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Do Attractive Bosons Condense?
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Motivated by experiments on Bose atoms in traps which have attractive interactions I(§,gwe
consider two models which may be solved exactly. We construct the ground states subject to the
constraint that the system is rotating with angular momentum proportional to the number of atoms.
In a conventional system this would lead to quantized vortices; here, for attractive interactions, we
find that the angular momentum is absorbed by the center of mass motion. Moreover, the state is
uncondensednd is an example of a “fragmented” condensate discussed by Noziéres and Saint James.
The same models wittepulsiveinteractions are fully condensed in the thermodynamic limit. [S0031-
9007(98)05605-1]

PACS numbers: 03.75.Fi

One of the most novel aspects of the creation of Bose First consider the Hamiltonian for the two-dimensional
condensates with neutral atoms in traps is the possibility ofontact interaction modelf{ = H, + H;, where

observing a Bose gas witttractiveinteractions (negative 1 1

scattering lengths). The case’df has been studied both Ho = ) V2 + 5 Zl’lz
experimentally [1,2] and theoretically. Condensation has N i

been predicted to be stable for a sufficiently small number and H, = L Z S(r; — ;). (1)
of particles or sufficiently weak interactions [3,4]. The 2 = ’

instability to collapse when these conditions are not obeyegye \work in the limit where the dimensionless coupling
has also been discussed by several authors [5-9]. is weak [19],|n] < 1, so that the contact interaction can
In this Letter we show, using two exactly soluble mod-pg yreated perturbatively. We will determine the ground
els, that there may be other possibilities for noncongiaie subject to the constraint that the system contains
densed states with attractive interactions. The states ffanta of angular momentum. We note that the center of

the “fragmented” condensates discussed by Nozieres ang,ss yariables will separate in this Hamiltonian because
Saint James [10] in the context of excitonic Bose conype trap is harmonic. This will be used below.

densates. The possibility of such states emerges from the 1o single particle spectrum is usefully expressed [20]

realization [11] that it is the exchange interaction whichi, tarms of the angular momentum quantum numbend
causes bosons witiepulsiveinteractions to condense into hea radial quantum numbex

a single one-particle state, if there are several one-particle
ground states. Conversely for attractive interactions, the E =|m|+2n +1 (2)
exchange term is negative and may prefer “fragmentedin dimensionless units. For the noninteracting cages
[10] condensation into more than one state if there is &, with N particles, it is clear that to minimize the energy
degeneracy (or perhaps if the interactions are sufficiently, = 0 for all particles. The angular momentum may
strong). Kagaret al. [4] argue that trapped gases with be expressed a& = >, mN,, whereN,, is the number
sufficiently large negative scattering lengths are unstablef particles in the staten. There is a degeneracy, in
to the formation of clusters using a somewhat different argeneral, associated with the choice of the{agt}. If the
gument, but with the same physical origin. angular momentum is positivé, > 0, then because of the
The two models we examine are as follows: particles irmodulus signs in Eq. (2) the energy is minimized if one
a harmonic trap withl. quanta of angular momenta and takes onlypositiveintegers forn. Then for the interacting
attractive contact interactions treated as a degenerate pgroblem,0 < |n| < 1, we make the approximation of
turbation [12], and rotating particles in a harmonic traprestricting the Hilbert space to the degenerate ground
interacting with harmonic interactions [13—16]. [Both of state manifold of the noninteracting problem: the states
these cases have been of interest fenmions [12,14],  {N,.}, such thatL. = Y>> _ mN,,. The energy levels and
where rotation is replaced by a magnetic field and the phewave functions are found by diagonalizing the interaction
nomena are related to the fractional quantum Hall effecpotential in this Hilbert space. This is exactly equivalent
(FQHE).] Rotation is considered in both cases, partly beto the lowest-Landau level (LLL) approximation used
cause the nonrotating ground state, in the thermodynamigery successfully in the theory of the FQHE [21] and
limit, is trivial in both cases (for different reasons) and electrons in quantum dots [22], and is justified because
partly because the response to rotation is characteristic ¢fie spacing between noninteracting energy levels is much
superfluidity in the system [17,18]. greater than the two-body interaction strength. Corrections
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to this approximation will form a power series in the smallnondegenerate. Hengk.. is the nondegenerate ground
parameten. state of Eq. (1) with an attractive interaction.

The single particle states with = 0 andm = 0 are of To determine the degree of condensation, if any, the
the formz” exp(—|z|?/2) wherez = x + iy andm isthe  single particle density matrip(z, z’*) is required for the
angular momentum quantum number. We have been abfiround state. Yang [23] showed that off-diagonal long-
to study systems of up to six particles comprehensivelyrange order is associated with the largest eigenvalue of
In addition, we can prove that the form of the ground statehe density matrix (the magnitude of the eigenvalue is the
holds for an arbitrary number of particles. fraction condensed) with the “condensate wave function”

We find that in all cases the ground state for the attracbeing the associated eigenvector. The notion of off-
tive interaction @ < 0) is ¢, = z& exr[Zﬁ\':1 —|z;|?/2]  diagonal long-range order is not of great use for trapped
wherez, = Z§V=1 zi/N is the center of mass aridis the  atoms, but this definition of theondensatés useful in an
total angular momentum in the system. The contact ininhomogeneous setting. The single particle density matrix
teraction energy contribution for the ground state is in-has the form

dependent of., €(N,L) « nN(N — 1)/2. To prove the 1 N

form of the ground-state wave function we show tiat p(z,7") = Ef [ [dzidz; w(z. 2o, 20)
is the unique eigenfunction of = >, 8(r; — r;) cor- =2

responding to its largest eigenvalugsax. First we note X Y2z, 02n),

that ¢, is trivially an eigenfunction of¥ whenL =0 \yhereQ is the normalization. On integrating we find
since it is the only state in the = 0 subspace. Since P/l L Lem
can be separated out in the Hamiltonian, it follows that,(; ) = ¢ ¢ Z ZMgm W -1 "L

¥, is an eigenfunction for any. T = NLL —m)!m?*’
Let us now work in the basi?v Thus the resulting eigenfunctions and eigenvalues for a
lmi,ma,...omy) =[] zi"e 4172, givenm are L
= Y = e 2™ and p,, = W = 7Ly .
where Y m; = L. The matrix elementgm|V|m') are NL(L — m)!'m!
non-negative, and are positive when + m; = mj + If we now consider the case df = Ng (which in a

m; for somei,j.k,I, and m, = m/, for the remaining conventional system, e.g*He would correspond tq
labels. The coefficientgm|y, ) are all positive, from vortices), then if a condensate exists its eigenvalue will
which it follows that the eigenvectap, belongs to the correspond ton = ¢. Simplifying we find

largest eigenvalugn,,. TO see this note that,.x can be

|
derived from the variational principle pg = (1 — 1/N)aV=a N ](\]]VQ)' o
qiN — 4)'q:
Amax = max‘wl = Z’/V’i"’i’%] (3)  which can be rewritten as a Poisson distribution in the
(Wl 2 Wi limit that N — . On taking the further limit ofjy —

If we take an eigenvector of\nma, and replace all the maximal eigenvalue becompg ~ 1/,/27g. How-

its components by their absolute values, the variationa@Ver, the eigenvalues of significant weight are distributed

functional in Eq. (3) cannot decrease, and so must remai@ver ¢ — /g =m =< g + /q. This is clearly not the

at Amax. Therefore there is an eigenvector of., whose pronounced peak required for a condensate and is remi-

components are non-negativ$k‘_ has nonzero overlap niscent of Nozieres and Saint James’s fragmented con-

with this eigenvector, and so must belonghg.. densate [10]. Lest this be thought to be misleading for
To prove nondegeneracy of the eigenspacagf we Small 4, we note the following results foy = 1. We

note that the matriw;; is “connected” in the following find that the eigenvalue where the putative “condensate”

way: if we take a basis vectdi) and consider alljy  would be, pi(g = 1) = 6711, that po(¢ = 1) = ¢! as

with V;; > 0, then consider allk) with V;, > 0 and so  well, and thatp;(g = 1) = 3¢~'. The condensate is not

on, this includes all basis vectors. |If the eigenspace o$ingled out as having a uniquely large eigenvalue.

Amax IS degenerate then there must be an eigenvector of The first excited staté is also of interest, as we find a

Amax Whose components are of both signs (since we carudimentary “vortex.” The general form is

choose this eigenvector to be orthogonalgto) and all N

nonzero (if some components are zero, simply add on a ® = z£"2> (z; — z;)* with € < N(N — 2)/2.

very small amount off,; ). The vector made by taking >j

the absolute value of the latter's components will also beAgain from symmetry considerations we require a mini-

an eigenvector. The difference in value of the variationamum of 2 quanta of angular momentum in order to pro-

functional for the two vectors can only be zero if thh duce an excited state. Far= 2, we find that there are

and jth components have the same sign whgn> 0.  two possible states for al, and these correspond to the

By connectedness we see that this means all componerdsound state and excited state we have described above.

must have the same sign, and thus the eigenspace Because of the separation of the center of mass variables
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mentioned above, this is, in fact, a general reshilis an  seen by noting that the center of mass oscillators (as-
excited state of the system for arbitraky(although we sociated with the different components of the center of
have not proved that it is always tfiest excited state). mass motion) have a lower associated frequency than the
To determine whether the results from the contacbther oscillators describing relative motion. The physical
interaction model are likely to be generic or are artifactsnterpretation is straightforward: relative motion requires
(for instance, of degenerate perturbation theory), we turmore energy as work must be performed against the at-
to the second model. The Hamiltonian [15,16] (firsttractive interactions. (The converse will hold true for re-
discussed in the context of nuclear physics [13]) describepulsive interactions.) Hence, for two dimensions dnd
N bosons with attractive harmonic coupling > 0) quanta of angular momentum we can immediately write
(i labels the patrticles), down the ground-state wave function,

2 AN k& A _ L ,—(1/2)(1+NA) 22l —(1/2)[1-(1+NA)] |z, P
H=-—3 W+ 3x+ > —x), v =ze e/l e

' ’ b ~In the thermodynamic limit it can be shown that the

where we enforce the symmetry of the wave functiongontribution to the single particle density matrix of

at the end of the calculation. In dimensionless unitSthe exponential term associated with is negligible.
A= A/k,y = [R*/(mk)]""*x andV = (mk/B*)"*V  Hence, surprisingly, the density matrix reduces to that

1<, 1<, AL 5 of the contact interaction model. The ground-state wave
H = ) Zvi + o Zyi + 4 Z(yz‘ — ¥ functions will therefore be the same, as will the properties
_ ' ' " of the single particle density matrix.
which upon rearrangement leads to We shall now show that these systems are condensed

N N N2 (at least under some conditions) when the interactions are
H = _%ZV% + wzylz - % (Z%) . repulsive. Thus the lack of condensation is not due to
i i i iapit ; .
peculiarities of the models in general, but of the attractive
Here we note that the problem ihdimensions separates interactions in particular.
into d one-dimensional problems. Hence we will now First consider the contact interaction model (CIM) when
restrict ourselves to one dimension for clarity. there areN quanta of angular momentum in the system.
To determine the degree of condensation we again needonventionally there would then be one vortex, and one
to calculate the single particle density matrix. To do thismight expect that the ground state (subject to the constraint
we change variables to the center of mass coordinatef fixed angular momentum) would be
v=1/JN3Yy;, and ¢ (i=1,...,N — 1), which N
are chosen to form an orthonormal set wigh. The mft ]_[(zie"z"z/2)_ (4)
Hamiltonian in these variables is =1

1 1+ NA) < NA i i :
H=—Lys ( )Z§i2 _NA We conjecture the following form for the CIM:
2 2 ; 2 N
. . t - —lzl?/2
This leads to the ground-state wave function for zero =N = U([Zt zele 7). ()
angular momentum having the form =t
v = o~ (UDUHNNEE —(1/) [1-(1+NA 15 We hav_e demonstrated that this form is correct by expl_icit
’ calculation on systems of up to 6 bosons. The physical
where¢ = {/1,...,{n}. The corresponding frequencies interpretation of this wave function is that the bosons

aree; = (1 + NA)'/2/2fori # N andey = 1/2. We are rotating around the center of mass; this would be a
now consider the model i@ = 2 with attractive inter- condensate if the center of mass werermimber. We will
actions in the fixed angular momentum subspaces. Inow show that in the thermodynamic limit the corrections
the ground state we find that all angular momentum igo full condensation ar@(1/N). Consider the density
absorbed by the center of mass variable. This may|benatrix constructed from the wave function Eq. (5),

p(z,7") = e|2|2/2eIZ’I2/2<%>1/2f[lﬁl dz; de](w - (NN;DZ> <w* - (NN;I)ZI*>
=2

=

N VES
ESN Y P S Y G
X jl:[sz + N zj><a) + N zj>e Zj }’

wherew = 1/N Zﬁvzz zi. Then to separate the integration over the differgnive introduce a delta function for the

center of mass variable,
o0 1 N 1 N
1 = ]_xdwx dwyc?(wx - N;xi)6<wy - N;y,),
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