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Theory of Quasiparticles in the Underdoped High-Tc Superconducting State
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The microscopic theory of the superconducting state in the SU(2) slave-boson model is develo
We show how the pseudogap and Fermi surface segments in the normal state develop into ad-wave
gap in the superconducting state. Even though the superfluid density is of orderx (the doping
concentration), the physical properties of the low lying quasiparticles are found to resemble thos
BCS theory. Thus the microscopic theory lays the foundation for our earlier phenomenological dis
sion of the unusual superconducting properties in the underdoped cuprates. [S0031-9007(98)054

PACS numbers: 74.25.Jb, 71.27.+a, 79.60.– i
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It has become clear in the past several years that the
derdoped cuprates show many highly unusual propert
compared to conventional metals/superconductors, both
the normal and superconducting (SC) states. The m
striking of all are the pseudo-spin-gap in the normal sta
and the low superfluid density (of orderx). The photoe-
mission experiments [1] reveal that the pseudogap is
the same size andk dependence as thed-wave SC gap.
Furthermore, the pseudogap is essentially independen
doping, and the SC transition temperatureTc (which is
proportional tox) can be much less then the pseudogap
the low doping limit. A phenomenological model was de
veloped to described the above unusual SC properties
The model is based on two basic assumptions: (A) the s
perfluid density is given byx, and (B) the quasiparticle
(QP) dispersion in the presence of an external electroma
netic gauge potential has a BCS form,

ESC
A skd ­ 6

p
´2skd 1 D2skd 2

A
c

? jskd , (1)

where jskd is the current carried by the “normal state
QP” with momentumk. In Ref. [2], j is assumed to be
2eyF ­ 2e≠k´. With these assumptions the model suc
cessfully explains the observations that linear temperatu
dependence of the superfluid density is independent ox
and thatTc ø xD0, a strong violation of the BCS ratio.

It was recently pointed out [3] that, in conventiona
BCS superconductors developed out of a Fermi liquid, t
Fermi liquid correction to the QP current appears, so th
in general [4,5],

jskd ­ 2eayF . (2)

For example, if only a single Fourier component o
the Landau parameterF1s is important,a ­ 1 1 F1sy3,
but more complicated anisotropic Landau parameters a
generally possible. With the more general assumpti
Eq. (2), the phenomenological model now predicts that

rssT d
m

­
x

ma2
2

2 ln 2
p

a2

µ
yF

y2

∂
T , (3)

where y2 is the velocity of thed-wave SC QP in the
direction perpendicular toyF . We have seen that, in order
to agree with experiments,a near the nodes is either
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exactly unity or close to it, and must be independen
of x. On the other hand, if one attempts to describ
the normal state of underdoped cuprates by Fermi liqu
theory, one faces the dilemma that the area of the Fer
surface is1 2 x while the spectral weight of the Drude
peak (which develops into the superfluid density in the S
state) is proportional tox. In Fermi liquid theory this can
be accommodated by assuming1 1 F1sy3 ­ x. From
Eq. (3) we see that, within this scenario, theT dependence
of rs is too small by a factor ofa2 ­ x2. Thus a proper
microscopic theory must explain in a natural way wh
the spectral weight isx while a ø 1. We believe this
requirement is a central issue in the high-Tc problem, and
lies at the heart of the debate of spin-charge separation
vs Fermi liquid theory in the normal state.

In this paper we show that this requirement is satisfie
by the SU(2) slave-boson theory [7,8]. The slave-boso
theory was developed to satisfy the constraint of n
double occupation in thet-J model. The electron is
decomposed into a fermion and a boson and natura
incorporates the physics of spin-charge separation in t
normal state. The charge is carried byx bosons so that
assumption A is automatic. The difficulty is that, at th
mean field (MF) level, the SC state is described by th
condensation of slave bosons and the SC QP dispers
is given by the fermion dispersion. SinceA couples
directly only to the bosons, the shift in the QP spectrum
reduced and in Eq. (2),a is less than one. In fact, in the
traditional U(1) formulation,a ­ x and this theory faces
the same difficulty as Fermi liquid theory.

We recently introduced a new formulation of the slave
boson theory, the SU(2) theory [7,8], which incorporate
an SU(2) symmetry that is known to be important at hal
filling. In that case, a fermion doubletcT ­ sc", c

y
# d

was introduced because, in the projected subspace, b
c" and c

y
# represent the removal of an up spin. We

extended this symmetry to finitex by introducing a boson
SU(2) doubletbT ­ sb1, b2d. The spin-up and spin-down
electron operators are given by the SU(2) singletsc"sid ­

1p
2

bysidcsid, c#sid ­ 1p
2

bysidc̄sid, where c̄ ­ it2cp.
The advantage of this formulation is that, near half-filling
© 1998 The American Physical Society 2193
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low lying fluctuations which were ignored in the U(1
formulation are included at the MF level. Furthermore
we found that if we go beyond MF theory and include a
attraction between the fermions and bosons, the elect
spectral function contains QP-like peaks which exhibit
gap nears0, pd but appear gapless in a finite region nea
s p

2 , p
2 d, leaving what we may term a Fermi surface (FS

segment. These features are in qualitative agreement w
the photoemission experiments. It is then natural for
to extend the same treatment to the SC state, and see
the FS segment evolves intod-wave SC QP. Then we
can study the coupling of these QP toA in order to justify
assumption B and determine whethera ­ 1.

The SU(2) slave-boson model is described by th
following effective theory at MF level (for details see

Refs. [7,8]):Hmean ­ H
f
mean 1 Hb

mean with

Hf
mean ­ J 0

X
kijl

scy
i Uijcj 1 c.c.d 1

X
i

c
y
i a

sld
0 sidtlci ,

Hb
mean ­ t0

X
kijl

sby
i Uijbj 1 c.c.d 1

X
i

b
y
i a

sld
0 sidtlbi ,

(4)
where J 0 ­ 3J

8 , t0 ­ t
2 . The fieldscT ­ sc", c

y
# d and

bT ­ sb1, b2d are SU(2) doublets. The MFd-wave SC
state at T ­ 0 is described by the following ansatz
Ud

i,i1x̂ ­ 2xt3 2 ht1, Ud
i,i1ŷ ­ 2xt3 1 ht1 and

a
s3d
0 sid ­ a0, a

s1,2d
0 sid ­ 0, kbT sidl ­ s

p
x, 0d. At higher

temperaturessT . Tcd, boson condensation disappear
kbsidl ­ 0 and a

s3d
0 sid ­ 0; the above ansatz describes

normal metallic state with a pseudogap.
The analysis in Ref. [8] indicates that the SU(2) theo

contains a soft mode which corresponds to rotation fro
b1 into b2. Such a soft mode was overlooked in the U(1
theory. With the hard-core repulsion between the boso
one can show that the magnitude of quantum fluctuatio
of bosons is comparable with the magnitude of the co
densation. Thus the quantum fluctuations have a pot
tial to completely destroy the boson condensation, or
least they will reduce the boson condensation by a fin
fraction. This leads us to consider two scenarios: (i) si
gle boson condensation (SBC), wherekb1l ­

p
xc ,

p
x,

kb2l ­ 0, and a fractionx 2 xc of bosons remain inco-
herent and separated from the condensate by an ene
gapDb due to the Higgs mechanism. (ii) boson pair con
densation (BPC), wherekbal ­ 0 but kbasidbbsjdl fi 0.
We note that BPC is sufficient to generate electrons p
condensationkc"sidc#sjdl fi 0. The boson pairing will
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also generate an energy gapDbp. We defer a discussion
of the motivation and more detailed formulation of the
BPC state, but remark at this point that we do not kno
a priori whether SBC or BPC is favored. Of course, ne
ther kbl nor kbbl is gauge invariant, and the only real dis
tinction between these scenarios lies in their experimen
consequences. In particular, we will show that BPC im
pliesa ­ 1 while SBC impliesa , 1.

The MF electron propagator is given by the product o
the boson and the fermion propagator,

G0sv, kd ­
i
2

Z dnd2q
s2pd3

Tr Gbsn 2 v, q 2 kd

3 Gf sn, qd , (5)

whereiGf ­ kccyl and iGb ­ kbbyl are2 3 2 matri-
ces. In the normal state, the boson propagator for
nite A satisfiesGb

Asv, kd ­ Gbsv, k 2
e
c Ad. Thus the

MF electron propagator also shifts withA as expected:
G0,Asv, kd ­ G0sv, k 1

e
c Ad. This is a consequence

of the gauge symmetry. However, in the SC state, th
bosons may condense according to scenario (i) and the
son propagator contains two terms. The first term, com
ing from SBC does not shift withA. This is because,
as we continuously turn on a constantA, kbl has to sat-
isfy the periodic boundary condition in a box and can
not be changed (unless we want to create a vortex). O
the other hand, the second term, coming from nonco
densed bosons, shifts withA, since the boson dispersion
shifts with A. Thus for finiteA, the boson propagator is
given by Gb

Asv, kd ­ 2ikbl kbyldsv, kd 1 Gb
insv, k 2

e
c Ad. Now it is clear that, in the SC state, the poles i
the MF electron propagator, coming from the product o
the fermion propagator and the first term of the boso
propagator, do not shift withA. (In random-phase ap-
proximation, the generation of the fictitious gauge fielda
by a finiteA shifts the fernion dispersion byea

c A, where
a ­ x as discussed earlier.)

To obtain Eq. (1) we have to go beyond the MF
theory. First, we assume that not all bosons conden
kb1sidl ­

p
xc with xc less then the total boson density

x. The noncondensed bosons have small energies a
momenta neark ­ s0, 0d, sp, pd, the two bottoms of the
boson band. We ignore the gapDb for simplicity and
model ImGb

in by peaks of finite width nearv ­ 0 and
k ­ s0, 0d, sp , pd. With those assumption, one can show
that the MF electron propagator can be approximated
[7,8]
G0,Asv, kd .
xc

2

∑
fufskdg2

v 2 Eskd 2 i01
1

fyfskdg2

v 1 Eskd 2 i01

∏

1
x 2 xc

2

∑
fufsk 1

e
c Adg2

v 2 Esk 1
e
c Ad 2 iG

1
fyfsk 1

e
c Adg2

v 1 Esk 1
e
c Ad 2 iG

∏
1 Ginsv, k 1

e
c Ad , (6)
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p

s´f d2 1 sDfd2, ´f ­ 22J 0xscoskx 1

coskyd 1 a
s3d
0 , Df ­ 22J 0hscoskx 2 coskyd, uf ­

1p
2

q
1 1

´f

E , and yf ­
Df

p
2 jDf j

q
1 2

´f

E . The first term
in G0,A comes from the SBC and does not shift withA.
The second term comes from the peak in ImGb

in which
shifts with A. The decay rateG comes from the finite
peak width of ImGb

in in both v and k directions. The
last term is the incoherent part.

When there is BPC, the electron will have a nonva
ishing off-diagonal propagator. In scenario (i), SBC au
matically generates BPCkbasidbbsjdl ­ xcd1ad1b. This
yields an off-diagonal electron propagator2ikc"c#l:

F0,A .
xpcufyf

2

∑
1

v 2 E 2 iGb
2

1
v 1 E 2 iGb

∏
,

(7)
wherexpc ­ xc and Gb ! 01. More generally, with or
without SBC, the bosons can form pairs with sizelb .
n-
to-

We shall show later that, in scenario (ii), the BPC
characterized bykbasidbbsjdl ­

xpc

2 fsi 2 jd sd1ad1b 1

s2di2jd2ad2bd, where fsi 2 jd is the pairing wave
function. Despite a different form of BPC, the off
diagonal electron propagator still takes the same fo
[Eq. (7)] with Gb , J

lb
, as long aslb is much larger than

the lattice spacing. Note thatF0,Asv, kd does not depend
on A, since the BPCkbbT l cannot depend onA.

A second ingredient in going beyond MF theory is
calculate the electron propagator through a ladder diag
[7,8] to include effects of pairing between the boson a
the fermion cause by the SU(2) gauge fluctuations. T
gauge fluctuations induce the following effective inte
action: 1

3 Vcy $tcby $tb ­ Vcyc 2 V 1
6 cy $tbby $tc with

V . 0. Here we will use only the first termV scy
" c" 1

c
y
# c#d because an analytic calculation is possible. T

more general interaction will not modify our results qua
itatively. The resulting electron propagator is given by
GAsv, kd ;

√
2ikc"c

y
" l

2ikcy
# c

y
" l

2ikc"c#l

2ikcy
# c#l

!
­

∑µ
G0,Asv, kd
F0,Asv, kd

F0,Asv, kd
2G0,As2v, 2kd

∂21

2 Vt3

∏21

. (8)
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Let us assume for simplicity,G ­ Gb ­ 01. We first
consider scenario (ii) where there are no SBC,xc ­ 0.
For A ­ 0, the poles of G11svkd come in pairs of
opposite signs, just as in BCS theory. However, the to
residue is x

2s12VGind2 , significantly reduced from the BCS
value. There are two positive branches which determi
the QP excitations,

E
sSCd
6 skd ­

s
Ẽ2

6 1

µ
xpc

x
D

∂2

, (9)

where

Ẽ6 ­ 6

s
s´ 2 m̃d2 1 D2 2

µ
xpc

x
D

∂2

2 m̃ (10)

and m̃ ­ 2
xV

4s12VGind . In order to interpret those results
let us first consider the normal state which is recovere
by setting xpc ­ 0 in Eqs. (9) and (10), yielding the
normal state dispersionEN

6 ; Ẽ6sxpc ­ 0d. This cor-
responds to a massless Dirac cone initially centered
s6py2, 6py2d when V ­ 0, which is the MF fermion
spectrum of the staggered-fluxss-fluxd phase. The ef-
fect of V (the boson-fermion pairing) is twofold. The
m̃ inside the square root shifts the location of the nod
towards (0,0) by a distanceDk ­ 2m̃yyF while the last
term shifts the spectrum upwards. The cone interse
the Fermi energy to form a small Fermi pocket with
linear dimension of orderx. As shown in Fig. 1(a), the
spectral weight is concentrated on one side of the con
so that only a segment of FS on the side close to the o
gin carries substantial weight. This is the origin of th
notion of “FS segment” introduced in Refs. [7,8].

Now let us see what happens in the SC state wh
xpc fi 0. Equation (9) takes the standard BCS form ifẼ6

is interpreted as the normal state dispersion. Howev
Ẽ6 differs from the normal state spectrumEN

6 by the
al
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appearance of the term2sxpcDyxd2 in Eq. (10). Close
to the node, this term is small so that qualitative
the spectrum develops from the normal state in a BC
fashion, as shown in Fig. 1(b). This is particularly tru
if the higher energy gap between the two branches
smeared by lifetime effects. Thus, we see that the
segment is gapped in a BCS-like fashion. However, t
velocity y2 in the s1, 21d direction, being proportional to
xpcyx, does not extrapolate to the gap ats0, pd (which is
essentially independent ofxpc), but cross over to it at the
edge of the FS segment. It is worth remarking that, in t
special casexpc ­ x, E

sSCd
6 reduces to the standard BCS

form with the normal state dispersiońskd, a chemical
potential2m̃, and a SC gapDskd. The high energy gap
closes and the spectral weight on one branch vanish
yielding a BCS spectrum as shown in Fig. 1(c). It i
easy to see that Eq. (8) is proportional to the BCS Gre
function in this special case.

FIG. 1. Schematic illustration of the QP dispersion (the po
location of G) for (a) normal state, and SC state with (b
0 , xpc , x and (c) xpc ­ x. The line thickness indicates
the size of the residue ofG11, and the dashed line indicates
vanishing residue. The momentum scan is along the strai
line in (d), where the curved segment is the FS segment in
normal state.
2195
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We have also calculated the effect of constantA on
the QP dispersion, to linear order ofA. This adds
a term 1

c j6 ? A to Eq. (9), wherej6 is interpreted
as the current carried by the QP. We recall that,
standard BCS theory, the current is given in terms
the normal state spectrum byc≠A´A ­ e≠k´ because
´Askd ­ ´sk 1

e
c Ad. Remarkably, this is almost true in

our case in the sense thatj6 is given byc≠AẼ6,A, where
Ẽ6,A is obtained by replacingk by k 1

e
c A in ´, m̃, and

D everywhere in Eq. (10), except for the terms xpc

x Dd2,
which is kept independent ofA. Near the node,D is
negligible so that the current is very close toe≠kẼ .
e≠kEN (which becomes exactlye≠k´ along the diagonal),
thus reproducing Eq. (1). We have checked numerica
that, even away from the node in the region of the F
segment, the current is remarkably close toe≠kEN , which
can be quite different from the BCS valuee≠k´ near the
edge of the FS segment.

Next, we briefly comment on what happens unde
scenario (i). The main difference is that the curren
carried by QP is no longer equal toeyF , but reduces from
it depending onxc. It is clear that, in the extreme case
of x 2 xc ­ Gin ­ 0, G0A and F0A and, hence,GA do
not depend onA, so thatj ­ 0. As xc varies fromx
to 0, a interpolates between 0 and 1. [Note thatyF is
defined as the normal state Fermi velocity in the (1,
direction,yF ­ ≠kEN . It is also exactly equal to the QP
velocity in the (1,1) direction at the SC nodes.] Becaus
of strong quantum fluctuations of bosons,x 2 xc is of
orderx and, hence,a is order unity. The main question is
whethera is exactly 1. According to our model, whethe
a ­ 1 depends on whether there is a SBC. Thus it is ve
interesting and important to determinea experimentally.

From Eq. (3), the temperature dependence of the Lo
don penetration depth gives a direct measurement
a2 yF

y2
. Density of states measurements using theT 2 coef-

ficient of the specific heat yieldsyFy2. The Fermi veloc-
ity can be estimated from transport measurements [9] o
high resolution photoemission experiment. Thus, in prin
ciple, the quantitiesa, yF , andy2 can be measured. It is
of course of great interest to establish how closea is to 1,
or whethery2 is reduced with respect to that extrapolate
from the energy gap ats0, pd measured by photoemission
or tunneling.

We may regarda ­ 1 as a signature of spin-charge
recombination, i.e., the boson and fermion bind (throug
the ladder diagram) into an electron which responds ful
to A. We have so far focused our discussion on lo
energy excitations near the nodes. At higher ener
away from the Fermi surface, the binding may becom
unimportant and the electron spectrum is given by th
convolution of the fermion and boson spectrums. I
the BPC state, an energy gapDbp arises in the boson
spectrum, which should lead to a shift of the electro
spectral function in the SC state relative to the norm
state by the energyDbp towards higher binding energy.
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Finally, we comment on finite temperature behavior
In addition to the reduction of superfluid density due
thermal excitation of QP [2], we expectxpc to decrease
with increasingT , leading to a reduction ofy2: y2sT d ­
xpcsTd
xpcs0d y2s0d. As T reachesTc, xpc ­ y2 ­ 0 and the

nodes ofEsSCd become the FS segment while the sp
gap nears0, pd remains finite. We see thatxpc plays
the role of the order parameter of the transition, so th
the temperature dependence ofxpc is described by a
Ginzburg-Landau theory near the transition.

We complete our discussion by giving a more micr
scopic motivation for the notion of BPC. It was pointe
out recently [10] that one way of capturing the physic
of strong boson fluctuation is to attach a flux tube
opposite sign tob1 and b2 (in s-flux gauge), converting
them to fermions. This has the advantage that, at the
level, time reversal symmetry is not broken. In thes-flux
gauge, the massless gauge field is simply a U(1) gau
field which couples tob1 and b2 with opposite gauge
charge. This problem was treated by Bonesteelet al. [11]
who found that there is an instability towards boson pa
ing with kb1b2l fi 0. Thus it is natural to assume that, i
thes-flux gauge, onlykb1sidb2sjdl is nonzero in the BPC.
After being transformed to thed-wave gauge,kbbT l be-
comes the one that we used below Eq. (7). We exp
the energy gapDbp to scale with the effective “Fermi”
energy, i.e.,x.

In summary have developed a theory for quasipar
cles in the highTc superconducting state. Our theory re
produces both small superfluid densityrs , x and large
a , 1, as required by experiments.
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