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Do Attractive Bosons Condense?

N. K. Wilkin, J. M. F. Gunn, and R. A. Smith
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(Received 7 May 1997)

Motivated by experiments on Bose atoms in traps which have attractive interactions (e.g.,7Li), we
consider two models which may be solved exactly. We construct the ground states subject to the
constraint that the system is rotating with angular momentum proportional to the number of atoms.
In a conventional system this would lead to quantized vortices; here, for attractive interactions, we
find that the angular momentum is absorbed by the center of mass motion. Moreover, the state is
uncondensedand is an example of a “fragmented” condensate discussed by Nozières and Saint James.
The same models withrepulsiveinteractions are fully condensed in the thermodynamic limit. [S0031-
9007(98)05605-1]

PACS numbers: 03.75.Fi
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One of the most novel aspects of the creation of Bo
condensates with neutral atoms in traps is the possibility
observing a Bose gas withattractiveinteractions (negative
scattering lengths). The case of7Li has been studied both
experimentally [1,2] and theoretically. Condensation ha
been predicted to be stable for a sufficiently small numb
of particles or sufficiently weak interactions [3,4]. The
instability to collapse when these conditions are not obey
has also been discussed by several authors [5–9].

In this Letter we show, using two exactly soluble mod
els, that there may be other possibilities for noncon
densed states with attractive interactions. The states
the “fragmented” condensates discussed by Nozières a
Saint James [10] in the context of excitonic Bose con
densates. The possibility of such states emerges from
realization [11] that it is the exchange interaction whic
causes bosons withrepulsiveinteractions to condense into
a single one-particle state, if there are several one-parti
ground states. Conversely for attractive interactions, t
exchange term is negative and may prefer “fragmente
[10] condensation into more than one state if there is
degeneracy (or perhaps if the interactions are sufficien
strong). Kaganet al. [4] argue that trapped gases with
sufficiently large negative scattering lengths are unstab
to the formation of clusters using a somewhat different a
gument, but with the same physical origin.

The two models we examine are as follows: particles
a harmonic trap withL quanta of angular momenta and
attractive contact interactions treated as a degenerate p
turbation [12], and rotating particles in a harmonic tra
interacting with harmonic interactions [13–16]. [Both o
these cases have been of interest forfermions [12,14],
where rotation is replaced by a magnetic field and the ph
nomena are related to the fractional quantum Hall effe
(FQHE).] Rotation is considered in both cases, partly b
cause the nonrotating ground state, in the thermodynam
limit, is trivial in both cases (for different reasons) and
partly because the response to rotation is characteristic
superfluidity in the system [17,18].
0031-9007y98y80(11)y2265(4)$15.00
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First consider the Hamiltonian for the two-dimensiona
contact interaction model,H ­ H0 1 H1, where

H0 ­ 2
1
2

=2 1
1
2

X
i

r2
i

and H1 ­
h

2

NX
i.j

dsri 2 rjd . (1)

We work in the limit where the dimensionless coupling
is weak [19],jhj ø 1, so that the contact interaction can
be treated perturbatively. We will determine the groun
state subject to the constraint that the system containsL
quanta of angular momentum. We note that the center
mass variables will separate in this Hamiltonian becau
the trap is harmonic. This will be used below.

The single particle spectrum is usefully expressed [2
in terms of the angular momentum quantum numberm and
the radial quantum numbernr ,

E ­ jmj 1 2nr 1 1 (2)

in dimensionless units. For the noninteracting case,h ­
0, with N particles, it is clear that to minimize the energy
nr ­ 0 for all particles. The angular momentum may
be expressed asL ­

P
m mNm whereNm is the number

of particles in the statem. There is a degeneracy, in
general, associated with the choice of the sethNmj. If the
angular momentum is positive,L . 0, then because of the
modulus signs in Eq. (2) the energy is minimized if on
takes onlypositiveintegers form. Then for the interacting
problem, 0 , jhj ø 1, we make the approximation of
restricting the Hilbert space to the degenerate grou
state manifold of the noninteracting problem: the state
hNmj, such thatL ­

PL
m­0 mNm. The energy levels and

wave functions are found by diagonalizing the interactio
potential in this Hilbert space. This is exactly equivalen
to the lowest-Landau level (LLL) approximation used
very successfully in the theory of the FQHE [21] and
electrons in quantum dots [22], and is justified becau
the spacing between noninteracting energy levels is mu
greater than the two-body interaction strength. Correctio
© 1998 The American Physical Society 2265
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to this approximation will form a power series in the sma
parameterh.

The single particle states withnr ­ 0 andm $ 0 are of
the formzm exps2jzj2y2d wherez ­ x 1 iy andm is the
angular momentum quantum number. We have been a
to study systems of up to six particles comprehensive
In addition, we can prove that the form of the ground sta
holds for an arbitrary number of particles.

We find that in all cases the ground state for the attra
tive interaction (h , 0) is czc

­ zL
c expf

PN
i­1 2jzi j

2y2g
wherezc ­

PN
i­1 ziyN is the center of mass andL is the

total angular momentum in the system. The contact i
teraction energy contribution for the ground state is in
dependent ofL, esN , Ld ~ hNsN 2 1dy2. To prove the
form of the ground-state wave function we show thatczc

is the unique eigenfunction ofV ­
P

i,j dsri 2 rjd cor-
responding to its largest eigenvalue,lmax. First we note
that czc is trivially an eigenfunction ofV when L ­ 0
since it is the only state in theL ­ 0 subspace. Sincezc

can be separated out in the Hamiltonian, it follows th
czc

is an eigenfunction for anyL.
Let us now work in the basis

jm1, m2, . . . , mN l ­
NY

i­1

z
mi
i e2jzi j

2y2,

where
P

mi ­ L. The matrix elementskmjV jm0l are
non-negative, and are positive whenmi 1 mj ­ m0

k 1

m0
l for some i, j, k, l, and mp ­ m0

q for the remaining
labels. The coefficientskmjczc l are all positive, from
which it follows that the eigenvectorczc belongs to the
largest eigenvaluelmax. To see this note thatlmax can be
derived from the variational principle

lmax ­ max

(
kcjV jcl

kcjcl

)
­ max

(P
ij VijcicjP

i c
2
i

)
. (3)

If we take an eigenvector oflmax, and replace all
its components by their absolute values, the variation
functional in Eq. (3) cannot decrease, and so must rem
at lmax. Therefore there is an eigenvector oflmax whose
components are non-negative;czc has nonzero overlap
with this eigenvector, and so must belong tolmax.

To prove nondegeneracy of the eigenspace oflmax we
note that the matrixVij is “connected” in the following
way: if we take a basis vectorjil and consider alljjl
with Vij . 0, then consider alljkl with Vjk . 0 and so
on, this includes all basis vectors. If the eigenspace
lmax is degenerate then there must be an eigenvector
lmax whose components are of both signs (since we c
choose this eigenvector to be orthogonal toczc ) and all
nonzero (if some components are zero, simply add on
very small amount ofczc ). The vector made by taking
the absolute value of the latter’s components will also b
an eigenvector. The difference in value of the variation
functional for the two vectors can only be zero if theith
and jth components have the same sign whenVij . 0.
By connectedness we see that this means all compone
must have the same sign, and thus the eigenspace
2266
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nondegenerate. Henceczc is the nondegenerate ground
state of Eq. (1) with an attractive interaction.

To determine the degree of condensation, if any, th
single particle density matrixrsz, z0pd is required for the
ground state. Yang [23] showed that off-diagonal long
range order is associated with the largest eigenvalue
the density matrix (the magnitude of the eigenvalue is th
fraction condensed) with the “condensate wave function
being the associated eigenvector. The notion of of
diagonal long-range order is not of great use for trappe
atoms, but this definition of thecondensateis useful in an
inhomogeneous setting. The single particle density matr
has the form

rsz, z0pd ­
1
Q

Z NY
i­2

dzi dzp
i csz, z2, . . . , zN d

3 cpsz0, z2, . . . , zN d ,

whereQ is the normalization. On integrating we find

rsz, z0pd ­
e2jzj2y2e2jz0 j2y2

p

LX
m­0

zmz0pm sN 2 1dL2m L!
NLsL 2 md! m!2 .

Thus the resulting eigenfunctions and eigenvalues for
givenm are

cm ­ e2jzj2y2zpm and rm ­
sN 2 1dL2m L!
NL sL 2 md! m!

.

If we now consider the case ofL ­ Nq (which in a
conventional system, e.g.,4He would correspond toq
vortices), then if a condensate exists its eigenvalue w
correspond tom ­ q. Simplifying we find

rq ­ s1 2 1yNdsqN2qd sNqd!
Nq sqN 2 qd! q!

,

which can be rewritten as a Poisson distribution in th
limit that N ! `. On taking the further limit ofq ! `

the maximal eigenvalue becomesrq , 1y
p

2pq. How-
ever, the eigenvalues of significant weight are distribute
over q 2

p
q & m & q 1

p
q. This is clearly not the

pronounced peak required for a condensate and is rem
niscent of Nozières and Saint James’s fragmented co
densate [10]. Lest this be thought to be misleading fo
small q, we note the following results forq ­ 1. We
find that the eigenvalue where the putative “condensat
would be, r1sq ­ 1d ­ e21, that r0sq ­ 1d ­ e21 as
well, and thatr2sq ­ 1d ­

1
2 e21. The condensate is not

singled out as having a uniquely large eigenvalue.
The first excited stateF is also of interest, as we find a

rudimentary “vortex.” The general form is

F ­ zL22
c

NX
i.j

szi 2 zjd2 with e1 ~ NsN 2 2dy2 .

Again from symmetry considerations we require a mini
mum of 2 quanta of angular momentum in order to pro
duce an excited state. ForL ­ 2, we find that there are
two possible states for allN, and these correspond to the
ground state and excited state we have described abo
Because of the separation of the center of mass variab
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mentioned above, this is, in fact, a general result:F is an
excited state of the system for arbitraryL (although we
have not proved that it is always thefirst excited state).

To determine whether the results from the conta
interaction model are likely to be generic or are artifac
(for instance, of degenerate perturbation theory), we tu
to the second model. The Hamiltonian [15,16] (firs
discussed in the context of nuclear physics [13]) describ
N bosons with attractive harmonic coupling̃L . 0)
(i labels the particles),

H ­ 2
h̄2

2m

NX
i

=̃2
i 1

k
2

NX
i

x2
i 1

L̃

4

NX
i,j

sxi 2 xjd2,

where we enforce the symmetry of the wave function
at the end of the calculation. In dimensionless unit
L ­ L̃yk, y ­ fh̄2ysmkdg21y4x and= ­ smkyh̄2d21y4=̃

H ­ 2
1
2

NX
i

=2
i 1

1
2

NX
i

y2
i 1

L

4

NX
i,j

syi 2 yjd2,

which upon rearrangement leads to

H ­ 2
1
2

NX
i

=2
i 1

s1 1 NLd
2

NX
i

y2
i 2

L

2

√
NX
i

yi

!2

.

Here we note that the problem ind dimensions separates
into d one-dimensional problems. Hence we will now
restrict ourselves to one dimension for clarity.

To determine the degree of condensation we again ne
to calculate the single particle density matrix. To do th
we change variables to the center of mass coordina
zN ­ 1y

p
N

PN
i yi , and zi si ­ 1, . . . , N 2 1d, which

are chosen to form an orthonormal set withzN . The
Hamiltonian in these variables is

H ­ 2
1
2

=2
z 1

s1 1 NLd
2

NX
i

z 2
i 2

NL

2
z 2

N .

This leads to the ground-state wave function for ze
angular momentum having the form

c ­ e2s1y2d s11NLd1y2z 2

e2s1y2d f12s11NLd1y2gz 2
N ,

where z ­ hz1, . . . , zNj. The corresponding frequencies
are ei ­ s1 1 NLd1y2y2 for i fi N andeN ­ 1y2. We
now consider the model ind $ 2 with attractive inter-
actions in the fixed angular momentum subspaces.
the ground state we find that all angular momentum
absorbed by the center of mass variable. This may
ct
ts
rn
t
es

s
s,

ed
is
te,

ro
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is
be

seen by noting that the center of mass oscillators (a
sociated with the different components of the center
mass motion) have a lower associated frequency than
other oscillators describing relative motion. The physic
interpretation is straightforward: relative motion require
more energy as work must be performed against the
tractive interactions. (The converse will hold true for re
pulsive interactions.) Hence, for two dimensions andL
quanta of angular momentum we can immediately wri
down the ground-state wave function,

c ­ zL
c e2s1y2d s11NLd1y2jzj2

e2s1y2d f12s11NLd1y2g jzcj
2

.

In the thermodynamic limit it can be shown that th
contribution to the single particle density matrix o
the exponential term associated withzc is negligible.
Hence, surprisingly, the density matrix reduces to th
of the contact interaction model. The ground-state wa
functions will therefore be the same, as will the properti
of the single particle density matrix.

We shall now show that these systems are conden
(at least under some conditions) when the interactions
repulsive. Thus the lack of condensation is not due
peculiarities of the models in general, but of the attracti
interactions in particular.

First consider the contact interaction model (CIM) whe
there areN quanta of angular momentum in the system
Conventionally there would then be one vortex, and o
might expect that the ground state (subject to the constra
of fixed angular momentum) would be

cmft
L­N ­

NY
i­1

szie
2jzi j

2y2d . (4)

We conjecture the following form for the CIM:

cexact
L­N ­

NY
i­1

sfzi 2 zcge2jzi j
2y2d . (5)

We have demonstrated that this form is correct by expli
calculation on systems of up to 6 bosons. The physic
interpretation of this wave function is that the boson
are rotating around the center of mass; this would be
condensate if the center of mass were ac number. We will
now show that in the thermodynamic limit the correction
to full condensation areOs1yNd. Consider the density
matrix constructed from the wave function Eq. (5),
rsz, z0pd ­ e2jzj2y2e2jz 0j2y2

µ
2

pN

∂1y2 Z (
NY

i­2

dzi dzp
i

) µ
v 2

sN 2 1d
N

z

∂ µ
vp 2

sN 2 1d
N

z0p

∂

3

NY
j­2

Ωµ
v 1

z
N

2 zj

∂ µ
vp 1

z0p

N
2 zp

j

∂
e2jzj j

2

æ
,

wherev ­ 1yN
PN

i­2 zi . Then to separate the integration over the differentzi we introduce a delta function for the
center of mass variable,

1 ­
Z `

2`

dvx dvy d

√
vx 2

1
N

NX
i­2

xi

!
d

√
vy 2

1
N

NX
i­2

yi

!
,

2267
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and use the integral representation

d

√
v 2

1
N

NX
i­2

ri

!
­

1
s2pd2

Z
dl eil?fv2s1yNd

PN

i­2
ri g.

Upon substitution and integration we find that, in the lim
thatN ! `, to accuracyOs1yN2d,

rsz, z0pd ­
X
n

cnszdrncp
nsz0d

­ e2jzj2y2

µ
1
N

1
p

p

1
p

p
1

∑
1 2

2
N

∏
z

p
p

z0p

p
p

1
1
N

z2
p

2p

z0p2
p

2p

∂
e2jz0 j2y2.

Thus there is a condensate with eigenvalue1 2 2yN, in
the statez, which is fully condensed in the thermodynami
limit. Corrections of size1yN are in the states 1 andz2.
In addition, a Laughlin state is empirically found to be
the ground state forL ­ NsN 2 1d. This can be proved
exactly by a trivial extension of the arguments used
Ref. [12].

Turning to the harmonic interactions model, we not
that the center of mass oscillator has a higher frequen
than the others when the interaction is repulsive. In th
case the other oscillators will be populated in preferen
when minimizing the energy subject toL (a multiple
of N) quanta of angular momentum. Now, the othe
oscillators are degenerate, and the center of mass fac
is not being multiplied by a large multiple of the center o
mass coordinate, which it was in the attractive case. T
latter implies that the center of mass factor is irrelevant
the thermodynamic limit. Thus the ground state reduc
to a single particle form [Eq. (2)], and hence the answ
will be a condensate into the statezLyN .

In conclusion, we have shown that for a model with de
generate ground states in the absence of interaction, th
is no condensate formed when weak interactions are
corporated. Consequently, in this particular case, the
is no vortex lattice. In a different model, which doe
not have degenerate ground states, we have shown
the particles are uncondensed when given an extens
quantity of angular momentum. In both cases the ang
lar momentum of the system resides in the center of ma
motion, in contrast to the more familiar case of repulsiv
interactions. This leads to the general hypothesis: attra
tive bosons do not condense in the presence of single p
ticle degeneracy, and their angular momentum resides
the center of mass motion. The investigation ofrotating
7Li might be fruitful in exposing an uncondensed “groun
state.” Repulsive interactions in the same models lead
condensed ground states, so showing that attractive in
actions do indeed lead to different physics.
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