 JE, dE f dt exp{ d’rd r/(I),,y(r)(I)w(r’)Ky(r,r’,t), (12)
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where the quantum-mechanical correlation function (see [28-30]), foK, (r,r’, ) we can write
K, (v, 1) = Z] g, dE, exp{i (EV_EiE“/’)t} ZgyKy(r,r’, ) = [ 5" — r)d(q(tlr”,p) — r')
v ® |\ p¥ / ’ d3p d3l"//
X .f’}/(r)fy(r )fy'(r)fy’(r)~ (13) X 5(Ey — H(p,l'”))W,
In our calculation of the damping rat€, we will (14)

turn from the integration over the quantum states of the F < s )
quasiclassical thermal excitations to the integration along'here(p,r) = V(p?/2m)* + 2n0(r)U(p*/2m) is the
the classical trajectories of motion of Bogolyubov-typeBOgolyubov Hamiltonian, and(¢|r,p) the coordinate

guasiparticles in the trap. Following a general methPogL(;rr‘;n‘z‘t"‘;s'C_I"Z‘Lgnalsgto(rifz;’Vi';hrégﬁ'géd”lgr?heg;L(;Fma”d

E2U dN. * E,t . d’rd’p
I, =-—~—Re dE—Vfdtep<'”>fc1>V O (ra(tlr,p))S(E, — H(p, . (15
s Re | e G [ aren{i 5 [ 0w, @aeieppse, — Hpe) GE s
We first consider temperatur@s> u, where the main| r,=A4, E, T (noma’)"?, (18)
contribution to the integral in Eq. (15) is provided by the o

thermal excitations with energigs, =< w. In this case whereA, is a numerical coefficient which depends on the
the use of the statistical approach in nonspherical traps #®rm of the wave function of the low-energy excitation
justified by the fact that, as shown in [31], the motion of . In contrast to the case &, > hw, the calculation
corresponding classical Bogolyubov-type quasiparticles isf A, requires a full knowledge of classical trajectories of
strongly chaotic at energies of order The characteristic (stochastic) motion of Bogolyubov-type quasiparticles in
values ofp andr in Eq. (15) are of ordeimn(r)U]/?and  the spatially inhomogeneous Bose-condensed gas.
h/E,, respectively. For quasiclassical low-energy excita- The criterion of the collisionless regime for the excita-
tions(E, > fiw) this time scale is much shorter than ' tions with energiest, ~ u assumes that their damping
and important is only a small part of the classical trajectime I',! is much larger than the oscillation period in the
tory, where the condensate denSity is practically Constarﬂrap w_l and, hence, the mean free path greatly exceeds
andrq(t|r,p) = r + vt, with v = 9H/dp. Represent- the size of the condensate. From Eq. (16) we find~

ing ®,,(r)®;, (ra(tlr, p)) as| f,(r)?F*(r) cosp, vt/ h), (T /1) (noma’)'/? and obtain the collisionless criterion

wherep, is a classical momentum of the Bogolyubov-type 3\1/2
guasiparticle, from Eq. (15) we obtain (T/.ﬁw)(n()ma )7 <1 o (19)
Because of collective character of the excitations Eq. (19)
r, = f &r | £, PT,u(). (16) is different from the Knudsen criterion in ordinary gases.
Remarkably, both Eq. (19) and the assumption of sto-

Here I',,(r) is the damping rate of the excitation with chastic behavior of thermal excitations with energies of

energy E, in a Spa“a”y homogeneous condensate Oprder,u, are well satisfied in the conditions of the JILA
densityng(r). ForE, < no(r)U we have [32]: T, = [6] and MIT [7] experiments, where the temperature de-
E, 372 (nga®) V2T /(4no U R). pendent damping of the lowest quadrupole excitations
For a trapped gas the result of integration in Eq. (16)n cylindrically symmetric traps has been measured at
drastically depends on the trapping geometry. For extemperatures significantly larger than The JILA ex-
amp|e, in Cy”ndrica”y Symmetric harmonic traps periment [6], where the ratio of the axial to radial fre-
| £, o {E2 "+ [no(r)UT}~""/? and strongly increases duencyB = w./w, = /8, concerns the damping of two
near the boundary of the condensate spatial region, whefgiadrupole excitations¥l = 2, E, = V2 »,, andM =
noU < E,. Just this region of distances determines thd), E, = 1.8w,. Our numerical calculation of Eq. (15),
density of stateg, and the damping rat€,. Here the Wwith W, from [16], givesA, =~ 7for M = 2 andA, = 5
contribution toT", from the thermal excitations witiy, ~ for M = 0. This leads to the damping rat& (') which
of orderE, is important, and one should also include theis in agreement with the experimental data [6] (see Fig. 1).
Beliaev damping processes«— y + y'. This requires Inthe MIT experiment [7], wherg = 0.08, the damping
a generalization of Egs. (10)—(15). Omitting the detailsrate has been measured for the quadrupole excitation with
of the calculation which will be published elsewhere, weM = 0, E, = 1.58w.. In this case we obtain, =~ 10.

present here the result fof = 0: The corresponding damping rake (7') monotonously in-
EN2T (nona®)? creases witll" and for the conditions of the MIT experi-
r, ~ 9(—”) - OmZ (17) ment [7] ranges fromt s~! at 7 = 200 nK to 18 s~ ! at
w/  hInQu/E,) T ~ 800 nK, which is in fair agreement with the prelimi-
For the lowest excitation$E, ~ hiw) the characteristic nary experimental data.
values ofp in Eq. (15) are of ordefmu)'/?, and the result Importantly, under the condition (19) the damping rate
of integration can be represented in the form I', of the low-energy excitations is much larger than the
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