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Single-Particle Quantum States in a Crystal with Topological Defects

Richard Bausch and Rudi Schmitz
Institut fur Theoretische Physik 1V, Heinrich-Heine-Universitat Disseldorf, Universitatsstrasse 1, D-40225 Dusseldorf, Germany

tukasz A. Turski

Center for Theoretical Physics, Polish Academy of Sciences and College of Science, Al. Lotnikow 32/46, 02-668 Warszawa, Poland
(Received 27 May 1997

The influence of frozen-in topological defects in a crystal on the long-wavelength quantum states
of a particle is considered. In the continuum limit of a conveniently defined tight-binding model one
is led to a covariant Schrédinger equation on a Riemann-Cartan manifold. When the tight-binding
transfer energies are assumed to depend on the local lattice deformations caused by the defects,
additional noncovariant terms are generated in the Hamiltonian. These terms generate bound states
of the particle to edge dislocations and enhance the scattering of particles on screw dislocations.
[S0031-9007(98)05432-5]
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The dynamics of a particle on a Riemann-Cartaninfinite number of bound states of a particle to an edge
manifold, i.e., a manifold with curvature and torsion, hasdislocation [7]. By similar arguments Kosevich pointed
attracted much interest in various branches of physiceut the possible existence of bound states to screw dis-
ranging from general relativity to solid state physics. Inlocations [8]. On the other hand, in a purely geometric
gravitation theory the curvature and torsion of space arapproach Kawamura observed Aharonov-Bohm-type in-
generated by the mass and spin degrees of freedom of therference effects in the scattering process of a particle on
matter fields; see, e.g., Ref. [1]. Solid and liquid crystalsa screw-dislocation line [9]. In that treatment no binding
with topological defects in the continuum limit can also potential shows up to dislocations of any kind, although
be described by a Riemann-Cartan manifold where nowhe physics of the deformation potential method is claimed
the curvature and torsion fields are proportional to theéo be incorporated [10]. Our expositions will clarify the
topological charge densities of the defects [2,3]. Forelation of the two different approaches including their
instance, the Burgers vector of a dislocation gives rise to @hysical implications.
torsion and the Frank angle of a disclination to a curvature Guided by the picture of a classical random walk of a
of the manifold. particle in a topologically distorted crystal, we start off

We recently have analyzed the classical diffusionin the quantum case from a tight-binding model on a
of a Brownian particle on a Riemann-Cartan manifoldd-dimensional lattice which coherently is deformed due
representing a crystal with frozen-in topological defectso the presence of frozen-in topological defects. With
[4]; see also Ref. [5]. In an identical setting we now wantthe notations: for the position vectors of the lattice sites
to establish a general framework for the discussion ofind a(n) for the vectors pointing frore to the nearest-
the long-wavelength quantum states of a single particlepeighbor sites ofs our model Hamiltonian reads

e.g., an electron. A major advantage of our approach is 1
that it reconciles some seemingly incompatible results of # = —— > a' ) t(a(n))
previous investigations. no aln
On the basis of the deformation potential approxima- X [f(n + am)en) + ¢T(m)en + an))].
tion (see, e.g., Ref. [6]), Lifshitz and Pushkarov found an @
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Here a“ is the volume of the unit cell of the undistorted imply the expression
lattice, t(a(n)) is the transfer energy along the bond

a(n), andeT, ¢ are the particle creation and annihilation ZBZ BLo;dj¢ + ZBl (8;B)d ¢
operators obeying the commutation (or anticommutation) , j
relations = gY0i0,0 — g" Ty’ 9,0
3 .
1 = g"[ViV; = 2T "Vile, (8)
(). ot m)] = 7 Sum @) R

which equipped with a factow? has to be inserted

In order to reveal the long- Wavelength quantum stateéto (1). After passage from the lattice sum including
of the particle, one has to expand the operators the factora? to an integral over the invariant volume
depending ona(n) in (1) to second order in the lattice elementd?x\/g(x), a few partial integrations and use of
constantaz of the undistorted lattice. This is most easily the |dent|tya Jg = T'* /g lead to the result

done for a simple cubic lattice for which the set of vectors N N L
a(n) can be written in terms of two subsets as H = —% f d'x g o [ 8VIV; + (g"VIT; e,
{a(n)} = {a,(n), —a,(n — a,(n))}, a=1,...,d, 9)
3) where, corresponding to (2), the operatorspt obey the
W|th the Components Commuta“()n I’e|ati0ns
aq(n) = aB,(x). (4) [e(x). 0T (1] = =5 — ). (10)
Ve (x)

The matrix fieldBy, (x) is determined by the distortion The Hamiltonian (9) is manifestly covariant; i.e., it has

tensorg;” (x) of the defects V'a the relatlome =/, the same form for arbitrary types and configurations of
BfBjy = 8%, andB54 = 5, + B;’. Italso provides topological defects. This reflects the purely geometric
the continuum description of the distorted crystal byparticle motion on the lattice in the present case. In a
a Riemann-Cartan manifold with the metric tensor ancgradient expansion of the Hamiltonian covariance alone
affine connection [2] would allow an undetermined coupling constant in the
= BQBEBQB, I, % — BXa,Be (5) potential part. This is reminiscent qf a proper choice for
the prefactor of the curvature term in a quantum system
and the notatiog”/ for the inverse ofg;;. The covariant on a Riemann manifold Jll]
derivativeV; implied by the affine connection in (5) com-  The expressiong/V;V, in the kinetic part of
mutes with the metric sincE,g;; = digi; — Iii'g; — (9) is identical to the Laplace-Beltrami operator
T,;'gu = 0. Whereas the gradient of some scatris  (1//2)9i\/g¢"d; and in general differs from the
given byV;® = 4,®, the divergence of a vectd#’ turns ~ Operatorg”/V; V} entering the diffusion equation on a
out to beV,-TVi where manifold [4]. Also our Hamiltonian is self-adjoint in
contrast to the operati’/V,V; favored by Kleinert [12].

T _ J
Vi =Vi+ 2T} (6) The potential energy in (9) is proportlonal to the
with the torsion tensor divergence of the torsion vectd¥ = g"/7;* which is
L . L the only nontrivial scalar of the manifold |n addition to
T;" = —(F -1, (7)  the scalar curvatur®. Whereas one find§! 7/ = 0 for

which measures the defect density [2]. For practicafCreW dislocations an; T' # 0 for edge dislocations,
calculations it is convenient to use the fotity /g )d; /g the conditionkR = 0 is valid for both types of dlslocetlons
for the operator (6) whereg is the Jacobian of the [2.]' As an exam_ple ofedefect Wm% 0 we me”ﬁ'ﬁ”a
metric tensor (5). The distortion tensor and consequentiffind of disclination defined by a distortion field; (x)
the quantities (5)—(7) are explicitly known for the most hich de[sclrlbes local rotations of the lattice [12] and
familiar topological defects [2]. impliesV; T* = R/4.

We now consider the continuum limit of the Hamilton- N case of a th_ree dimensionel Crystal with a single
ian (1) for a model with a distortion-independent trans-Screw-dislocation line along theaxis with Burgers vector

fer energyr = hi2/(2ma?) wherem is an effective mass b= bez,"Eq. 9 Ieads_in terms of cylinder coordinates to
of the particle. This allows one to expressin terms e Schrodinger equjatlon

of the operatoS(a) = > ., ¢(n + a(n)) which will be h b b

expandcre)d up to seconda(;'rlzjerdn In (1) the lowest-order ihoup(x. 1) = Com |:A t o (a‘/’a RE J >:|
result §(0) = 2d¢(x) merely leads to a constant energy

shift for the particle, and the first-order term vanishes by X Pla1), (11)
inversion symmetry, valid to linear order éin[due to (3)]. where A stands for the usual Laplacian in Euclidean
For the second-order coefficiert”’(0)/2 Egs. (4)—(7) space. According to Kawamura [9] this equation
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converts an incident (stationary) wavé(r, ¢,z) = #(0,0,0)]s(r, ¢,z). Here, the valugs(0, 0,0) should be
exd —i(grcos¢ — kz + ¢pkb/27)] with transverse considered as a parameter which, due to the breakdown
and longitudinal wave numberg, k into an Aharonov- of the continuum approximation at = 0, has to be
Bohm scattering waveis(r, ¢,z) which obeys the determined by a lattice calculation. The tern (0, 0,0)
condition  ¢0(0,¢,z) + ¥,0,¢4,z) =0 [13], and reduces the Aharonov-Bohm interferences, and in the
for r — o and ¢ # w has the asymptotic behavior worst case/(0,0,0) = (0,0,0) suppresses them com-
W(r, d,z) = Qamigr) 2 exfi(gr + kz)]f(¢) with the  pletely. It will be shown below that a screw dislocation

scattering amplitude in general is dressed by a repulsive poteniiét) « 1/r?
i k/ 1K) (p=)/2 which implies (0, ¢,z) = 0 but also considerably
f(@) =sinkb/2) ———— (12)  modifies the scattering amplitude (12).
cod/2) For the case of an edge dislocation line along the

However, ¢, and ¢, are independent stationary z axis of a three-dimensional isotropic elastic medium
states of (11) so that the general solution is giverwith Burgers vecto Eq. (9) leads, contrary to the quite

by the superpositiony(r, ¢,z) = o(r, p,z) +[1 —  different result in [9], to the Schrédinger equation
|
o — -T2 IA o P L sing) (8 — a2 — L (8,5, cos + ra, - cosba
ihow(x, 2m 27 (1 — v)r g z r\70¢ rer ¢
+ 2 [b X VB(r)]le(x,t), (13)

where v is the Poisson ratiay = (r cos¢,rsing), and  Euclidean metric in (14) since the bond lengths in the
V = o/0r. Elastic stability requires-1 < v < 1/2 and lattice have to be measured by an observer in the laboratory
consequently rules out the singular cases= 1/2,1  system. As aconsequence, insertion of (14) into the model
in (13). The appearance of the parameterin the (1) leads to additional noncovariantterms in the kinetic and
Schrddinger equation is to be expected because the lattice the potential parts of the Hamiltonian (9).
deformations are determined by the elastic properties of In the case of a single edge dislocation the additional
the crystal. Accidentally this is not the case for the screwpotential energy in the Schrodinger equation (13) reads,
dislocation result (11) due to the isotropy of the distortionto lowest order in the distortion tensgg’ (x),
field around the dislocation line. ) 5 i

One of the most interesting physical questions in they (. 4) = — h”_, Tr(B) = A" 1—2v2bsing
present case is whether (13) allows the formation of 2ma? 2ma* 1 —v  ar
bound states of the particle to the defect. The answer (15)
to this question is negative since in dimensign= 2
an attractive$ potential as well as its derivative are

For wave numbersg,k < a~!, and for r # 0 this
Potential dominates all correction terms to the Laplacian
an (13) including those arising from (14) in the kinetic

the possibility of bound states for the above-mentione ) . L
P y energy. Therefore, in leading order the Hamiltonian of the

disclinationlike defects for which one find§; T’ =
- L " system reduces tdH (k, p,r) = (hk)*/2m + p?/2m +
(2/2)8(r) with a Frank angle). It is interesting to V() wherep means the operatef/i)d/ar.

note that the potential for a dipole of such defects in the The potentialv () as given by (15) has a long-ranged

limit of infinite Frank angle and vanishing dipole length ttract tion in the ol f o the disl
resembles that of an edge dislocation which is known tg. ractive section in the plane transverse to the disioca-

be equivalent to a dipole of true disclinations [15]. ion line.  As pointed out by Lifshitz and Pushkarov [7]

In general, the transfer energidg(n)) are not constant this |mpI|e_s the existence of an infinite number of bound
but will depend on the local lattice deformations caused bftates which accumulate 8- = ) = 0. Close to the
the defects. The simplest model of such a dependence fo"Tl—CCl"mu"'Jltlon point the numb_er of statg’sbelc_)w some
lows by replacing the lattice constantn the deformation- energy £ can be_calculated In a quasiclassical approx-
independent transfer energies by the actual lengths of tHg'ation [16]. This means tzhat n terms of the classi-
vectorsa(n). Because of (4) this leads for the first subsetcdl HamiltonianN = #~2 [d?p d*r O[E — H(k,p.r)]
in (3) to the expression which, solved forE, leads to the result

e : (ik)? _( b 1—21/)2 21
2ma? Bing(x)Bﬁ(x)’ 2m 27a 1 — v ) 2ma* N

which, within the following approximations, also applies The coefficient of thd /N term specifies the phenomeno-
to the second subset in (3). It is important to use thdogical coupling constant in the treatment by Lifshitz and

(14) En(k) = (16)

ta(x) =

2259



VOLUME 80, NUMBER 11 PHYSICAL REVIEW LETTERS 16 MRcH 1998

Pushkarov [7]. Corrections to the quasiclassical approxi- As a final remark we point out that our approach

mation give rise to higher-order terms ifiN. differs from most of the previous discussions of the
In the case of a screw dislocation the potential arisingoroblem by a systematic use of the continuum theory of
from (14) turns out to be defects [2] and by imposing covariance of the model with
2 K2 b2 constant transfer rates. The inclusion of a dependence of
Vi =5 52 Tr(BB") = 3ma? 3.2 (A7) these rates on the lattice deformations necessarily leads

A potential of this form with an undetermined prefactor to noncovariant terms in the Hamiltonian since in the
has also been found in a phenomenological approach tgyposne case(x) should be a scalar and therefore must

. . . epend onx through the quantitie®; T and R(x).
Kosevich [8] who argues that in some semiconductor hgse however v%nish e\(je here in ('[)Pc1)e cr stz;réxce t
the prefactor might be negative and then again imply t the E:ores of th,e defects yw y P
the existence of bound states. In our model, however, ' . . .
the potential is definitely repulsive and therefore does no|ge We gratefully acknowledge helpful discussions with

allow the formation of bound states to screw disloc:ationsvolhc Bulggr;aus,kGe_cl)_Lg Foltirll, hArn(E)Id M. Kose\;icdh,bar:ﬁ
There is, however, a significant contribution of the alery mOKTOVSKI. IS work has been supported by he

potential (17) to the scattering properties of a particle Orﬁ}eutsche Folrscgungsgemelnschaft under SFB 237 and by
a screw dislocation, especially in case of an incident wav e KBN (Poland) Grant No. 2 PO3B 117 12.
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