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The influence of frozen-in topological defects in a crystal on the long-wavelength quantum states
of a particle is considered. In the continuum limit of a conveniently defined tight-binding model one
is led to a covariant Schrödinger equation on a Riemann-Cartan manifold. When the tight-binding
transfer energies are assumed to depend on the local lattice deformations caused by the defects,
additional noncovariant terms are generated in the Hamiltonian. These terms generate bound states
of the particle to edge dislocations and enhance the scattering of particles on screw dislocations.
[S0031-9007(98)05432-5]
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The dynamics of a particle on a Riemann-Carta
manifold, i.e., a manifold with curvature and torsion, ha
attracted much interest in various branches of phys
ranging from general relativity to solid state physics.
gravitation theory the curvature and torsion of space a
generated by the mass and spin degrees of freedom of
matter fields; see, e.g., Ref. [1]. Solid and liquid crysta
with topological defects in the continuum limit can als
be described by a Riemann-Cartan manifold where n
the curvature and torsion fields are proportional to t
topological charge densities of the defects [2,3]. F
instance, the Burgers vector of a dislocation gives rise t
torsion and the Frank angle of a disclination to a curvatu
of the manifold.

We recently have analyzed the classical diffusio
of a Brownian particle on a Riemann-Cartan manifo
representing a crystal with frozen-in topological defec
[4]; see also Ref. [5]. In an identical setting we now wa
to establish a general framework for the discussion
the long-wavelength quantum states of a single partic
e.g., an electron. A major advantage of our approach
that it reconciles some seemingly incompatible results
previous investigations.

On the basis of the deformation potential approxim
tion (see, e.g., Ref. [6]), Lifshitz and Pushkarov found a
0031-9007y98y80(11)y2257(4)$15.00
n
s

ics
In
re
the
ls
o
ow
he
or
o a
re

n
ld
ts
nt
of
le,
is

of

a-
n

infinite number of bound states of a particle to an edg
dislocation [7]. By similar arguments Kosevich pointed
out the possible existence of bound states to screw d
locations [8]. On the other hand, in a purely geometri
approach Kawamura observed Aharonov-Bohm–type in
terference effects in the scattering process of a particle o
a screw-dislocation line [9]. In that treatment no binding
potential shows up to dislocations of any kind, althoug
the physics of the deformation potential method is claime
to be incorporated [10]. Our expositions will clarify the
relation of the two different approaches including thei
physical implications.

Guided by the picture of a classical random walk of a
particle in a topologically distorted crystal, we start off
in the quantum case from a tight-binding model on a
d-dimensional lattice which coherently is deformed due
to the presence of frozen-in topological defects. With
the notationsn for the position vectors of the lattice sites
and asnd for the vectors pointing fromn to the nearest-
neighbor sites ofn our model Hamiltonian reads

H ­ 2
1
2

X
n

ad
X
asnd

tsssasndddd

3 fwysssn 1 asnddddwsnd 1 wysndwsssn 1 asnddddg .
(1)
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Here ad is the volume of the unit cell of the undistorted
lattice, tsssasndddd is the transfer energy along the bon
asnd, andwy, w are the particle creation and annihilatio
operators obeying the commutation (or anticommutatio
relations

fwsnd, wysmdg ­
1

ad
dn,m . (2)

In order to reveal the long-wavelength quantum stat
of the particle, one has to expand thew operators
depending onasnd in (1) to second order in the lattice
constanta of the undistorted lattice. This is most easil
done for a simple cubic lattice for which the set of vecto
asnd can be written in terms of two subsets as

hasndj ­ haasnd, 2aasssn 2 aasnddddj, a ­ 1, . . . , d ,

(3)
with the components

ai
asnd ­ aBi

asxd . (4)

The matrix fieldBi
asxd is determined by the distortion

tensorb
j

i sxd of the defects via the relationsBa
i B

j
a ­ d

j
i ,

Ba
i Bi

b ­ d
a
b , andBa

i d
j
a ­ d

j
i 1 b

j
i . It also provides

the continuum description of the distorted crystal b
a Riemann-Cartan manifold with the metric tensor an
affine connection [2]

gij ­ Ba
i B

b
j dab, G k

ij ­ Bk
a≠iB

a
j , (5)

and the notationgij for the inverse ofgij . The covariant
derivative=i implied by the affine connection in (5) com-
mutes with the metric since=kgij ; ≠kgij 2 G

l
ki glj 2

G
l

kj gil ­ 0. Whereas the gradient of some scalarF is
given by=iF ­ ≠iF, the divergence of a vectorV i turns
out to be=

T
i V i where

=T
i ; =i 1 2T

j
ij (6)

with the torsion tensor

T k
ij ; 1

2 sG k
ij 2 G k

ji d , (7)

which measures the defect density [2]. For practic
calculations it is convenient to use the forms1yp

g d≠i
p

g
for the operator (6) whereg is the Jacobian of the
metric tensor (5). The distortion tensor and consequen
the quantities (5)–(7) are explicitly known for the mos
familiar topological defects [2].

We now consider the continuum limit of the Hamilton
ian (1) for a model with a distortion-independent tran
fer energyt ­ h̄2ys2ma2d wherem is an effective mass
of the particle. This allows one to expressH in terms
of the operatorSsad ;

P
asnd wsssn 1 asndddd which will be

expanded up to second order ina. In (1) the lowest-order
result Ss0d ­ 2dwsxd merely leads to a constant energ
shift for the particle, and the first-order term vanishes b
inversion symmetry, valid to linear order ina [due to (3)].
For the second-order coefficientS00s0dy2 Eqs. (4)–(7)
2258
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imply the expressionX
a

Bi
aBj

a≠i≠jw 1
X
a

Bi
as≠iB

j
ad≠jw

­ gij≠i≠jw 2 gikG
j

ik ≠jw

­ gijf=T
i =j 2 2T k

ik =jgw , (8)

which equipped with a factora2 has to be inserted
into (1). After passage from the lattice sum includin
the factor ad to an integral over the invariant volume
elementddx

p
gsxd, a few partial integrations and use o

the identity≠i
p

g ­ G
k

ik
p

g lead to the result

H ­ 2
h̄2

2m

Z
ddx

p
g wyf gij=T

i =j 1 s gij=T
i T k

jk dgw ,

(9)

where, corresponding to (2), the operatorsw, wy obey the
commutation relations

fwsxd, wys ydg ­
1p

gsxd
dsx 2 yd . (10)

The Hamiltonian (9) is manifestly covariant; i.e., it ha
the same form for arbitrary types and configurations
topological defects. This reflects the purely geomet
particle motion on the lattice in the present case. In
gradient expansion of the Hamiltonian covariance alo
would allow an undetermined coupling constant in th
potential part. This is reminiscent of a proper choice f
the prefactor of the curvature term in a quantum syste
on a Riemann manifold [11].

The expression gij=
T
i =j in the kinetic part of

(9) is identical to the Laplace-Beltrami operato
s1yp

g d≠i
p

g gij≠j and in general differs from the
operatorgij=

T
i =

T
j entering the diffusion equation on a

manifold [4]. Also, our Hamiltonian is self-adjoint in
contrast to the operatorgij=i=j favored by Kleinert [12].

The potential energy in (9) is proportional to th
divergence of the torsion vectorT i ; gijTjk

k which is
the only nontrivial scalar of the manifold in addition to
the scalar curvatureR. Whereas one finds=T

i T i ­ 0 for
screw dislocations and=T

i Ti fi 0 for edge dislocations,
the conditionR ­ 0 is valid for both types of dislocations
[2]. As an example of a defect withR fi 0 we mention a
kind of disclination defined by a distortion fieldBa

i sxd
which describes local rotations of the lattice [12] an
implies=

T
i Ti ­ Ry4.

In case of a three-dimensional crystal with a sing
screw-dislocation line along thez axis with Burgers vector
b ­ bez , Eq. (9) leads in terms of cylinder coordinates
the Schrödinger equation

ih̄≠tcsx, td ­ 2
h̄2

2m

"
D 1

b
pr2

√
≠f≠z 1

b
4p

≠2
z

!#
3 csx, td , (11)

where D stands for the usual Laplacian in Euclidea
space. According to Kawamura [9] this equatio
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converts an incident (stationary) wavec0sr , f, zd ­
expf2isqr cosf 2 kz 1 fkby2pdg with transverse
and longitudinal wave numbersq, k into an Aharonov-
Bohm scattering wavecssr, f, zd which obeys the
condition c0s0, f, zd 1 css0, f, zd ­ 0 [13], and
for r ! ` and f fi p has the asymptotic behavio
cssr , f, zd ­ s2piqrd21y2 expfisqr 1 kzdgfsfd with the
scattering amplitude

fsfd ­ sinskby2d
eiskyjkjd sf2pdy2

cossfy2d
. (12)

However, c0 and cs are independent stationar
states of (11) so that the general solution is giv
by the superpositioncsr , f, zd ­ c0sr, f, zd 1 f1 2
t

w

h

h
h

h

n

cs0, 0, 0dgcssr , f, zd. Here, the valuecs0, 0, 0d should be
considered as a parameter which, due to the breakdow
of the continuum approximation atr ­ 0, has to be
determined by a lattice calculation. The term~cs0, 0, 0d
reduces the Aharonov-Bohm interferences, and in th
worst casecs0, 0, 0d ­ c0s0, 0, 0d suppresses them com-
pletely. It will be shown below that a screw dislocation
in general is dressed by a repulsive potentialV srd ~ 1yr2

which implies cs0, f, zd ­ 0 but also considerably
modifies the scattering amplitude (12).

For the case of an edge dislocation line along th
z axis of a three-dimensional isotropic elastic medium
with Burgers vectorb Eq. (9) leads, contrary to the quite
different result in [9], to the Schrödinger equation
ih̄≠tcsx, td ­ 2
h̄2

2m

(
D 2

b
2ps1 2 ndr

"
s1 2 2nd ssinfd sD 2 ≠2

zd 2
1
r

√
≠r≠f cosf 1 r≠r

1
r

cosf≠f

!#

1
1
2

fb 3 =dsrdgz

)
csx, td , (13)
e

e

s

e
ory
del
nd
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wheren is the Poisson ratio,r ; sr cosf, r sinfd, and
= ; ≠y≠r. Elastic stability requires21 , n , 1y2 and
consequently rules out the singular casesn ­ 1y2, 1
in (13). The appearance of the parametern in the
Schrödinger equation is to be expected because the la
deformations are determined by the elastic properties
the crystal. Accidentally this is not the case for the scre
dislocation result (11) due to the isotropy of the distortio
field around the dislocation line.

One of the most interesting physical questions in t
present case is whether (13) allows the formation
bound states of the particle to the defect. The answ
to this question is negative since in dimensiond ­ 2
an attractived potential as well as its derivative are
known to have no bound states [14]. This also rules o
the possibility of bound states for the above-mention
disclinationlike defects for which one finds=T

i T i ­
sVy2ddsrd with a Frank angleV. It is interesting to
note that the potential for a dipole of such defects in t
limit of infinite Frank angle and vanishing dipole lengt
resembles that of an edge dislocation which is known
be equivalent to a dipole of true disclinations [15].

In general, the transfer energiestsssasndddd are not constant
but will depend on the local lattice deformations caused
the defects. The simplest model of such a dependence
lows by replacing the lattice constanta in the deformation-
independent transfer energies by the actual lengths of
vectorsasnd. Because of (4) this leads for the first subs
in (3) to the expression

tasxd ­
h̄2

2ma2

1

dijBi
asxdBj

asxd
, (14)

which, within the following approximations, also applie
to the second subset in (3). It is important to use t
tice
of
-

n
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Euclidean metric in (14) since the bond lengths in th
lattice have to be measured by an observer in the laborat
system. As a consequence, insertion of (14) into the mo
(1) leads to additional noncovariant terms in the kinetic a
in the potential parts of the Hamiltonian (9).

In the case of a single edge dislocation the addition
potential energy in the Schrödinger equation (13) rea
to lowest order in the distortion tensorb

j
i sxd,

V sr , fd ­ 2
h̄2

2ma2
4 Trsbd ­

h̄2

2ma2

1 2 2n

1 2 n

2b sinf

pr
.

(15)

For wave numbersq, k ø a21, and for r fi 0 this
potential dominates all correction terms to the Laplacia
in (13) including those arising from (14) in the kinetic
energy. Therefore, in leading order the Hamiltonian of th
system reduces toHsk, p, rd ­ sh̄kd2y2m 1 p2y2m 1

V srd wherep means the operatorsh̄yid≠y≠r.
The potentialV srd as given by (15) has a long-range

attractive section in the plane transverse to the disloc
tion line. As pointed out by Lifshitz and Pushkarov [7
this implies the existence of an infinite number of boun
states which accumulate atV sr ­ `d ­ 0. Close to the
accumulation point the number of statesN below some
energy E can be calculated in a quasiclassical appro
imation [16]. This means that in terms of the class
cal HamiltonianN ­ h22

R
d2p d2r QfE 2 Hsk, p, rdg

which, solved forE, leads to the result

EN skd ­
sh̄kd2

2m
2

√
b

2pa
1 2 2n

1 2 n

!2
h̄2

2ma2

1
N

. (16)

The coefficient of the1yN term specifies the phenomeno
logical coupling constant in the treatment by Lifshitz an
2259
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Pushkarov [7]. Corrections to the quasiclassical approx
mation give rise to higher-order terms in1yN .

In the case of a screw dislocation the potential arisin
from (14) turns out to be

V srd ­
h̄2

2ma2 2 TrsbbT d ­
h̄2

2ma2

b2

2p2r2 . (17)

A potential of this form with an undetermined prefacto
has also been found in a phenomenological approach
Kosevich [8] who argues that in some semiconducto
the prefactor might be negative and then again imp
the existence of bound states. In our model, howeve
the potential is definitely repulsive and therefore does n
allow the formation of bound states to screw dislocation

There is, however, a significant contribution of the
potential (17) to the scattering properties of a particle o
a screw dislocation, especially in case of an incident wa
vector withk ­ 0 which, according to (11), does not even
see the dislocation. In order to support the Aharono
Bohm interferences, the regimek ¿ q should be chosen
for the incident wave vector. Then, for consistency, on
has to add in (11) the termV srd f1 1 s1y2d sa≠zd2gcsx, td
generated by (14). Stationary solutions of the resultin
Schrödinger equation can be expanded in terms of t
exact eigenfunctionsJjljsqrd expsimfd expsikzd where
Jjlj is a Bessel function withl2 ­ sm 1 kby2pd2 1

sb2y2p2a2d f1 1 s1y2d skad2g, and m is an integer. For
an incident wave of the previous formc0 this leads to
c ­ c0 1 cs wherecs looks as before, however, with
the new scattering amplitude

fsfd ­ 2
b2

2p2a2

"
1 2

skad2

2

#
e2iskb2pdy2

3
X̀

m­2`

eimsf2pd

lsmd

"
1 2 e2iflsmd2m2kby2pgp

lsmd 2 m 2 kby2p

1
1 2 e2iflsmd1m1kby2pgp

lsmd 1 m 1 kby2p

#
.

(18)

Partial waves with differentm, i.e., different angular mo-
menta, interfere in the differential scattering cross se
tion (per unit length of the dislocation line)dsydf ­
s2pqd21jfsfdj2. The latter is even inf and, by numeri-
cal evaluation of (18), turns out to increase monotonical
from f ­ 0 to f ­ p where it has an artificial singular-
ity due to the far-field approximation forcs [13]. Qualita-
tively this behavior is similar to that following from (12),
however, without a reduction of the scattering part due
a nonzero value ofcs0, 0, 0d in the present case.
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As a final remark we point out that our approach
differs from most of the previous discussions of the
problem by a systematic use of the continuum theory o
defects [2] and by imposing covariance of the model with
constant transfer rates. The inclusion of a dependence
these rates on the lattice deformations necessarily lea
to noncovariant terms in the Hamiltonian since in the
opposite casetsxd should be a scalar and therefore mus
depend onx through the quantities=iT isxd and Rsxd.
These, however, vanish everywhere in the crystal exce
at the cores of the defects.
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