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Impurity-Pinned Solitons in the Two-Dimensional Antiferromagnet Detected
by Electron Paramagnetic Resonance
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It is shown that the introduction of a very small amount of nonmagnetic impurities into t
magnetic sites of a classical two-dimensional antiferromagnet creates a new type of static (imp
pinned) soliton that affects the Arrhenius, exps2EyTd, temperature-dependent electron paramagne
resonance linewidth by drastically changing the parameterE. Data just above the transition
temperature forsC3H7NH3d2MxMn12xCl4 confirm the existence of these impurity-pinned solitons
[S0031-9007(98)05498-2]

PACS numbers: 75.10.Hk, 75.40.Gb, 76.30.Fc
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Two-dimensional magnetic systems support interesti
nonlinear excitations including solitons and vortices. Fo
the two-dimensional (2D) isotropic ferromagnetic Belavi
and Polyakov [1] obtained these solitonlike solutions (B
solitons) from topological considerations. The energy
this excitation is found to be independent of the soliton siz
resulting from scale invariance of the continuum Heise
berg Hamiltonian. The significance of these excitation
was recognized early in connection with the critical prop
erties of 2D magnets. For example, in [1] it was shown th
the existence of large localized excitations will cause th
correlation length to remain finite at any nonzero temper
ture as expected from the Mermin-Wagner theorem [2].

Recently we have shown [3,4] that BP solitons dom
nate the thermodynamics in the fluctuation region im
mediately above the Néel temperature of a large cla
of nearly classical 2D antiferromagnets. Experimen
tally this is observed as an Arrhenius behavior of th
temperature-dependent electron paramagnetic resona
(EPR) linewidth in layered manganese systems whi
was first predicted by Waldner [5,6]. In [3,4] the EPR
linewidth was calculated from the dynamic spin correla
tion function with the time dependence from the soliton
magnon interaction; moveover, it was shown that th
calculated linewidth matched the observed Arrheniu
behavior.

In this Letter we show that a new type of soliton pinne
to a nonmagnetic impurity will form, and this pinned soli
ton has a lower energy than a large pinned soliton wi
a corresponding larger density in the lattice. This low
ering of energy for the impurity solitons occurs simply
because of elimination of exchange bonds at the imp
rity, which is a significant effect in the small and a negli
gible effect in the large impurity solitons. Because of th
energy difference, the smaller pinned soliton will dom
nate the BP soliton in the fluctuation region. In order t
relate these small impurity-pinned solitons to experime
tal data, we first obtain the temperature-dependent E
linewidth resulting from these structures as a function
impurity concentration. This calculation shows that the
will be large changes in the temperature dependence
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the EPR linewidth as the impurity concentration is varie
in a small (less than 1%) range. Finally, this effect is o
served by EPR measurements on manganese compou
with nonmagnetic impurities where the calculated imp
rity dependence is indeed observed.

We begin with the form of the soliton obtained
from the continuum Lagrangian [7] for the classi
cal 2D antiferromagnet with the sublattice magne
tization expressed in a spherical coordinate syste
l ­ ssinu sinw, sinu sinw, cosud, and the lattice plane
position given in a polarsr , fd coordinate system

L ­
Js2

2

Z ∑
1
c2

u2
t 2 s,ud2

1 sin2 u

µ
1
c2

w2
t 2 s,wd2

∂∏
d2x , (1)

wherec is the magnon velocity andJs2 is the exchange
interaction between nearest neighbors in the ground st
The Belavin-Polyakov excitation [1] is given byw ­ f

and usrd ­ 2 tan21sr0yrd where the soliton sizer0 is
arbitrary from scale invariance of the Lagrangian. Nex
the energy of the soliton is obtained by substitution of th
BP form into the Lagrangian resulting in

Esr0d ­ Esr2
0 ysr2

0 1 r2
c d , (2)

where Es ­ 4pJs2, and rc is the lower limit of the
integral in Eq. (1). This will be determined when we late
consider how the discrete nature of the lattice surroundi
the impurity will affect the energy expression. In th
following, all length parameters are expressed in un
of the lattice constant. For large solitons we notice th
r0 is large compared to other lengths with the resu
that the energy is independent ofr0, and the sublattice
magnetization polar angle at the origin is given byus0d ­
p . Furthermore, ifus0d ­ p, then the entire spin space
sphere is mapped onto the lattice plane implying th
this is a topological soliton. For small solitons with a
corresponding smallr0, the minimumr is the order of
one resulting in a nonzero polar angle for the spins
the soliton center. In this case part of the spin spa
sphere aroundu ­ p is not included in the mapping
© 1998 The American Physical Society 2201
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which results in a vortexlike singularity at the cente
Therefore, the energy and structure in this region mu
be determined on the discrete lattice rather than in
continuum approximation.

To calculate the impurity-pinned soliton energy and i
contribution to the EPR linewidth, we will divide the
soliton into two regions consisting of the discrete co
and the surrounding continuum region. From Eq. (2) it
seen that the continuum part of the energy will decrea
asr0 becomes smaller, but an increase in the core ene
results in the total energy still approximately independe
of r0. However, if there is a nonmagnetic impurity at th
soliton center, the exchange interactions here are remo
which results in a lower core energy and this is mu
more pronounced for the smaller solitons (smallr0) than
for the larger soliton (larger0). These impurity-pinned
solitons (referred to asI solitons) will be shown to have
a larger Boltzmann factor than the topological soliton
(referred to asP solitons) found in the pure crystal, and
because of their larger Boltzmann factor they domina
the thermodynamics.

In the calculation of the EPR linewidth from theI-type
solitons it is first necessary to obtain an expression
their energy similar to Eq. (2) so that thermal averag
over the soliton size can be obtained. This is do
using a simple technique first developed by Wysin [8]
study vortex stability, and later extended by our grou
[9] to include nonmagnetic impurities. In this techniqu
the energy is calculated using the discrete Heisenb
Hamiltonian applied to a small core

H ­ J
X
i,j

$Si ? $Sj , (3)

where the sum is over nearest neighbors. Figure 1 sho
this core with lattice sites indicated by circles, the pr
jection of the spins onto the lattice plane indicated b
the arrows, and the exchange interactions between n
est neighbor spins indicated by bonds. Also shown
the central impurity and the missing exchange interactio
around the impurity. As was done in [8,9] the core e
ergy in terms of an arbitrary polar spin angle for core
up to radii of r ­ 4

p
2, lattice constants have been ca

culated. The energy is determined by assuming a fo
for usrd which is given by the BP radial dependence
the polar angle. We have also found the polar angle
the discrete spins by numerical solution of the set of no
linear equations resulting from minimization of the cor
energy. Either form will result in essentially the sam
core energy. Next the core energy is added to the c
tinuum contribution given by Eq. (2) to obtain the solito
energy as a function ofr0. This was done for successively
larger cores until the total energy becomes independen
the core radius ensuring that the continuum approximat
will be valid at the core edge. The soliton energy as
function of r0 obtained in this way is shown in Fig. 2
for both theP and I solitons. Here the energy decreas
of the I soliton is clearly seen asr0 decreases. In order
2202
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FIG. 1. The smallest core from which the energy is calculate
with the impurity ion at the core center. Arrows represent sp
projections onto the lattice plane, and the exchange interactio
are represented by solid lines.

to calculate thermal averages, the value for the parame
rc in Eq. (2) is required. This is determined by fitting
Eq. (2) to the curves in Fig. 2 givingrc ­ 0.23 for the
P and rc ­ 1.01 for the I soliton. This expression for
the energy is now valid over the whole soliton (core an
continuum region). Using these parameters in Eq. (2) w
result in different energies for theP andI solitons giving
different temperature-dependent EPR linewidths.

Following the method used in [3,4] the EPR linewidth
is calculated from the time integral

DH ø
T

x'

X
Q

AQ Re
Z `

0
eiv0t jkSx

QstdSx
2Qs0dlj2dt , (4)

whereAQ is related to the Fourier coefficient of the dipo
lar interaction andv0 is the resonance frequency. The
time-dependent spin correlation function is obtained aft

FIG. 2. P-type soliton (solid curve) andI-type soliton
(dashed curve) energies versusr0.



VOLUME 80, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 9 MARCH 1998

the
3]

n,
ns
ns,
on

ic
the following simplifying assumptions. First we assum
that the magnetization at any point in the lattice is from
solitons located at sites$Ra with Sxs$ri , td ­

P
a Sxs$ri 2

$Ra , td; this was used to obtain the spin correlatio
functions [10] from vortices in 2D magnets. The time
dependence is assumed to result from the soliton-magn
interaction [11,12] with the magnon scattering from th
outer region of the soliton, which will be in the continuum
region of the soliton. The change in the soliton structu
is assumed to beusr , td ­ u0srd 2 jsrd sinu0srd cosvt
and wsr , f, td ­ f 1 jsrd sinvt whereu0 is the static
soliton polar angle, and the magnon frequency isv ­
cjqj 2 iDq2y2 for the antiferromagnet with spin diffu-
e

n

on
e
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sion as the relaxation mechanism. Parameters in
magnon dispersion region for the 2D antiferromagnet [1
areD ­ R

p
Tyx', c ­ Js

p
8, x' ­ 1y8J andR is the

correlation length. The function

jsrd ­ 2vr2
0 ycp2r2 (5)

was determined in [3,4] from the perturbed Lagrangia
and it is used to find the static and dynamic contributio
to the soliton structure factor. Using these expressio
the time integral in Eq. (4) is done to obtain an expressi
for the EPR linewidth similar to that in [3,4], but
including extra terms resulting from the nonmagnet
impurities. The result is
DH ø R ln R

s
T

x'

Z 1

1yR

Ω
nPkr2

0 lP

ø
r4

0 ln

µ
R
r0

∂¿
P

1 nI kr2
0 lI

ø
r4

0 ln

µ
R
r0

∂¿
I

1 4p2nInPkr2
0 lI

ø
r4

0 ln

µ
R
r0

∂¿
P

æ ø
v

c

¿
dQ
Q

,

(6)
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where n is the soliton density of either soliton type
and the angular brackets indicate a thermal average o
r0. The subscriptsP and I refer to the topological and
impurity-centered solitons, respectively.

Next the individual factors in Eq. (6) are evaluated i
terms of the temperature and correlation length. If bo
P and I solitons are present, then the soliton density
the sum of the individual soliton densitiesn ø nP 1 nI ,
which results innP ­ 1yR2 2 nI . Finally, nI is related
to the impurity densityr by nI ­ rs1 2 Pd where P
is the probability of finding aP soliton at an impurity,
which is obtained from the energies of both soliton type
Thermal averages can next be performed for both solit
types using the energyEsr0d for theP andI solitons. For
theP soliton we obtain

kr2
0 lP ø Ry2 , (7a)

kr4
0 lnsRyr0dl ø 1

6 R2 ln R . (7b)

The calculation of these quantities for theI soliton
is somewhat more complicated because of the low
,
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energies at small values ofr0; for these we obtain

kr2
0 lI ø

µ
2sr 02

c 1 r2
c d3

s
1 Rass 1 Rd

∂ ¡
ss 1 aRd ,

(8a)ø
r4

0 ln

µ
R
r0

∂¿
I

ø fR2as2R 1 sdg ln Ryf6ss 1 aRdg ,

(8b)

where s ­ Esr2
c yT , and a ­ expssyR 2 sysr 02

c 1

r2
c dd. In these expressionsr 0

c is the lower limit of r0

when the average over this parameter is done, andrc is
the parameter in the energy expression, which depends
the soliton type. The lower limit ofr0 is estimated by
consideration of the quantum nature of the spins. Th
implies that for theS ­ 5y2 manganese ion, the smalles
excitation will haveSz ­ 1y2, Sz ­ 3y2, andSz ­ 5y2
on the first three concentric circles in Fig. 1. By approx
mating this structure to the BP form we obtainr 0

c ø 1.
When these are combined, the temperature-depend
linewidth is determined to be
DH ø T5y2sR ln Rd2

∑
f1 2 rs1 2 PdR2g

µ
1 1

8p2s1 2 Pdy
s 1 aR

∂
1

2raRs1 2 Pd s2R 1 ady
ss 1 aRd2

∏
, (9)
e
g

e

Cd

e
ta
m

with y ­ 2sr 02
c 1 r2

0 d2ys2 1 Rass 1 Rd.
Experimental EPR data were obtained for th

nearly 2D antiferromagnet [14] sJyk ­ 9.2 Kd,
sC3H7NH3d2MxMn12xCl4. This is a layered structure
which has the onset of long range correlations in the lay
immediately above the Néel temperaturesTN ­ 39.2 Kd;
furthermore, the spin of the Mn ionsS ­ 5y2d ensures
that this compound is well approximated by the class
cal Lagrangian. For nonmagnetic doping ionsM, we
used Mg and Cd grown from a solution with impurity
concentrations mostly below 1%. The temperatur
dependence of the EPR linewidth exhibits a linear regio
e

er

i-

e
n

from room temperature down to about 60 K; slightly
below this temperature andTN the Arrhenius behavior
is observed. It is in this fluctuation region where th
effect of impurity solitons can be observed by measurin
the linewidth versus temperature for different impurity
concentrations. In order to better see this behavior w
have plotted lnsDHsTdyDHRTd versus TNyT in Fig. 3
showing how the slope decreases dramatically as the
impurity concentration increases. HereDHRT is the room
temperature linewidth (21 G) which is independent of th
impurity concentration at these low levels. These da
are for the magnesium doped compounds, but cadmiu
2203
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FIG. 3. lnfDHyDHs`dg versus TN yT for different Cd
concentrations.

also shows this behavior. Another interesting impuri
effect seen here is noticed in the crossing of the low
and higher concentration curves. This is interpreted
be the result of the soliton size being proportional to t
correlation length as assumed in [1]. Since theI solitons
are smaller than theP solitons, they can form at a slightly
higher temperature when the correlation length is shor
resulting in the Arrhenius behavior beginning at a high
temperature.

Finally, these data are compared with the concentratio
dependent linewidth calculated from Eq. (9). To do th
we have plotted experimental values of lnDH versus
TN yT for different impurity concentrations, and the slop
of this curve is referred to as the Arrhenius excitatio
energyE. Some deviation from the Arrhenius form is
seen in Eq. (9), but as seen from [3,4] this deviatio
is negligible compared to the experimental uncertain

FIG. 4. Excitation energy versusr. The circles represent Cd
data and the squares represent Mg data. The curve is
theoretical dependence.
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Similarly, the deviation from Arrhenius behavior is als
negligible for the small impurity concentrations. Nex
the derivatived ln DHydsTNyT d is numerically calculated
using Eq. (5) together with Takahashi’s [15] expressio
for the correlation length

R ­ s8epy2
p

2d21 expsEsy2T d , (10)

to obtain the calculated Arrhenius excitation energy. Fi
ure 4 shows the calculated value ofE versus concen-
tration and the experimental data for the cadmium a
magnesium-doped compounds. It is noticed that both i
purities exhibit the same general trend.

Finally, since the excitation energy obtained from th
slopes of the graphs will be sensitive to changes
TN , it is necessary to determine whether the orderi
temperature would be affected by these small impur
concentration levels. To check this we have made
susceptibility measurements (10 Hz–100 kHz) for th
diluted compounds. To within experimental uncertain
s60.1 Kd no change inTN was observed.

In conclusion, we have detected a small, pinned solit
that tends to form at a nonmagnetic impurity in th
layered antiferromagnet. Since solitons are the domin
contribution to the temperature-dependent EPR linewid
the effect of these pinned solitons is seen as a large cha
in this dependence when a very small concentration
nonmagnetic impurity is in the crystal.
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