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Entanglement of Formation of an Arbitrary State of Two Qubits
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The entanglement of a pure state of a pair of quantum systems is defined as the entropy of
member of the pair. The entanglement of formation of a mixed stater is the minimum average
entanglement of an ensemble of pure states that representsr. An earlier paper conjectured an explicit
formula for the entanglement of formation of a pair ofbinary quantum objects (qubits) as a function
of their density matrix, and proved the formula for special states. The present paper extends the
to arbitrary states of this system and shows how to construct entanglement-minimizing decomposi
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Entanglement is the quantum mechanical property th
Schrödinger singled out many decades ago as “the char-
acteristic trait of quantum mechanics” [1] and that ha
been studied extensively in connection with Bell’s in
equality [2]. A pure state of a pair of quantum system
is called entangled if it is unfactorizable, as is the cas
for example, for the singlet state of two spin-1

2 particles,
s1y

p
2d sj"#l 2 j#"ld. A mixedstate is entangled if it can-

not be represented as a mixture of factorizable pure stat
In the last couple of years a good deal of work has be
devoted to finding physically motivated quantitative mea
sures of entanglement, particularly for mixed states of
bipartite system [3–5]. Perhaps the most basic of the
measures is theentanglement of formation,which is in-
tended to quantify the resources needed to create a giv
entangled state [5].

Having a well justified and mathematically tractable
measure of entanglement is likely to be of value in
number of areas of research, including the study of d
coherence in quantum computers [6] and the evaluati
of quantum cryptographic schemes [7]. Unfortunately
most proposed measures of entanglement involve extre
izations which are difficult to handle analytically, the en
tanglement of formation being no exception to this rule
However, in the special case of entanglement between t
binary quantum systems such as the spin of a spin-1

2 par-
ticle or the polarization of a photon—systems that ar
generically called “qubits”—an explicit formula for the
entanglement of formation has recently been conjectur
and has been proved for a special class of density ma
ces [8]. In this Letter we prove the formula for arbitrary
states of two qubits.

The entanglement of formation is defined as follow
[5]. Given a density matrixr of a pair of quantum
systemsA andB, consider all possible pure-state decom
positions ofr, that is, all ensembles of statesjcil with
probabilitiespi, such that

r ­
X

i

pi jcil kcij . (1)

For each pure state, the entanglementE is defined as the
entropy of either of the two subsystemsA andB [3]:
0031-9007y98y80(10)y2245(4)$15.00
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Escd ­ 2TrsrA log2 rAd ­ 2TrsrB log2 rBd . (2)

Here rA is the partial trace ofjcl kcj over subsystem
B, and rB has a similar meaning. The entanglement
of formation of the mixed stater is then defined
as the average entanglement of the pure states of th
decomposition, minimized over all decompositions ofr:

Esrd ­ min
X

i

piEscid . (3)

The basic equation (2) is justified by the physical inter-
convertibility of a collection of pairs in an arbitrary pure
statejcl and a collection of pairs in the standard singlet
state, the asymptotic conversion ratio being given byEscd
[3]. The central claim of this Letter is that for a pair of
qubits, the minimum value specified in Eq. (3) can be ex
pressed as an explicit function ofr, which we develop in
the next few paragraphs. For ease of expression we wi
usually refer to the entanglement of formation simply as
“the entanglement.”

Our formula for entanglement makes use of what can b
called the “spin flip” transformation, which is a function
applicable to states of an arbitrary number of qubits. For
pure state of a single qubit, the spin flip, which we denote
by a tilde, is defined by

jc̃l ­ syjcpl , (4)

where jcpl is the complex conjugate ofjcl when it
is expressed in a fixed basis such ashj"l, j#lj, and sy

expressed in that same basis is the matrixs 0 2i
i 0

d. For a

spin-12 particle this is the standard time reversal operation
and indeed reverses the direction of the spin [9]. To
perform a spin flip onn qubits, one applies the above
transformation to each individual qubit. For example, for
a general stater of two qubits—the object of interest in
this Letter—the spin-flipped state is

r̃ ­ ssy ≠ sydrpssy ≠ syd , (5)

where again the complex conjugate is taken in the
standard basis, which for a pair of spin-1

2 particles ishj""l,
j"#l, j#"l, j##lj. In this case the spin flip is equivalent [10] to
© 1998 The American Physical Society 2245



VOLUME 80, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 9 MARCH 1998

t

e
d

of

e

ch

e

te

d,
y

-
the

ion
“complex conjugation in the magic basis,” which appea
in Ref. [8].

Though we have introduced the spin flip primarily to
deal with mixed states, the concept is also convenient
expressing the entanglement of apurestate of two qubits.
One can show that this entanglement, defined in Eq. (
can be written as [8]

Escd ­ E sssCscdddd , (6)

where the “concurrence”C is defined as

Cscd ­ jkc j c̃lj , (7)

and the functionE is given by

E sCd ­ h

µ
1 1

p
1 2 C2

2

∂
;

hsxd ­ 2x log2 x 2 s1 2 xd log2s1 2 xd . (8)

E sCd is monotonically increasing and ranges from 0 t
1 as C goes from 0 to 1, so that one can take th
concurrence as a measure of entanglement in its o
right. For example, the singlet statejcl ­ s1y

p
2d sj"#l 2

j#"ld is left unchanged by a spin flip (except for an overa
negative sign), so that its concurrencejkc j c̃lj is equal to
1. At the other extreme, an unentangled pure state such
j"#l is always mapped by the spin flip transformation int
an orthogonal state, so that its concurrence is zero. La
we will use another fact aboutE sCd, namely, that it is a
convex function (that is, curving upward).

Having defined the spin flip and the functionE sCd, we
can now present the promised formula for the entang
ment of formation of a mixed stater of two qubits:

Esrd ­ E sssCsrdddd , (9)

where

Csrd ­ maxh0, l1 2 l2 2 l3 2 l4j , (10)

and thelis are the eigenvalues, in decreasing order,
the Hermitian matrixR ;

pp
rr̃

p
r. Alternatively, one

can say that thelis are the square roots of the eigenvalue
of the non-Hermitian matrixrr̃. Note that eachli is a
non-negative real number.

The formula (9) was shown in Ref. [8] to be correct fo
all density matrices of two qubits having no more than tw
nonzero eigenvalues. More recently, Smolin has test
the formula numerically on several thousand random
chosen two-qubit density matrices and has found comple
agreement [11]. We now prove the formula for all state
of this system by constructing an entanglement-minimizin
decomposition of any given density matrix.

We begin with the fact thateverydecomposition of a
density matrixr can be obtained via the following pre-
scription [12]. First, find a complete set of orthogona
eigenvectorsjyil corresponding to the nonzero eigenva
ues ofr, and “subnormalize” these vectors so thatkyi j yil
is equal to theith eigenvalue. Then a general decompos
2246
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tion hjwilj of r is given by

jwil ­
nX

j­1

Up
ijjyjl, i ­ 1, . . . , m . (11)

Heren is the rank ofr, that is, the number of vectorsjyil,
andU is anm 3 m unitary matrix,m being greater than
or equal ton. (The complex conjugation is included only
for later convenience.) Alternatively, since only the firs
n columns ofU are used, we can takeU to be anm 3 n
matrix whose columns are orthonormal vectors. Th
statesjwil in Eq. (11) are automatically subnormalize
so thatkwi j wil is equal to the probability ofjwil in the
decomposition. We can thus writer ­

P
i jwil kwij. In

what follows, we express all decompositions ofr in terms
of such subnormalized vectors.

It is helpful to consider separately two classes
density matrix: (i) Those for whichl1 2 l2 2 l3 2 l4
is positive or zero, and (ii) those for which the sam
combination is negative. We consider class (i) first.

For any density matrixr in this class, we will define
successively three specific decompositions ofr, the last
of which is the optimal decomposition that we seek. Ea
of these decompositions consists of exactlyn pure states,
n being the rank ofr as above. For the system we ar
considering,n is always less than or equal to 4.

The first decomposition consists of statesjxil, i ­
1, . . . , n, satisfying

kxi j x̃jl ­ lidij . (12)

We obtain such a decomposition as follows. First no
that if the sethjxilj is defined via ann 3 n unitary matrix
U as in Eq. (11), then the “tilde inner products”kxi j x̃jl
can be written as

kxi j x̃jl ­ sUtUT dij , (13)

where tij ; kyi j ỹjl is a symmetric but not necessarily
Hermitian matrix. (The statesjyil are the eigenstates ofr

defined earlier.) In order that condition (12) be satisfie
we wantUtUT to be diagonal. It happens that for an
symmetric matrixt, one can always find a unitaryU that
diagonalizest in this way [13]. Moreover, the diagonal
elements ofUtUT can always be made real and non
negative, in which case they are the square roots of
eigenvalues ofttp. (To see how this works, note thatU
must diagonalizettp in the usual sense; that is,UttpUy

is diagonal.) The square roots of the eigenvalues ofttp

are the same as the eigenvalues ofR, so that condition
(12) is fulfilled as long as the diagonalizing matrixU is
chosen in such a way that the numbersli appear in their
proper order. Thus one can always find a decomposit
with the desired property.

Our second decomposition ofr, which we labelhj yilj,
i ­ 1, . . . , n, is hardly different from the first:

j y1l ­ jx1l ;

j yjl ­ ijxjl, for j fi 1 .
(14)
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It is indeed physically equivalent to the first decompos
tion, but the phase factors will become important shor
when we take linear combinations of these vectors.

The decompositionhjyilj has the following special
property. Define the “preconcurrence”c of a pure state
jcl (possibly subnormalized) to be

cscd ­
kc j c̃l
kc j cl

; (15)

that is, the preconcurrence is the same as the concurre
of Eq. (7) but without the absolute value sign. The
the average preconcurrence ofhjyilj has the valueCsrd
specified in Eq. (10):

kcl ­
X

i

k yi j yil
kyi j ỹil
kyi j yil

­
X

i

kyi j ỹil ­ l1 2 l2 2 l3 2 l4 ­ Csrd .

(16)

Here we have used the fact that ifn , 4, the numbersli

with i . n are all zero.
We would like to find a decomposition that, likehjyilj,

has kcl ­ Csrd, but which also has the property tha
the preconcurrence (and hence the concurrence) of e
individual state is equal toCsrd. It would then follow
immediately that the average entanglement isE sssCs rdddd,
since this would be the entanglement of each state in
decomposition.

To accomplish this, note first that any decompositio
with n elements can be written in terms of the statesjyil
via the equation

jzil ­
nX

j­1

V p
ijjyjl , (17)

where V is an n 3 n unitary matrix. The average
preconcurrence of the ensemblehjzilj is

kcl ­
X

i

kzi j z̃il ­
X

i

sVYV T dii ­ TrsVYV T d , (18)

where Y is the real diagonal matrix defined byYij ­
k yi j ỹjl. Thus the average preconcurrence is unchang
by any real unitary matrix V (that is, any orthogonal
matrix), since in that caseV T ­ V 21 and the trace in
Eq. (18) is preserved.

Let us now restrict ourselves to such orthogonal mat
ces, so as to preserve the average, and use them to t
equalize the preconcurrences. One way to do this is
follows. First, select the two statesjyil with the largest
and smallest values of the preconcurrence. Unless all
preconcurrences are already equal, the largest one m
be too large and the smallest one too small (typica
negative). In the latter case, consider the set of positi
determinant orthogonal transformations that act only
these two extreme states as in Eq. (17), changing th
into new states that we calljzal and jzbl and leaving the
other statesjyil unchanged. Among this set of transfor
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mations is one that simply interchanges the two extrem
states and thus interchanges their preconcurrences. Th
fore, by continuity there must exist an intermediate tran
formation that makes the preconcurrence ofjzal equal to
Csrd. Perform this transformation, thereby fixing one ele
ment of the ensemble to have the correct concurrenc
By repeating this procedure on the remaining elemen
of the ensemble, one finally arrives at a set of states
having concurrence equal toCsrd. This we take to be
our final decompositionhjzilj, which, as we have argued
above, achieves the claimed minimum average entang
mentE sssCsrdddd. Thus the value of entanglement given in
our formula (9) can always be attained, at least for th
case in whichl1 2 l2 2 l3 2 l4 $ 0.

We now show that no decomposition ofr has asmaller
average entanglement. For this it is enough to sho
that no decomposition has a smaller averageconcurrence:
The average entanglement cannot be less thanE skCld
because of the convexity of the functionE . Now, the
average concurrence of a general decomposition is giv
by an equation similar to Eq. (18) but with an absolut
value sign:

kCl ­
X

i

jsVYVT diij . (19)

Here V is an m 3 n matrix whose n columns are
orthonormal vectors. The dimensionm of these vectors
can be arbitrarily large, since the decomposition ma
consist of an arbitrarily large number of pure state
(though prior results guarantee that one need not consi
values ofm larger than sixteen [14]). In terms of the
components ofV and Y , we can write the average
concurrence as

kCl ­
X

i

É X
j

sVijd2Yjj

É
. (20)

To obtain the desired lower bound on this sum, w
need use only the fact that

P
i jsVijd2j ­ 1. That is, we

can show that for any complex numbersaij such thatP
i jaij j ­ 1, we haveX

i

É X
j

aijYjj

É
$ l1 2 l2 2 l3 2 l4 . (21)

The proof is straightforward: first note that there is n
loss of generality in taking eachai1 to be real and
positive. (The phases of the otheraijs can be changed
to compensate.) Then we can sayX

i

É X
j

aijYjj

É
$

É X
ij

aijYjj

É

­

É
l1 2

nX
j­2

√X
i

aij

!
lj

É
(22)

$ l1 2 l2 2 l3 2 l4 ­ Csrd .
2247
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Thus no decomposition ofr can achieve an average
concurrence lower thanCs rd or an average entanglemen
lower thanE sssCs rdddd.

There remains one case to consider, namely, dens
matrices for whichl1 2 l2 2 l3 2 l4 , 0. For these
density matrices our formula predicts that the entangl
ment should be zero; that is, that there should be a d
composition ofr into unentangled pure states. To show
that this is indeed the case, we again start with the deco
positionhjxilj, i ­ 1, . . . , n, of Eq. (12). Ifn is equal to
3—the valuesn ­ 1 andn ­ 2 are not possible for the
case we are now considering—it is convenient to supp
ment this set with a dummy statejx4l equal to the zero
vector. From the complete set we directly form our fina
decompositionhjzilj:

jz1l ­
1
2 seiu1 jx1l 1 eiu2 jx2l 1 eiu3 jx3l 1 eiu4 jx4ld ,

jz2l ­
1
2 seiu1 jx1l 1 eiu2 jx2l 2 eiu3 jx3l 2 eiu4 jx4ld ,

jz3l ­
1
2 seiu1 jx1l 2 eiu2 jx2l 1 eiu3 jx3l 2 eiu4 jx4ld ,

jz4l ­
1
2 seiu1 jx1l 2 eiu2 jx2l 2 eiu3 jx3l 1 eiu4 jx4ld ,

(23)

where the phase factors are chosen so thatX
j

e2iuj lj ­ 0 . (24)

Such phase factors can always be found whenl1 ,

l2 1 l3 1 l4 (l1 being the largest of the four numbers
as always). The condition (24) together with the proper
(12) of the sethjxilj guarantee that each statejzil has
zero concurrence and hence zero entanglement. T
completes the proof of the formula (9).

Our formula makes possible the easy evaluation of e
tanglement of formation for a pair of qubits, and shoul
thus facilitate the investigation of any number of ques
tions concerning entanglement. However, there rema
a basic question concerning theinterpretationof the en-
tanglement of formation that has not yet been resolve
For any pure statejcl of a bipartite system, the entangle
ment Escd defined in Eq. (2) can be interpreted roughl
as the number of qubits that must have been exchang
between two observers in order for them to share the st
jcl [15]. It seems likely that this interpretation applie
also to the entanglement of formation of amixedstate [5],
but this conclusion depends on a property ofEsrd that has
not yet been demonstrated [16]. The question is wheth
Esrd is additive,that is, whether the entanglement of for
mation of two pairs of quantum systems is the sum of th
entanglements of formation of the individual pairs and n
less. If it is determined thatEsrd is indeed additive, then
2248
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this finding will considerably strengthen the physical in
terpretation of our formula.
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