VOLUME 80, NUMBER 10 PHYSICAL REVIEW LETTERS 9 MRcH 1998

Entanglement of Formation of an Arbitrary State of Two Qubits
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The entanglement of a pure state of a pair of quantum systems is defined as the entropy of either
member of the pair. The entanglement of formation of a mixed staie the minimum average
entanglement of an ensemble of pure states that represeném earlier paper conjectured an explicit
formula for the entanglement of formation of a pair hary quantum objects (qubits) as a function
of their density matrix, and proved the formula for special states. The present paper extends the proof
to arbitrary states of this system and shows how to construct entanglement-minimizing decompositions.
[S0031-9007(98)05470-2]

PACS numbers: 03.67.—a, 03.65.Bz, 89.70.+c
Entanglement is the quantum mechanical property that E(y¢) = —Tr(palog, pa) = —Tr(pglog, ps). (2)
Schrédinger singled out many decades agothe ¢har- . .
acteristic trait of quantum mechanics” [1] and that hasger:n%f‘ IS ;ges F;agli?ri ”tar‘?Cr?] eﬂ%’%@ | 'I(?r\:gresnutgiyi?nn;nt
been studied extensively in connection with Bell's in- of’ formgfion of the mixed statg. is then de?‘ined
equality [2]. A pure state of a pair of quantum systems &

is called entangled if it is unfactorizable, as is the case?S the average entanglement of the pure states of the

. . decomposition, minimized over all decompositionspof
for example, for the singlet state of two spinpartlcles, P P ¥0

(1/+/2) (I1ly — 1IN)). A mixedstate is entangled if it can- E(p) = mianiE(t//i). 3)
not be represented as a mixture of factorizable pure states. i

In the last couple of years a good deal of work has beefrhe pasic equation (2) is justified by the physical inter-
devoted to finding physically motivated quantitative mea-conyertibility of a collection of pairs in an arbitrary pure
sures of entanglement, particularly for mixed states of &tate|y) and a collection of pairs in the standard singlet
bipartite system [3—5]. Perhaps the most basic of thesgiate, the asymptotic conversion ratio being giverEby)
measures is thentanglement of formationhich is in- 131 The central claim of this Letter is that for a pair of
tended to quantify the resources needed to create a 9iVefiipits, the minimum value specified in Eqg. (3) can be ex-
entangled state [5]. _ pressed as an explicit function pf which we develop in
Having a well justified and mathematically tractable the next few paragraphs. For ease of expression we wil
measure of entanglement is likely to be of value in aygajly refer to the entanglement of formation simply as
number of areas of research, including the study of de«e entanglement.”
coherence in quantum computers [6] and the evaluation oy formula for entanglement makes use of what can be
of quantum cryptographic schemes [7]. Unfortunately,cqjied the “spin flip” transformation, which is a function
most proposed measures of entanglement involve extremyjicaple to states of an arbitrary number of qubits. For a

izations which are difficult to handle analytically, the en- pure state of a single qubit, the spin flip, which we denote
tanglement of formation being no exception to this rule.by a tilde, is defined by

However, in the special case of entanglement between two ~

binary quantum systems such as the spin of a %opar- ) = oy ly™), (4)
ticle or the polarization of a photon__—systems that argynere l¢*) is the complex conjugate ofy) when it
generically called “qubits”—an explicit formula for the g expressed in a fixed basis such &, )}, and o,

entanglement of formation has recently been conjectured ) . Qix —i
and has been proved for a special class of density matrEXPressed in that same basis is the me(ilx ). Fora

ces [8]. In this Letter we prove the formula for arbitrary Spin— particle this is the standard time reversal operation
states of two qubits. and indeed reverses the direction of the spin [9]. To

The entanglement of formation is defined as followsperform a spin flip onn qubits, one applies the above
[5]. Given a density matrixp of a pair of quantum transformation to each individual qubit. For example, for

systemsA and B, consider all possible pure-state decom-a general statg of two qubits—the object of interest in
positions ofp, that is, all ensembles of statég;) with  this Letter—the spin-flipped state is

probabilitiesp;, such that b= (0,8 ay)p (0, ® ). 5)

= ilyi)\yil . 1
P ;p ) il 1) where again the complex conjugate is taken in the
For each pure state, the entanglemgris defined as the standard basis, which for a pair of spirparticles is{[11),
entropy of either of the two subsystemisandB [3]: [T, U0, 1L}, In this case the spin flip is equivalent [10] to
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“complex conjugation in the magic basis,” which appeardion {|w;)} of p is given by

in Ref. [8]. n
Though we have introduced the spin flip primarily to lwi) = Z Ujilvj), i=1,....,m. (11)
deal with mixed states, the concept is also convenient for j=1

expressing the entanglement opare state of two qubits. Heren is the rank ofp, that is, the number of vectots;),
One can show that this entanglement, defined in Eq. (2and U is anm X m unitary matrix,m being greater than

can be written as [8] or equal ton. (The complex conjugation is included only
_ for later convenience.) Alternatively, since only the first
E(y) =E(C , 6 '
2 (Cw)) (6) n columns ofU are used, we can také to be anm X n
where the “concurrence is defined as matrix whose columns are orthonormal vectors. The
_ ~ states|w;) in Eqg. (11) are automatically subnormalized
Cl) =K1, (7) so that(w; | w;) is equal to the probability ofw;) in the
and the functiorE is given by decomposition. We can thus wrige = > ; [w;){w;|. In
what follows, we express all decompositionspoin terms
M1 — 2
E(C) = h(M» of such subnormalized vectors.
2 It is helpful to consider separately two classes of

h(x) = —xlog,x — (1 — x)log,(1 — x). (8) _density _matrix: (i) Those fc_).r which; — A, — A3 M
] ) ) ] is positive or zero, and (ii) those for which the same
E(C) is monotonically increasing and ranges from 0 tocombpination is negative. We consider class (i) first.
1 as C goes from O to 1, so that one can take the Eor any density matrisp in this class, we will define
concurrence as a measure of entanglement in its owgccessively three specific decompositionsootthe last
right. For example, the singlet stdig) = (1/v2) (Il) = of which is the optimal decomposition that we seek. Each
i) is left unchanged by a spin flip (except for an overallof these decompositions consists of exaetlpure states,
negative sign), so that its concurreri¢g | )| is equal to  ,; peing the rank ofp as above. For the system we are
1. Atthe other extreme, an unentangled pure state such @®nsideringy: is always less than or equal to 4.
I11) is always mapped by the spin flip transformation into  The first decomposition consists of statbs), i =
an orthogonal state, so that its concurrence is zero. Latgr satisfying
we will use another fact abod (C), namely, that it is a ~
convex function (that is, curving upward). (xi | %)) = Ai ;. (12)
Having defined the spin flip and the functid@(C), we  We obtain such a decomposition as follows. First note
can now present the promised formula for the entanglethat if the sef|x;)} is defined via am X n unitary matrix
ment of formation of a mixed staje of two qubits: U as in Eq. (11), then the “tilde inner product&!; | ;)

E(p) = E(C(p)), ©) can be written as
(xi | %) = (UTUT);;, (13)
wherer;; = (v; | #;) is a symmetric but not necessaril
Clp) =max{0. A — A2 — 43 — A}, (10)  Hermitian matrix. ](The sta¥d®i> are the eigenstates pf y
and thea;s are the eigenvalues, in decreasing order, oflefined earlier.) In ord_er that condition (12) be satisfied,
the Hermitian matrixt = ,//pp./p. Alternatively, one We wantU7U" to be diagonal. It happens that for any
can say that tha;s are the square roots of the eigenvalueymmetric matrixr, one can always find a unitady that
of the non-Hermitian matrip 5. Note that each\; is a  diagonalizesr in this way [13]. Moreover, the diagonal
non-negative real number. elements ofUrUT can always be made real and non-
The formula (9) was shown in Ref. [8] to be correct for Negative, in which case they are the square roots of the
all density matrices of two qubits having no more than twoeigenvalues of7*. (To see how this works, note that
nonzero eigenvalues. More recently, Smolin has testefust diagonalize-r* in the usual sense; that &7 7 U
the formula numerically on several thousand randomlys diagonal.) The square roots of the eigenvaluesof
chosen two-qubit density matrices and has found complet@re the same as the eigenvaluesRofso that condition
agreement [11]. We now prove the formula for all states(12) is fulfilled as long as the diagonalizing matiix is
of this system by constructing an entanglement-minimizingchosen in such a way that the numbgrsappear in their
decomposition of any given density matrix. proper order. Thus one can always find a decomposition
We begin with the fact thagverydecomposition of a With the desired property.
density matrixp can be obtained via the following pre-  Our second decomposition pf, which we labeX]| y;)},
scription [12]. First, find a complete set of orthogonali = L,....n, is hardly different from the first:

where

eigenvectordv;) corresponding to the nonzero eigenval- [y1) = lx1);
ues ofp, and “subnormalize” these vectors so that| v;) (14)
is equal to thath eigenvalue. Then a general decomposi- ly;) =ilx;), forj # 1.
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It is indeed physically equivalent to the first decomposi-mations is one that simply interchanges the two extreme
tion, but the phase factors will become important shortlystates and thus interchanges their preconcurrences. There-
when we take linear combinations of these vectors. fore, by continuity there must exist an intermediate trans-
The decomposition{|y;)} has the following special formation that makes the preconcurrencgd s} equal to
property. Define the “preconcurrence”of a pure state C(p). Perform this transformation, thereby fixing one ele-

|y (possibly subnormalized) to be ment of the ensemble to have the correct concurrence.
Wi By repeating this procedure on the remaining elements
c(p) = ——=; (15) of the ensemble, one finally arrives at a set of states all

W) having concurrence equal ©©(p). This we take to be

that is, the preconcurrence is the same as the concurrenggr final decompositiod|z;)}, which, as we have argued
of Eq. (7) but without the absolute value sign. Thenabove, achieves the claimed minimum average entangle-
the average preconcurrence {¢f;)} has the valueC(p)  mentE(C(p)). Thus the value of entanglement given in
specified in Eq. (10): our formula (9) can always be attained, at least for the
(i |5 case inwhich\y — A, — A3 — Ay = 0.
(€)= Dy |yi>< o We now show that no decomposition @thas asmaller
i YilVi average entanglement. For this it is enough to show
= Z(y,- |9 = A1 — Ay — A3 — Ay = C(p). that no decomposition has a smaller averagiecurrence:
i (16) The average entanglement cannot be less th&(C))
because of the convexity of the functidhi. Now, the
Here we have used the fact thatif< 4, the numbers\;  average concurrence of a general decomposition is given

with i > n are all zero. by an equation similar to Eq. (18) but with an absolute
We would like to find a decomposition that, liKey:)},  value sign:

has (c) = C(p), but which also has the property that

the preconcurrence (and hence the concurrence) of each _ T

Sl ; C) = VYV®)iil . 19

individual stateis equal toC(p). It would then follow ) Z I Jil (19)

immediately that the average entanglemenfi€C( p)), . .

since this would be the entanglement of each state in thg€re¢ V is an m X n _matrix whosen columns are

decomposition. orthonormal vectors. The dimensiem of these vectors
To accomplish this, note first that any decomposition®@n be arbitrarily large, since the decomposition may

with n elements can be written in terms of the stdtes consist of an arbitrarily large number of pure states

via the equation (though prior results guarantee that one need not consider
u values ofm larger than sixteen [14]). In terms of the
|z;) = ZV;U/'% (17) components ofV and ¥, we can write the average
= concurrence as

where V is an n X n unitary matrix. The average
preconcurrence of the ensemljle )} is (€)= Z

> Vi)Y
I

(c) = Z<Zi|2i> = Z(VYVT),-,» = Tr(vrv"), (18) To obtain the desired lower bound on this sum, we

(20)

= A — A — A3 — A4 (21)

need use only the fact th@, |(V;;)?| = 1. That is, we
where Y is the real diagonal matrix defined b¥;; =  can show that for any complex numbess; such that
(yily;). Thus the average preconcurrence is unchangegi lee;;| = 1, we have '
by any real unitary matrix V (that is, any orthogonal
matrix), since in that cas&’ = V! and the trace in V..
Eq. (18) is preserved. 2 ga” Yii

Let us now restrict ourselves to such orthogonal matri- ) ) ] )
ces, so as to preserve the average, and use them to try the proof is straightforward: first note that there is no
equalize the preconcurrences. One way to do this is 4§sS of generality in taking eaclr;, to be real and
follows. First, select the two statés;) with the largest Positive. (The phases of the othef;s can be changed
and smallest values of the preconcurrence. Unless all tH® compensate.) Then we can say
preconcurrences are already equal, the largest one must

be too large and the smallest one too small (typically Z Zai.,-ij = Za,‘A,-ij

negative). In the latter case, consider the set of positive- i | ij

determinant orthogonal transformations that act only on n

these two extreme states as in Eq. (17), changing them =|A — Z(Z a,,-))tj (22)
into new states that we cdlt,) and|z,) and leaving the j=2\"i

other stategy;) unchanged. Among this set of transfor- = A — A — A3 — Ay = C(p).
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Thus no decomposition op can achieve an average this finding will considerably strengthen the physical in-

concurrence lower tha@( p) or an average entanglement terpretation of our formula.
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