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Schwarzschild Black Holes from Matrix Theory
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We consider matrix theory compactified @GR and show that it correctly describes the properties
of Schwarzschild black holes i + 1 dimensions, including the mass-entropy relation, the Hawking
temperature, and the physical size, up to numerical factors of order unity. The most economical
description involves setting the cutaff in the discretized light-cone quantization to be of order the
black hole entropy. A crucial ingredient necessary for our work is the recently proposed equation of
state for3 + 1 dimensional supersymmetric Yang-Mills theory with 16 supercharges. We give detailed
arguments for the range of validity of this equation following the methods of Horowitz and Polchinski.
[S0031-9007(97)05017-5]
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The problem of extreme and near-extreme black hole&or physical applications the limN — oo has to be taken.
in string theory has recently received a great deal offhis limit is not uniform in the following sense: If we
attention [1-3]. The quantum theory of D-branes [4,5]ask how largeV must be taken in order to achieve a given
and its relation to supersymmetric Yang-Mills (SYM) degree of accuracy, the answer will depend on the system
theory [6] has allowed for successful qualitative (andunder investigation. However, choosingtoo large can
sometimes quantitative) calculations of the properties ointroduce a needlessly large number of degrees of freedom,
these objects. By contrast, little has been written aboumost of which may be frozen into their ground state. The
the Schwarzschild black holes in string theory, although &ituation is, in many respects, similar to the choice of cutoff
rough understanding has been achieved in [7,8]. in quantum field theory, where it is desirable to choose

In this paper we take up the problem of Schwarzschildt so that there are neither too few nor too many degrees
black holes in matrix theory [9]. We will see that, of freedom. The former destroys the accuracy, while the
in the particular case of + 1 noncompact dimensions, latter makes the calculations unnecessarily difficult.
enough is known about the relevant SYM theory to derive The minimal valueN,;, which will allow the desired
the properties of black holes, including the mass-entropglegree of accuracy for a black hole will certainly increase
relation and the physical size, up to numerical factors ofvith the entropy which, after all, is the measure of the
order unity. In what follows, such numerical factors will number of relevant degrees of freedom. Our first task
be ignored throughout the paper. will be to determineN,;,. Consider a black hole in its

Matrix theory is best thought of as the discretizedrest frame. The transverse momentum = 0, while
light-cone quantization (DLCQ) oM theory [10], i.e., P+ = P_ = M. The transverse size of the black hole
compactification on a lightlike circle of radius Accord- is its Schwarzschild radiu®; and its extension in the
ingly, the longitudinal momentun®_ = P* is quantized X~ direction is also of ordeR;. As R, grows, it will

in integer multiples ofi /R, eventually exceed the lightlike compactification scAle
N and the black hole will not fit in the longitudinal space.
P = R (1) However, we may boost it, thereby Lorentz contracting it,

We may further compactifyl transverse coordinates on a until it does fit. Let us assume that it is boosted till its
y P longitudinal momentum isV/R. Its longitudinal size is

d-dimensional torus. For simplicity, we will often con-

) ) o o . then contracted to
sider this torus to be “square” with equal circumferences
given by L. Another length scale that appears in the the- B M MR
ory is the 11-dimensional Planck lengfl. AX™ ~ [Rs TRs- 3

The matrix theory conjecture is that the sector of the
theory with a given value oV is described exactly by The condition for fitting into the transverse space is
U(N) SYM theory ind + 1 dimensions with 16 real R > AX™, which implies
supercharges. This theory lives on a dual torus with

circumferences [11,12] N > MR; = Nnin . (4)
- i 2) Thus we see that simple kinematical considerations deter-
RL "’ mine the order of magnitude o, .
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The Schwarzschild radius in R-dimensional space- G\
time is S~MP =] . (12)

1/(D-3) NL*

Ry ~ (GpM - 5 .

) * ( D, ) ®) Now we setN ~ S and use the standard expression for
whereGp is the D-dimensional Newton constant. Thus, the Newton constant in eight dimensioi@ = G1/L,

(4) becomes arriving at
1/(D-3 — _
Nain ~ Gp* M=/, (6) s ~ MOSGL", (13)

It is extremely interesting that the above expressionis alsQ, . . -

the Bekenstein entropy of the black hakgy, ~ S. Which is correct forD
Our strategy for determining the mass-entropy relatio

for the black hole is as follows. Using the matrix theor

Hamiltonian H for fixed N, we compute the partition

function,Z = Tr ¢ A . From this we deduce the relation

between the energy and the entropy for given

E = EN,S). (7)

Next we observe that the matrix theory Hamiltonian is
identified with the DLCQ energy according to

= 8 black holes Note that not
only does the scaling witi come out correctly but so
THoes the dependence afly;.

y Although the above derivation will prove to be correct,
there are serious questions concerning the range of validity
of (11). Atthe pointS ~ N, the temperature given by (11)
with C ~ N? satisfies

ST ~ 1/N'/3. (14)

For a conventional free field with periodic boundary con-
ditions the equation of state (11) is valid only when the

M? M?R t g A .
E=—"— — ) (8) temperature satisfieS7 > 1. This is just the condition
P N that the wavelength of a typical thermal quantum is smaller
Thus, we find than the box size. Clearly, Eq. (14) requires us to extrapo-
N late the equation of state to much lower temperatures. This
M? = z E(N,S). (9) type of situation has arisen before in the theory of D-brane

black holes [15,16], where, due to the presence of Wilson
Now, for N > Ny, the value of M* computed this |oops, the effective size of the quantization box is much
way must be independent of. However, as we shall |arger than its actual size. We will return to this point in
see, computing the partition function fof > S is very  the next section and show that this is exactly what happens
difficult. Thus, we are forced to chooge ~ S, and (9)  when a single 3-brane is wrappad/? times over each of
becomes the directions of the 3-torus.
5 S Before doing this, however, let us consider implications
M=~ EE(S’S)- (10)  of plack hole physics for the equation of state when

Note that the matrix Hamiltonian is explicitly proportional N > S or, equivalently%T < 1/N'/*. In this range the

: . : entropy must be independent &ffor a givenM. Using

mfi’ss:nt:?rﬁrg%g?els in (10), leaving a relation between(g)’ (13), anddE = TdS, we find the equation of state

The casel = 3.—The case involving the most widely S = (NT3)2. (15)
studied SYM theory isd = 3, leading toD = 8 black
holes. Therefore, we concentrate on the= 3 case.

The SYM theory relevant to thé = 8 black holes
is the very special self-dual conformally invariant theory
in 3 + 1 dimensions with 16 real supercharges. We will
begin by illustrating the strategy outlined in the previous
section without fully justifying the formulas. More details
are given in the next section.

Since the SYM theory is conformally invariant, its
equation of state must have the form

At the pointS = N this agrees with our previous equation

of state. The implication is that the equation of state (11)

which holds at high temperature must continue down to

temperature~1/(N'/33) but no farther. A transition to

the equation of state (15) must occur at this point. We

will see in the next section that there is good reason to

believe that a transition of this kind does occur.
Thermodynamics of wrapped 3-branesin this sec-

tion we study the thermodynamics of Dirichlet 3-branes

wrapped over a rectangular 3-torus with sides of length

S =C3’T3, E = C3°T%, (11)  3;. We will be particularly interested in a single 3-brane

whereT is the temperature of the matrix theory (not to WrappedN, times over direction, N, times over direc-

be confused with the Hawking temperature), abtlis  tion 2, and N3 times over directiors. The coordinates

the volume of the dual torusC measures the number of &l0ng such a 3-brane are given by

degrees of freedom which, for the adjoint representation CONS, .

of U(N), is expected to b€ ~ N2. This equation of state X' = o 0i, i =123, (16)

is supported by the form of the near-extremal entropy of .

the self-dual 3-brane found in [13,14]. ;/vr;elreel,- are tr}e thrﬁe anglltt_asl runnm%féotr)n OZﬁ.' The
Eliminating the temperature from (11) and using (2) otal volume of such a muftiply wound s-brane 1

and (8) give Vit = NIN2N32 2,35, (17)
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Therefore, its charge is the same as thaloft N N,Ns Terie ~ (VyN) '3, (20)

singly qund parallel 3-branes. The dynamiqs of sucChat this temperature,S is of order N. Thus, we can

a system is governed bf\" = 4 supersymmetric V) 5chieve adequate resolution of the black Hole~ Nuin)
Yang-Mills theory in3 + 1 dimensions [6]. To describe right at the edge of the range of validity of (18).

the multiply wound configuration, appropriate Wilson “Fq 7 « T.it (N > S), the theory no longer behaves
loops need to be introduced [17]. For example, a D-stringyg 4(3 + 1)-dimensional massless gas. Therefore, we
wound N, times is described in(l + 1)-dimensional  gynact that the entropy is no longer an extensive quantity.
SYM theory by the holonomy which is a shift matrix: |, the previous section we saw that the equation of state
Its nonzero entries arg,.; = 1 fori =1,....,N; = 1 ~ (15) needed for agreement with the semiclassical mass-
and ¢y, = 1. In other words, the holonomy matrix entropy relation in this regime, is indeed nonextensive.

encodes how the different strands of the D-string arguhjle we have explained the transition to a new equation
connected. Similarly, the three(NM) holonomy matrices o state for N > S from the SYM point of view
for the multiply wound 3-brane encode the connectiongyerivation of (15) remains an open problem. '

among theN;N,N; = N sheets as we move along the 7 . is the temperature of the black hole in the

holonomy cycles. boosted frame. Let us calculate the value of the Hawking

For sufficiently largeX; (or the temperaturd’) there  omperature by boostirf., back to the rest frame of the
should be no difference between the thermodynamigsck hole. We find

properties of the multiply wound brane and thoseNof

2/3
coincident singly wound branes. The latter theory has Ty ~ N (V(,N)*l/3 ~ S /1 3 - (22)
O(N?) massless degrees of freedom on voluie = RM MGy
213,35, and we find the following expressions for the ysing (13), we have
energy and the entropy: |
E ~ N?V,T*, S ~ N?>V,T3. (18) Ty ~ (SGg) V0 ~ —. (22)
For the multiply wound brane the same scalings fol- R;

low from a different line of reasoning, which is based This is indeed the expected scaling of the Hawking
on the arguments in [8]. Now the fields live on the vol- temperature.
ume Vit = NVy, and there are O]) massless Species_ Another connection of thé3 + 1)'dimen3i0nalw =
The latter fact may seem surprising, but it is a direct4 supersymmetric (V) Yang-Mills theory is with the
consequence of the D-brane theory [4,5,17]. Indeed, theemiclassical properties of th&-R charged 3-branes
3-brane consists oV = N;N,N; interconnected sheets, in type-1IB supergravity. This connection has been ex-
and there are distinct massless open strings connectiffored in considerable detail in [13,14,19-21]. For ex-
sheetl with sheetj, j = 1,...,N. ample, the Arnowitt-Deser-Misner (ADM) energy and
The difference between the two configurations is illu-the Bekenstein-Hawking entropy are given in terms of
minated byT dualizing along all three directions. The the Hawking temperature by relations of the form (18)
N S|ng|y wound 3-branes are mapped imMfocoincident [13,14] For infinite 3—braneS, these relations hold down
O-branes on the dual torus. The multiply wound 3-brand0 7 = 0, but in the finite case we know that there is
is instead mapped into an array of O-branes [18], with @ minimal temperature below which they break down.
rows a|0ng directiori’ N> rows a|0ng directiori’ andN3 What is the Ol’igin of such a restriction from the pOint
rows along directio. A string connecting two 0-branes, of view of the classical solution? The geometry which
in general, has a fractional winding number along direccorresponds to the multiply wrapped brane is
tion i, quantized in units of /N;. For each allowed wind- ds? = f*l/z(—hd;2 + dy'dy")
ing number, we findV different species because the string _
can start on each of the O-branes in the array. This implies + [P0 ar? + r’dQ3), (23)
that, beforel” duality, the allowed values of momentum in where A
the ith direction are quantized in units 2fr /(N;X;), and r3 ro
we haveN different massless fields. fr) =1+ oy h(r) =1 - e (24)
While for high enough temperature it does not mat-we will consider the near-extremal case whege< rs,
ter how theN 3-branes are interconnected, a crucial dif-and, is related taV through [13,19]
ference appears as the temperature is lowered. N-or 4 N2
singly wound branes, Eq. (18) holds approximately only ry ~ Ng(a')”. (25)
if 73, > 1. For the multiply wound brane, the momenta The absence of large corrections to the metric from the
pi are quantized in units &z /(N;3;), and the condition higher-derivative terms in the string effective action re-
on the temperature is much less restrictive, quires thatvg > 1 [19]. Furthermore, for the case of fi-
TN;S,; > 1. (19)  nite 3-branes, we will require that the longitudinal volume
Let us assume that all thre&;>; are comparable. at the horizon is at Ieasst of order 1 in string units, i.e.,
Then we find that the lowest temperature at which (18) v, r_(; > ()2, (26)
applies is r3
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In terms of the temperatur@ ~ ro/r3, this condition

becomes
V T > (Ng) 34 (27)

This condition is more restrictive thaw,7> > 1/N

This means that Hawking emission proceeds a few O-
branes at a time. Eventually, the black hole completely
dissociates into small clusters of O-branes.
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By the virial theorem, the kinetic energy of the 0-branes Note Added—After submission of this paper we re-

scales as the total energy in the system,

Mo [ (i v >2 2y T
5 <Zl o Xi N2V, T*. (28)
SinceM, = 1/R, we find that for each 0-brane
(p*) ~ NV4T*/R. (29)
By the uncertainty principle,
(p*) ~ 1/R;. (30)

Now we recall thatZ.;, ~ (NV,)~'/3, and thatV,, the
volume of the dual torus, i&;/R3V. Substituting into
(29) and (30), we find thak cancels out, as it should, and

R} ~ (NG /V)'3. (31)

Since the Newton constant in = 8 is Gg = G;;/V, we
finally have

R, ~ (SGg)'/°. (32)

(The same scaling follows if we work on the dual torus

ceived a preprint [22], where the relation (4) was derived
from a somewhat different perspective.
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