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Separability and Entanglement of Composite Quantum Systems
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We provide a constructive algorithm to find the best separable approximation to an arbitrary density
matrix of a composite quantum system of finite dimensions. The method leads to a condition of
separability and to a measure of entanglement. [S0031-9007(98)05501-X]
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Entanglement and nonlocality are some of the mosfamily of entangled mixed states [8], which does not
emblematic concepts embodied in quantum mechanicgolate any kind of Bell inequalities but, nevertheless, can
[1]. The nonlocal character of an entangled systenbe used for quantum teleportation [9].
is usually manifested in quantum correlations between Recently, a first step in such distinction has been done
subsystems that have interacted in the past but are ruy Peres [4] and the Horodecki family [3,10]. They
longer interacting. Furthermore, these concepts play have formulated two necessary conditions to characterize
crucial role in quantum information theory [2]. separable density matrices. The first condition [4] states

From a formal point of view, a state of a compositethat if a matrixp is separable, then its partial transposition
quantum system is called “inseparable” (or “entangled”) if(with respect to subsystem or B) must be a density
it cannot be represented as a tensor product of states of itsatrix, i.e., must have non-negative eigenvalues:
subsystems. On the contrary, a density matrokescribes

L o =p, = plt = (p™)" =0. 3
aseparablestate if it can be expressed as a finite [3] sum p p s TP (™) (_ )
of tensor products of its subsystems: This can be easily grasped from the representation (2)
of separable matrices, since the partial transposition with
ps = Zpi(pj‘ ® pl-.. e pl); 1=p; =0, (1) respectto systen® amounts to replacin@, by Pl =
i

le, f*){e, f*|, so that evidently
wherep?, pZ. ..., pV are density matrices describing sub- . .
systemsA, B, ..., N, respectively, an®d; p; = 1. Thus, p’t = Z/\ale,f Ye, f1=0. 4)
separable states are those that can be produced by _ . e "
distant observers (Alice, Boh. ., Norberto) that pre- This condition is sufficient to guarantee separability only
pare their stateép?, p?, ..., pV) independently, follow- for composite systems of dlmen§|an>< 20r2 X 3. _
ing common instructionp;) from a source [4]. Letus, 1€ seécond necessary condition [3] states that i
for the moment, restrict ourselves to binary composite?s: then there exist a set of product vect®is={le;. f;)}
systems, i.e.H = H, ® Hy. Using the spectral de- that spansR(p) and at the same tim&"* = {le;, /7)}

compositions ofp? andp? it is easy to rewrite Eq. (1) in SPansR(p"?), whereR (p) denotes the range of, i.e.,
compostions op: andp Y @M e setof allly) € 1 for which 3¢) € { such that

l#y = plp). From the representations [2] and [4] we
ps = Z Ao P, 1= X, =0; Z)‘a =1, (2) see thatif a set of product vectofig;, f;)} spansR (p),

a a it immediately follows that the set of product vectors
where « is a multiindex running over all distinct eigen- {|e;, i)} also spanR (p’*). In general, both conditions
vectors of the matricep;' ® p7, and P, are projec- are not equivalent. In particular, when the dimension of
tors onto product states, i.eP, = |e, f){e, f| (where R(p) is equal to the dimension dR(p’?), the second
le) € H, and|f) € Hp). Separable statep,, are thus  condition may not be sufficient to ensure separability.
mixtures of product states and as such their correlations Finally, let us point out that for a density matrix which
are purely classical. is known to be separable, only if dif{ ] = 6 there exist

The distinction between entangled and separable states algorithm for decomposing it according to Eq. (1) [11].
is well established for pure states: entangled pure states In this Letter we address this last point and provide a
do always violate Bell inequalities [5]. For mixed states,constructive way of finding such an algorithm regardless
however, the statistical properties of the mixture can hidef the (finite) dimension of the composite system. That
the quantum correlations embodied in the system, makingnmediately leads to a necessary condition for separabil-
thus the distinction between separable and entangleity. Furthermore, we shall demonstrate that any insepa-
enormously difficult [6,7]. Besides the importance of rable mixed state irC> ® C? can be decomposed in a
the subject from a fundamental point of view, this separable matrix and just a single pure entangled state,
distinction has also important consequences for quanturmproviding thus a novel characterization of the “entangle-
information theory. Consider, for instance, Werner'sment” of any inseparable state.
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The idea behind the algorithm relies on the fact thatP = |) (| iff p — AP = 0, and for everye = 0, the

the set of separable states is compact.
any density matrixo there exist a “maximal” separable
matrix p; which can be subtracted frojmmaintaining the
positivity of the differencep — p; = 0. Let us express
the above idea in a more rigorous way.

Theorem 1—For any density matriyp (separable, or
not) and for any se¥ of product vectors belonging to the
range ofp, i.e.,le, f) € R(p), there exist a separable (in
general not normalized) matrix

p: = ZAaPa s (5)

with all A, = 0, such thatsp = p — pf = 0, and that

Therefore, fonatrixp — (A + €)P is not positive definite.

The maximal A determines thus the maximal contri-
bution of P that can be subtracted from maintaining
the non-negativity of the difference. In the following we
will apply the above definition to projections onto product
vectors, i.e.|¢) = |le, f). The following lemma charac-
terizes a single maximal completely.

Lemma 1—A is maximal with respect tp andP =
[y (| iff (@) if |¢) & R(p) then A =0, and (b) if
l) € R(p) then

1

A= ——. 6
W51y ©

p. provides the best separable approximation (BSA) td\ote that in case (b) the expression on the right-hand side

p in the sense that the trace (p) is minimal (or,

equivalently, Trp; =< 1 is maximal).

of Eg. (6) makes sense, sinpg) € R(p), and therefore
there exists|¥) € R(p) such that|y) = p|P). Let

The proof of the theorem is simple, and the wholeus observe that for any¢) the Schwartz inequality

art is, of course, to construgi;. Let us consider all
separable matrices; of the form (5) that we can subtract

from p maintaining the non-negativity of the difference (¢|Pl¢) =|(d|/p

8p. Obviously, the trace ofp;, must be smaller than
one, sincel = Tr(6p) = 1 — Trp,. The set of such
matrices is determined by the set of possiblg = 0
for which §p = 0, and0 < Trp, = >, A, = 1. This

set is closed (in any reasonable topology). The set Obther hand(p — AP) W) = 0 for |¥) =

all possible traces op, is bounded from above, so it
must have an upper bound, shy- €; ergo because of
the compactness of the set of all, there exist a matrix
ps in this set with the maximal trace, equal to— e.
That implies that although the matrp¢[V] depends on
the choice of the seV, and by expanding/ we can
construct better separable approximationsptdi.e., for
VDV, Trpi[V'] = Trp;[V]), itis generally sufficient

to takeV C S large enough to obtain already the maximal

possible trace Tp;[V] = Tr p;[S] [whereS is the set of

all le,f) € R(p)]. The latter statement indicates also

that although typically the BSA matriyp;[V] is not
unique, its trace is. Nevertheless, (of ® C? composite
systems we shall demonstrate thdfV ] is also unique.

implies that

1 2 1
= [ = @loton(v | - |u).
(7)
That proves that for everyl|¢), (dlp — (¥|1/

ply) 'Plp) =0, ie., p — AP =0. Since on the
1

5 |i), thus for
everye >0, (¥|[p — (A + €)P]|¥) = —eA 2 < 0.
This proves thatA given by expression (6) is indeed
maximal.

Definition 2—A pair of non-negative(A;, Ay) is
called maximal with respect top and a pair of pro-
jection operatorsP, = 1) (1|, P2 = ) (ol iff p —
APy — APy = 0, Ay is maximal with respect tp —
A, P, and to the projecto;, A, is maximal with re-
spect top — AP, and to the projectoP,, and the sum
A1 + A, is maximal.

The maximal pair(A;, A,) determines thus the maxi-
mal contribution ofA;P; + A,P, that can be subtracted
from p maintaining the non-negativity of the differ-
ence, and that has a maximal trace(AiP; + A, P,) =

As an obvious consequence of Theorem 1, we obtain g | A,

necessary and sufficient condition for separability.
Condition 3—A density matrixp is separable iff (if
and only if) there exist a set of product vectorsC

Lemma 2—A pair (A, Ay) is maximal with respect
to p and a pair of projectorgPy, P,) iff (a) if |i),
lif,) do not belong toR(p) then Ay = A, = 0; (b) if

R (p), for which the best separable approximation t0|¢l> does not belong t&R (p), while |¢,) € R(p) then

p, p:[V]has the trace 1.

The proof is again simple: The necessity of the cond3, Whll/pln) = 0 then A; = (|1 /pli), i =

follows directly from (2). From the fact thatp = p —
py =0,and Trép =1 — 1 = 0, we obtainép = 0, or
equivalentlyp = p;.

Before we discuss the procedure of construction of the
matrix p;, let us introduce two concepts which shall play

a crucial role in what it follows.
Definition 1—A non-negative parametek is called

maximal with respect to a (not necessarily normal-

ized) density matrixp, and the projection operator

2262

A1 =0, Ay = (l1/ply2) ™ (€) if |), [¢) € R(p)
1,2;

(d) finally, if |1), l2) € R(p) and (gil1/plgn) # 0
then

A1 = (ll/pl) — Kl /ply2)) /D,

Ay = (nlt/pln) = Knl1/pl))/D (8b)
whereD = (1 11/pln) Wal1/pliba) — K11/ pli)l*.

The proof of (a) and (b) is the same as the
proof of Lemmal. In case (c) observe that

(82)
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(p — AMP) ) = p~ ), (p — AaPy) Y1) =  not normalized) with maximal trace. Let us analyze
p '), so that maximality ofA; implies automatically such decomposition in more detail. All the information
that A; = (gilp '), i = 1,2. Finally, in case (d) we concerning “inseparability” is included in the matrdyp.
get (p — AyPo) M) = p ') + Bp '), with  If it does not vanish, i.e., ifp is not separable, its
B = Ax(yn|1/plr)/D. The maximality of A; assures range R(8p) cannot contain any product vector. The
then automatically the maximality of, provided fact that the range obp does not contain any product
1 — A1/ pln) — Ax(all/pln)y + AyA,D = 0.  Vector restricts also the number Qf linearly independent
(9) entangled states that it can contain. Note that the set of
all product vectors in the Hilbert spadé of dimension
N X M spans a(N + M — 1)-dimensional manifold.
Thus, a generic linear subspace®f of dimension larger
than(N — 1) X (M — 1) contains product vectors. The
above statement implies that the dimensionZ®{ép)
is= (N — 1) X (M — 1); in particular forN = M = 2,
ép is a simple projector onto one entangled state.
As an immediate consequence, we obtain that any
density matrixp in C?> ® C? has a unique decomposition
in the form

Maximizing the sumA; + A, with the constraint (9), we
arrive after elementary algebra at Egs. (8).
We can now formulate the basic theorem of this paper
Theorem 2—Given the setV of product vectors
le, f) € R(p), the matrixp? = >, A, P, is the BSA
to p iff (a) all A, are maximal with respect tp, =
p — X aza APy, and to the projectorP,; (b) all
pairs (Aq, Ag) are maximal with respect tp,g = p —
Y w+ap MarPa, and to the projection operataB,, Pp).
Let us prove now that maximizing all the pairs
(A, Ap) with respect t0pag = p — Y ovap AarPars p=2Aps + (1 —NP,; A€[0,1], (11)
(P+, Pp) is a necessary and sufficient condition to subtrac
th*e.maximal separable matrp from p. Opviously, if P, denotes a single pure entangled projectdr, =
ps is the BSA then allA,, as well as all pairgAa. Ag) |y ) (w,|), and A is maximal. Any other decomposition
must be maximal, since otherW|se maX|maI|Z|mg, of the formp = Ap, + (1 — V)P, with A € [0, 1] such
or the sumA, + Ag would increase the trace of;, ot 5. % p, necessarily implies thah < A. If not,
maintaining non-negativity o — . that is, if A = A for 3, # p,, it follows from Ref. [11]
To prove the inverse, assume that the total numbef i for P, # P,, we can always find projectors onto

of a’s is K, and thatp, has all pairs ofA’s maximal.  poqct states in the plane formed By and P, and
ConS|d_er matricep, = 2o AaPa m_the vicinity of py, therefore increaser, which is impossible sincer is
for which all individual A, are maximal, i.e.p; belong already maximal

to the boundary of the sét of all separable matrices such 1,4 decomposition given by expression (11) leads

that;_) ~ s = 0; Aq’s lie thus on "’(K_ — 1)-dimensional straightforwardly to an unambiguous measure of the
manifold, defined tr(lrough a cc))nstralnt, ) entanglement for any mixed state(in C2 ® C2):
f)ll,...,)lK =0. 10

Maximality of (A.,Ag) implies that (A, + Ag) has E(p) = (1 = DE(W.), (12)

a maximum at A, = A, under the constraint where E(|V,)) is the entanglement of its pure state

(10), and for all y # @,B; A, = A, which im- expressed in terms of the von Neumann entropy of the

plies (9f/ddalr=n) = (0f/dAgla=a). Using this reduced density matrix of either of its subsystems [12]:

identity for a sufficient number of pairs we get that _ _

(0f/dAqlr=n) = const for alle. That is equivalent to E(We) = =Trpalog, pa = ~Trpglog, ps. (13)

the fact that the gradient of Tg,) under the constraint where pis 3 = Trigaip. This measure of entanglement

(10) vanishes forp; = p*. The trace ofp; has thus is clearly independent of any purification or formation

either a local maximum, or a minimum, or a saddle pointprocedure [12,13].

at A = A. The two latter possibilities cannot occur, Let us illustrate with an example the ideas stressed

since the trace is maximal with respect to all pairs\tf,  in the paper. Consider a pair of sp%nparticles in an

and since the sef is convex(i.e., if ps,p. € Z then impure state consisting of a fractianof the singlet and a

eps + (1 — e)pl € Z for every0 = € = 1). For the mixture in equal proportions of the singlet and the triplet

same reason of convexity, the local maximunpatmust  [8]. This state is described, in the computational basis, by

be a global one, i.e., there cannot exist two matrigés the density matrix

and p;, which both provide local maxima of the trace,

and have Tp; # Trp;; ergo p; is the BSA, and any

other matrixg; which has all pairs of\’s maximal, must

have the same trace p$. pw(x) =
In any case, we have shown that any density mairix

of composite systerd{ can be decomposed according to

p = p, + 8p,wherep; is a separable matrix (in general (14)

fvhere ps IS a separable density matrix (normalized),

—_
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; 0<x<l1.
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with A = 1 forx = 1/3(< p, = ps),and0 = X < 1
| for x > 1/3. A measure of the entanglement of,
N is, therefore, naturally provided by the value of the
il 1 corresponding, i.e.,E[ p,,(x)] = [1 — A(x)] ebits, since
107"+ Al . the singlet has a value of entanglement of 1 ebit (see
o ] [Eq. (13)]. This measure does not coincide with other
: measures of the entanglement @f [12,13]. A further
, analysis of this entanglement measure will be presented
i 1 elsewhere.
Lo Summarizing, we have presented a method to construct
f ;88 P:ggag,t 32332 | the best separable approximation to an arbitrary density
% 500 Broduct vectors maitrix 'of a composite gquantum system (of arbltra_lr_y
S dimensions). The method provides a necessary condition
[ AAGA&A";: ; % ] for separability of a density matrix. Furthermore, for

Yode ] composite systems of dfift{ ] = 4, it also provides us
o with an unambiguous measure of the entanglement of its

0 0.2 0.4 0.6 0.8 1.0 nonseparable states.
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For this case Eg. (3) is sufficient to ensure separability:
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Nevertheless, we use our procedure to check the sep
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