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Impurity-Pinned Solitons in the Two-Dimensional Antiferromagnet Detected
by Electron Paramagnetic Resonance
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It is shown that the introduction of a very small amount of nonmagnetic impurities into the
magnetic sites of a classical two-dimensional antiferromagnet creates a new type of static (impurity-
pinned) soliton that affects the Arrhenius, éx{E/T), temperature-dependent electron paramagnetic
resonance linewidth by drastically changing the parameier Data just above the transition
temperature for(CsH;NH3),M Mn,_,Cl, confirm the existence of these impurity-pinned solitons.
[S0031-9007(98)05498-2]

PACS numbers: 75.10.Hk, 75.40.Gb, 76.30.Fc

Two-dimensional magnetic systems support interestinghe EPR linewidth as the impurity concentration is varied
nonlinear excitations including solitons and vortices. Forin a small (less than 1%) range. Finally, this effect is ob-
the two-dimensional (2D) isotropic ferromagnetic Belavinserved by EPR measurements on manganese compounds
and Polyakov [1] obtained these solitonlike solutions (BPwith nonmagnetic impurities where the calculated impu-
solitons) from topological considerations. The energy ofrity dependence is indeed observed.
this excitation is found to be independent of the soliton size We begin with the form of the soliton obtained
resulting from scale invariance of the continuum Heisenfrom the continuum Lagrangian [7] for the classi-
berg Hamiltonian. The significance of these excitationscal 2D antiferromagnet with the sublattice magne-
was recognized early in connection with the critical prop-tization expressed in a spherical coordinate system
erties of 2D magnets. For example, in [1]it was shown thai = (siné sing, sind sine, cos#), and the lattice plane
the existence of large localized excitations will cause thegosition given in a pola(r, ¢) coordinate system

correlation length to remain finite at any nonzero tempera- Js2 1
ture as expected from the Mermin-Wagner theorem [2]. L= BN [—2 0; — (Vo)
Recently we have shown [3,4] that BP solitons domi- ¢ :
nate the thermodynamlgs in the fluctuation region im- + sir? 0(_2 o2 — (vgp)zﬂdzx’ (1)
mediately above the Néel temperature of a large class c

of nearly classical 2D antiferromagnets. Experimen-wherec is the magnon velocity ands? is the exchange
tally this is observed as an Arrhenius behavior of theinteraction between nearest neighbors in the ground state.
temperature-dependent electron paramagnetic resonantie Belavin-Polyakov excitation [1] is given by = ¢
(EPR) linewidth in layered manganese systems whicland 6(r) = 2tan !(ry/r) where the soliton sizey is

was first predicted by Waldner [5,6]. In [3,4] the EPR arbitrary from scale invariance of the Lagrangian. Next,

linewidth was calculated from the dynamic spin correla-the energy of the soliton is obtained by substitution of the
tion function with the time dependence from the soliton-BP form into the Lagrangian resulting in

magnon interaction; moveover, it was shown that the
calgulated linewidth matched the observed Arrhenius E(ro) = Eyrg/(rg + 17), (2)
behavior. where E; = 47Js?, and r. is the lower limit of the

In this Letter we show that a new type of soliton pinnedintegral in Eq. (1). This will be determined when we later
to a nonmagnetic impurity will form, and this pinned soli- consider how the discrete nature of the lattice surrounding
ton has a lower energy than a large pinned soliton withthe impurity will affect the energy expression. In the
a corresponding larger density in the lattice. This low-following, all length parameters are expressed in units
ering of energy for the impurity solitons occurs simply of the lattice constant. For large solitons we notice that
because of elimination of exchange bonds at the impur, is large compared to other lengths with the result
rity, which is a significant effect in the small and a negli- that the energy is independent gf, and the sublattice
gible effect in the large impurity solitons. Because of thismagnetization polar angle at the origin is givené9) =
energy difference, the smaller pinned soliton will domi- 7. Furthermore, if#(0) = 7, then the entire spin space
nate the BP soliton in the fluctuation region. In order tosphere is mapped onto the lattice plane implying that
relate these small impurity-pinned solitons to experimenthis is a topological soliton. For small solitons with a
tal data, we first obtain the temperature-dependent EPBorresponding smalky, the minimumr is the order of
linewidth resulting from these structures as a function ofone resulting in a nonzero polar angle for the spins at
impurity concentration. This calculation shows that therethe soliton center. In this case part of the spin space
will be large changes in the temperature dependence aphere around = 7 is not included in the mapping
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which results in a vortexlike singularity at the center.
Therefore, the energy and structure in this region must
be determined on the discrete lattice rather than in the
continuum approximation.

To calculate the impurity-pinned soliton energy and its
contribution to the EPR linewidth, we will divide the
soliton into two regions consisting of the discrete core
and the surrounding continuum region. From Eq. (2) itis
seen that the continuum part of the energy will decrease
asry becomes smaller, but an increase in the core energy
results in the total energy still approximately independent
of ry. However, if there is a nonmagnetic impurity at the
soliton center, the exchange interactions here are removed
which results in a lower core energy and this is much
more pronounced for the smaller solitons (smg)l than
for the larger soliton (large,). These impurity-pinned
solitons (referred to as solitons) will be shown to have o) o o o
a larger Boltzmann factor than the topological solitons
(referred to asP solitons) found in the pure crystal, and

because of their larger Boltzmann factor they dominaté=IG. 1. The smallest core from which the energy is calculated
the thermodynamics. with the impurity ion at the core center. Arrows represent spin

In the calculation of the EPR linewidth from thietype projections onto the lattice plane, and the exchange interactions
. - . : are represented by solid lines.
solitons it is first necessary to obtain an expression for

their energy similar to Eq. (2) so that thermal averageso calculate thermal averages, the value for the parameter
over the soliton size can be obtained. This is dong. in Eq. (2) is required. This is determined by fitting
using a simple technique first developed by Wysin [8] togq. (2) to the curves in Fig. 2 giving. = 0.23 for the
study vortex stability, and later extended by our groupp and r. = 1.01 for the I soliton. This expression for

[9] to include nonmagnetic impurities. In this techniquethe energy is now valid over the whole soliton (core and
the energy is calculated using the discrete Heisenbergontinuum region). Using these parameters in Eq. (2) will

Hamiltonian applied to a small core result in different energies for the and/ solitons giving
s o different temperature-dependent EPR linewidths.
H = JZSi " Sj, 3) Following the method used in [3,4] the EPR linewidth
L]

. _ _ is calculated from the time integral
where the sum is over nearest neighbors. Figure 1 shows

this core with lattice sites indicated by circles, the pro- AH ~ — ZAQ Ref ' (SH()SE ()Pt (4)
jection of the spins onto the lattice plane indicated by XL "o 0

the arrows, and the exchange interactions between neawhereA is related to the Fourier coefficient of the dipo-
est neighbor spins indicated by bonds. Also shown isar interaction andw, is the resonance frequency. The
the central impurity and the missing exchange interactionime-dependent spin correlation function is obtained after
around the impurity. As was done in [8,9] the core en-
ergy in terms of an arbitrary polar spin angle for cores
up to radii ofr = 4+/2, lattice constants have been cal-
culated. The energy is determined by assuming a form
for #(r) which is given by the BP radial dependence of
the polar angle. We have also found the polar angle of
the discrete spins by numerical solution of the set of non-
linear equations resulting from minimization of the core
energy. Either form will result in essentially the same
core energy. Next the core energy is added to the con-
tinuum contribution given by Eq. (2) to obtain the soliton
energy as a function of,. This was done for successively
larger cores until the total energy becomes independent of | | |
the core radius ensuring that the continuum approximation 10 15 20
will be valid at the core edge. The soliton energy as a

function of ry obtained in this way is shown in Fig. 2 fo

for both theP and/ solitons. Here the energy decreaser|G. 2. p-type soliton (solid curve) andl-type soliton
of the I soliton is clearly seen ag decreases. In order (dashed curve) energies versys
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the following simplifying assumptions. First we assumesion as the relaxation mechanism. Parameters in the
that the magnetization at any point in the lattice is frommagnon dispersion region for the 2D antiferromagnet [13]
solitons located at siteB, with S*(7:,1) = >, S*(7 — areD = R\T/x., ¢ = Jsv/8, x. = 1/8J andR is the
R..1t); this was used to obtain the spin correlationcorrelation length. The function

functions [10] from vortices in 2D magnets. The time _ 2 22

dependence is assumed to result from the soliton-magnon §(r) = 2w0rp/cm’r ©®)
interaction [11,12] with the magnon scattering from thewas determined in [3,4] from the perturbed Lagrangian,
outer region of the soliton, which will be in the continuum and it is used to find the static and dynamic contributions
region of the soliton. The change in the soliton structureo the soliton structure factor. Using these expressions,
is assumed to b@(r,t) = 6o(r) — £(r)sinfy(r)coswt  the time integral in Eq. (4) is done to obtain an expression
and o(r, d,1) = ¢ + £(r)sinwt whered, is the static for the EPR linewidth similar to that in [3,4], but
soliton polar angle, and the magnon frequencywis=  including extra terms resulting from the nonmagnetic
clg|l — iDg?*/2 for the antiferromagnet with spin diffu—| impurities. The result is

AH = .F [ It BN) + mtdrin(E )+ ammmin{rim(2) ()2,

where n is the soliton density of either soliton type, energies at small values af; for these we obtain
and the angular brackets indicate a thermal average over 2002 + 123
< < £ + Ra(o +>R)>//(a + aR),

ro. The subscripts® and ! refer to the topological and (r¢); =

impurity-centered solitons, respectively.
Next the individual factors in Eq. (6) are evaluated in (8a)

terms of the temperature and correlation length. If both 4 (R 5

P and ! solitons are present, then the soliton density is <ro |n<r_0>>[ ~ [R°a(2R + o)]InR/[6(c + aR)],

the sum of the individual soliton densities= np + nj, 8b

which results innp = 1/R?> — n;. Finally, n; is related (8b)

to the impurity densityp by n; = p(1 — P) whereP  \wyhere o = E;r2/T, and a = explo/R — o/(r? +

is the probability of finding aP soliton at an impurity, ,2)) |n these expressions. is the lower limit of r

which is obtained from the energies of both soliton typesyyhen the average over this parameter is done, ranig

Thermal averages can next be performed for both solitoghe parameter in the energy expression, which depends on

types using the energy(ro) for the P and/ solitons. For  the soliton type. The lower limit of, is estimated by

the P soliton we obtain consideration of the quantum nature of the spins. This
(r2)p =~ R/2, (7a) implies that for theS = 5/2 manganese ion, the smallest
. - excitation will haveS, = 1/2, S, = 3/2, andS, = 5/2
(rgIn(R/ro)) =~ R INR. (7b)  on the first three concentric circles in Fig. 1. By approxi-

The calculation of these quantities for the soliton ~Mating this structure to the BP form we obtaif ~ 1.

is somewhat more complicated because of the lowefVhen these are combined, the temperature-dependent
| linewidth is determined to be

872(1 — P)y 2paR(1 — P)(2R + a)y
AHzTWRIR{l— 1—PR2<1+ >+ } 9
(RINR?|[1 = p(1 = P)R’] —— P O
with y = 2(r? + $)?/o? + Ra(o + R). | from room temperature down to about 60 K; slightly
Experimental EPR data were obtained for thebelow this temperature andly the Arrhenius behavior
nearly 2D antiferromagnet [14] (J/k = 9.2 K), is observed. It is in this fluctuation region where the

(C3H7NH3),M, Mn;_,Cly. This is a layered structure effect of impurity solitons can be observed by measuring
which has the onset of long range correlations in the layethe linewidth versus temperature for different impurity
immediately above the Néel temperatfa, = 39.2 K);  concentrations. In order to better see this behavior we
furthermore, the spin of the Mn iofS = 5/2) ensures have plotted IAH(T)/AHgrt) versusTy/T in Fig. 3

that this compound is well approximated by the classi-showing how the slope decreases dramatically as the Cd
cal Lagrangian. For nonmagnetic doping iol& we impurity concentration increases. HeXélgt is the room
used Mg and Cd grown from a solution with impurity temperature linewidth (21 G) which is independent of the
concentrations mostly below 1%. The temperaturémpurity concentration at these low levels. These data
dependence of the EPR linewidth exhibits a linear regiorare for the magnesium doped compounds, but cadmium
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35 Similarly, the deviation from Arrhenius behavior is also
o= x=0.00 negligible for the small impurity concentrations. Next
3.0+  a-x=00019 the derivatived In AH /d(Tx /T) is numerically calculated

o-- X = 0.0055

using Eg. (5) together with Takahashi’'s [15] expression

2.5 for the correlation length
& 201 R = (8¢™\2) ' explE, /2T), (10)
< 15
= to obtain the calculated Arrhenius excitation energy. Fig-
E 1.0 4 ure 4 shows the calculated value 8f versus concen-
:5 tration and the experimental data for the cadmium and
= 0.5 magnesium-doped compounds. It is noticed that both im-
- purities exhibit the same general trend.

0.0 -| Finally, since the excitation energy obtained from the

slopes of the graphs will be sensitive to changes in
-0.5 Ty, it is necessary to determine whether the ordering
temperature would be affected by these small impurity

-1.0 1 1 I | | . concentration levels. To check this we have made ac
06 065 07 075 08 085 09 095 susceptibility measurements (10 Hz—100 kHz) for the
Tn/T diluted compounds. To within experimental uncertainty
FIG. 3. IMAH/AH ()] versus Ty/T for different Cd (0.1 K) no phange i’y was observed. ) )
concentrations. In conclusion, we have detected a small, pinned soliton

that tends to form at a nonmagnetic impurity in the

also shows this behavior. Another interesting impuritylayered antiferromagnet. Since solitons are the dominant
effect seen here is noticed in the crossing of the lowegontribution to the temperature-dependent EPR linewidth,
and higher concentration curves. This is interpreted tdhe effect of these pinned solitons is seen as a large change
be the result of the soliton size being proportional to then this dependence when a very small concentration of
correlation length as assumed in [1]. Since fheolitons  nonmagnetic impurity is in the crystal.
are smaller than the solitons, they can form at a slightly ~ We acknowledge support from the National Science
higher temperature when the correlation length is shorteroundation, for Grant No. DMR-93109067.
resulting in the Arrhenius behavior beginning at a higher
temperature.
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