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The microscopic theory of the superconducting state in the SU(2) slave-boson model is developed.
We show how the pseudogap and Fermi surface segments in the normal state develog-imtve
gap in the superconducting state. Even though the superfluid density is of ortde doping
concentration), the physical properties of the low lying quasiparticles are found to resemble those in
BCS theory. Thus the microscopic theory lays the foundation for our earlier phenomenological discus-
sion of the unusual superconducting properties in the underdoped cuprates. [S0031-9007(98)05495-7]

PACS numbers: 74.25.3b, 71.27.+a, 79.60.—i

It has become clear in the past several years that the uexactly unity or close to it, and must be independent
derdoped cuprates show many highly unusual propertiesf x. On the other hand, if one attempts to describe
compared to conventional metals/superconductors, both ithe normal state of underdoped cuprates by Fermi liquid
the normal and superconducting (SC) states. The mosheory, one faces the dilemma that the area of the Fermi
striking of all are the pseudo-spin-gap in the normal stateurface isl — x while the spectral weight of the Drude
and the low superfluid density (of orde). The photoe- peak (which develops into the superfluid density in the SC
mission experiments [1] reveal that the pseudogap is aftate) is proportional te. In Fermi liquid theory this can
the same size ankl dependence as théwave SC gap. be accommodated by assuming+ Fi;/3 = x. From
Furthermore, the pseudogap is essentially independent &. (3) we see that, within this scenario, thelependence
doping, and the SC transition temperatie (which is  of p; is too small by a factor o> = x>. Thus a proper
proportional tax) can be much less then the pseudogap irmicroscopic theory must explain in a natural way why
the low doping limit. A phenomenological model was de-the spectral weight is while @ = 1. We believe this
veloped to described the above unusual SC properties [2lequirement is a central issue in the hifjhproblem, and
The model is based on two basic assumptions: (A) the suies at the heart of the debate of spin-charge separation [6]
perfluid density is given by, and (B) the quasiparticle vs Fermi liquid theory in the normal state.

(QP) dispersion in the presence of an external electromag- In this paper we show that this requirement is satisfied
netic gauge potential has a BCS form, by the SU(2) slave-boson theory [7,8]. The slave-boson
s A theory was developed to satisfy the constraint of no
EX (k) = *ye2(k) + A%(k) — o JE). D) gouble occupation in the-J model. The electron is
where j(k) is the current carried by the “normal state decomposed into a fermion and a boson and naturally
QP” with momentumk. In Ref. [2], j is assumed to be incorporates the physics of spin-charge separation in the
—evp = —edxe. With these assumptions the model suc-normal state. The charge is carried bybosons so that
cessfully explains the observations that linear temperatur@ssumption A is automatic. The difficulty is that, at the
dependence of the superfluid density is independent of mean field (MF) level, the SC state is described by the
and thatT. = xA, a strong violation of the BCS ratio. ~ condensation of slave bosons and the SC QP dispersion

It was recently pointed out [3] that, in conventional iS given by the fermion dispersion. Sincé couples
BCS superconductors developed out of a Fermi liquid, thélirectly only to the bosons, the shift in the QP spectrum is
Fermi liquid correction to the QP current appears, so thateduced and in Eq. (2) is less than one. In fact, in the
in general [4,5], traditional U(1) formulatione = x and this theory faces

N the same difficulty as Fermi liquid theory.

jk) = —eavy. (2) We recently introduced a new formulation of the slave-
For example, if only a single Fourier component ofboson theory, the SU(2) theory [7,8], which incorporates
the Landau parametef,, is important,a = 1 + Fi;/3,  an SU(2) symmetry that is known to be important at half-
but more complicated anisotropic Landau parameters aifjing. In that case, a fermion doublet” = (i1, lﬂf)

generally possible. With the more general assumptioRyas introduced because, in the projected subspace, both
Eq. (2), the phenomenological model now predicts that g and %1‘ represent the removal of an up spin. We

ps(T) _x _ 2In2 a2<U_F>T 3) extended this symmetry to finiteby introducing a boson
m ma? T vy ) SU(2) doubleth” = (b1, b,). The spin-up and spin-down
where v is the velocity of thed-wave SC QP in the electron operators are given by the SU(2) singlets) =
direction perpendicular to;. We have seen that, in order -5 bT())(i), c|(i)) = 5 bT(D)§(i), where § = iT?)".
to agree with experimentsy near the nodes is either The advantage of this formulation is that, near half-filling,
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low lying fluctuations which were ignored in the U(1) also generate an energy gap,. We defer a discussion
formulation are included at the MF level. Furthermore,of the motivation and more detailed formulation of the
we found that if we go beyond MF theory and include anBPC state, but remark at this point that we do not know
attraction between the fermions and bosons, the electrom priori whether SBC or BPC is favored. Of course, nei-
spectral function contains QP-like peaks which exhibit ather(b) nor (bb) is gauge invariant, and the only real dis-
gap near(0, 7r) but appear gapless in a finite region neartinction between these scenarios lies in their experimental
(5, %), leaving what we may term a Fermi surface (FS)consequences. In particular, we will show that BPC im-
segment. These features are in qualitative agreement witllies« = 1 while SBC impliesa < 1.

the photoemission experiments. It is then natural for us The MF electron propagator is given by the product of
to extend the same treatment to the SC state, and see hdle boson and the fermion propagator,

the FS segment evolves intbwave SC QP. Then we

can study the coupling of these QPAain order to justify i dvd’q

Golw, k) = TrG (v — w,q — k)

assumption B and determine whether= 1. 2 (2m)3
The SU(2) slave-boson model is described by the X G/ (v.q) 5)
following effective theory at MF level (for details see 40
Refs. [7,8]):Hmean = Hinean + Hlqyy With whereiG/ = (yyt) andiG? = (bb') are2 X 2 matri-
, N ces. In the normal state, the boson propagator for fi-
Hfiean = J Z(‘/’z Uijihj + c.c) + Zlﬁz ag (7' i nite A satisfiesG,(w,k) = G*(w,k — £ A). Thus the
@ MF electron propagator also shifts with as expected:
b _ t (1) Iy Goalw,k) = Go(w,k + £ A). This is a consequence
Hinean =1 Z(b Uijbj + ¢.c) + Zb Tbi, of the gauge symmetry. However, in the SC state, the

(ij) 4) bosons may condense according to scenario (i) and the bo-

son propagator contains two terms. The first term, com-
ing from SBC does not shift witld. This is because,
as we continuously turn on a constafif (b) has to sat-
isfy the periodic boundary condition in a box and can-
o (1 2 _ not be changed (unless we want to create a vortex). On
§)(i) = ao, ay”(i) = 0, (b7(i)) = (VX,0). At higher the other hand, the second term, coming from noncon-
temperatures(T > T.), boson condensation disappears,densed bosons, shifts with, since the boson dispersion
(b(i)) = 0 and ao (1) = 0: the above ansatz describes ashifts with A. Thus for finite A, the boson propagator is
normal metallic state with a pseudogap. given by Gh(w,k) = —i(b)(b1)6(w,k) + G2 (w, k —

The analysis in Ref. [8] indicates that the SU(2) theory: A). Now it is clear that, in the SC state, the poles in
contains a soft mode which corresponds to rotation fronthe MF electron propagator, coming from the product of
by into b,. Such a soft mode was overlooked in the U(1)the fermion propagator and the first term of the boson
theory. With the hard-core repulsion between the bosongropagator, do not shift wittd. (In random-phase ap-
one can show that the magnitude of quantum fluctuationproximation, the generation of the fictitious gauge field
of bosons is comparable with the magnitude of the conby a finite A shifts the fernion dispersion b¥* A, where
densation. Thus the quantum fluctuations have a poterr = x as discussed earlier.)
tial to completely destroy the boson condensation, or at To obtain Eq. (1) we have to go beyond the MF
least they will reduce the boson condensation by a finite¢heory. First, we assume that not all bosons condense:
fraction. This leads us to consider two scenarios: (i) sin{b(i)) = ./x; with x. less then the total boson density
gle boson condensation (SBC), whébe) = \/x. < \/x, x. The noncondensed bosons have small energies and
(b,) = 0, and a fractionx — x. of bosons remain inco- momenta neak = (0,0), (s, 7), the two bottoms of the
herent and separated from the condensate by an energgson band We ignore the gayp, for simplicity and
gapA, due to the Higgs mechanism. (i) boson pair con-model ImG?, by peaks of finite width neaw = 0 and
densation (BPC), wher@,) = 0 but(b,(@)bg(j)) # 0. k = (0,0), (7, 7). With those assumption, one can show
We note that BPC is sufficient to generate electrons paithat the MF electron propagator can be approximated by
condensatiorXci(i)c|(j)) # 0. The boson pairing will [7,8]

WP Wik ]
— E(k) — 0" o + E(k) — i0*

whereJ/ = 3,/ = . The fieldsy” = (1, wf) and

bT = (by,b,) are SU(2) doublets. The MRE-wave SC
state atT = 0 is described by the following ansatz:
Ufire = —x7° — m7!, Ulisy = —x7° + 97! and

Xc
Goalw, k) = > [ "

+

x—%[ [ (k + Z AP [v/(k + £ AP

+ Gin(w.k + ¢ A 6
2 w — E(k + £ A) — il w-l—E(k—i—%A)—lT} Gin(@, cA), (6)
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where E = ./(¢/)2 + (AF)?2, & = —2J'y(cosk, + We shall show later that, in scenario (i), the BPC is
cosk,) + ay’, Af = —2J'n(cosk, — cosk,), u/ = ?h?_ra_cterized) bX(bﬁ(i)bB((j» =)%‘_’ f(ih— N (Biadipg +
L of N of ) =)'/ 82462p), Where f(i — j) is the pairing wave
#VL+ 7 and v/ = ﬁlA/&Vl — 7. Thefirstterm ¢ neiion. Despite a different form of BPC, the off-
in Go,4 comes from the SBC and does not shift wih  giagonal electron propagator still takes the same form
The second term comes from the peak inGfh which [Eq. (7)] with T, ~ ﬁ as long ag, is much larger than

shifts vv_ith A. Thebdgcay ratd’ comes'fronj the finite e |attice spacing. Note th& 4(w, k) does not depend
peak width of ImGy, in both w and k directions. The n 4, since the BPGbAT) cannot depend oA.

last term is the incoherent part. _ A second ingredient in going beyond MF theory is to

~ When there is BPC, the electron will have a nonvan-gcyate the electron propagator through a ladder diagram
ishing off-diagonal propagator. In scenario (i), SBC auto7 g to include effects of pairing between the boson and
matically generates BP® (i)bp(j)) = xc81a81p. ThiS  the fermion cause by the SU(2) gauge fluctuations. The

yields an off-diagonal electron propagater(cicy): gauge fluctuations induce the following effective inter-
Fos ~ xpeu vl [ 1 B 1 } action: Lvyt7yptib = vete — v Ly tippt7y with
’ 2 w—E—-il, o+E=il1" v >0, Here we will use only the first teri (c| c; +

(7 cfcl) because an analytic calculation is possible. The
wherex,. = x. andI', — 0. More generally, with or more general interaction will not modify our results qual-
without SBC, the bosons can form pairs with sige | itatively. The resulting electron propagator is given by

—ilcref ) —i<6161>> _ [(GO,A(w’k) Foa(w,k) )1 - Vr*}l. 8)

GA(wJ)E(—i(cchT) —i<c;rcl> W\ Foalw. k) —Goa(—w,—k)

Let us assume for simplicity] = I', = 0*. We first ! appearance of the term (x,.A/x)? in Eq. (10). Close
consider scenario (ii) where there are no SBC= 0. to the node, this term is small so that qualitatively
For A = 0, the poles ofG1(wk) come in pairs of the spectrum develops from the normal state in a BCS
opposite signs, just as in BCS theory. However, the totalashion, as shown in Fig. 1(b). This is particularly true
residue isz(l_me)z, significantly reduced from the BCS if the higher energy gap between the two branches is
value. There are two positive branches which determinemeared by lifetime effects. Thus, we see that the FS

the QP excitations, segment is gapped in a BCS-like fashion. However, the
> . . N . .
(SC) . Xpe velocity v, in the (1, —1) direction, being proportional to
Ex (k) = \/Er + <7 A) , () x,./x, does not extrapolate to the gap(@ts) (which is
where essentially independent af,.), but cross over to it at the

N 2 edge of the FS segment. It is worth remarking that, in the

E+: = *q/(e — p)? + A2 — <£ A) — i (10)  special case,. = x, ES reduces to the standard BCS
W .x form with the normal state dispersiasik), a chemical

and i = —g=yg,y- In order to interpret those results, potential2, and a SC gap\ (k). The high energy gap

let us first consider the normal state which is recovereq:|oses and the spectra| We|ght on one branch VanisheS,

by settingx,. = 0 in Egs. (9) and (10), yielding the yijelding a BCS spectrum as shown in Fig. 1(c). It is

normal state dispersiot = E+(x,. = 0). This cor- easy to see that Eq. (8) is proportional to the BCS Green

responds to a massless Dirac cone initially centered &unction in this special case.

(£7/2, *7/2) whenV = 0, which is the MF fermion

spectrum of the staggered-flux-flux) phase. The ef-

fect of V (the boson-fermion pairing) is twofold. The E/ / E
L inside the square root shifts the location of the node \/ / ,
towards (0,0) by a distanckk = —ji/vr while the last

\/E
term shifts the spectrum upwards. The cone intersects VAN \/\ ot 2 \/

the Fermi energy to form a small Fermi pocket with a /\\ 7 @ |

linear dimension of ordex. As shown in Fig. 1(a), the
spectral weight is concentrated on one side of the cone,
so that only a segment of FS on the side close to the ori-
gin carries substantial weight. This is the origin of theFIG. 1. Schematic illustration of the QP dispersion (the pole
notion of “FS segment” introduced in Refs. [7,8]. location of G) for (a) normal state, and SC state with (b)

Now let us see what happens in the SC state whef] < *pc <x and (c)x,c =x. The line thickness indicates

. =~ e size of the residue afi;;, and the dashed line indicates

Xpc # 0. Equation (9) takes the stanc_iard B_CS fornaif vanishing residue. The momentum scan is along the straight
is interpreted as the normal state dispersion. Howeveline in (d), where the curved segment is the FS segment in the
E. differs from the normal state spectrufYY by the normal state.

FON (b) M ©
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We have also calculated the effect of constanbn Finally, we comment on finite temperature behaviors.
the QP dispersion, to linear order of. This adds In addition to the reduction of superfluid density due to
a term %ji - A to Eqg. (9), wherej- is interpreted thermal excitation of QP [2], we expee},. to decrease
as the current carried by the QP. We recall that, inwith increasingr’, leading to a reduction of,: v,(T) =
standard BCS theory, the current is given in terms Off(”"((g)) v5(0). As T reachesT,, x, = v» =0 and the
the normal state spectrum hyd e, = edre because /-
ealk) = e(k + £ A). Remarkably, this is almost true in
our case in the sense that is given bycd4E+ 4, where
E+ 4 is obtained by replacing by k + £ Ain &, i, and
A everywhere in Eqg. (10), except for the tef- A)?,
which is kept independent oi. Near the nodeA is

nodes of E®) become the FS segment while the spin
gap near(0, ) remains finite. We see that,. plays
the role of the order parameter of the transition, so that
the temperature dependence of. is described by a
Ginzburg-Landau theory near the transition.
. i 2 We complete our discussion by giving a more micro-
negll%lble so that the current is very close d6;E = scopic motivation for the notion of BPC. It was pointed
edxE” (which becomes exactlyo, ¢ along the diagonal), oyt recently [10] that one way of capturing the physics
thus reproducing Eq. (1). We have checked numericallyt sirong hoson fluctuation is to attach a flux tube of
that, even away from the node in the reg|0151 of Fhe F%pposite sign tcb; and b, (in s-flux gauge), converting
segment, the current is remarkably close#E™, which  hem 1o fermions. This has the advantage that, at the MF
can be quite different from the BCS valué,s near the  |g\¢ time reversal symmetry is not broken. In &éux
edge of the FS segment. gauge, the massless gauge field is simply a U(1) gauge
Next, we briefly comment on what happens undeffie|q which couples tob, and b, with opposite gauge
scenario (). .The main difference is that the Cu”e”tcharge. This problem was treated by Bonesteell. [11]
carried by QP is no longer equal éwr, but reduces from \yhq found that there is an instability towards boson pair-
it depending onx.. It is clear that, in the extreme case ing with (b1 5,) # 0. Thus it is natural to assume that, in
of x = x. = Gin = 0, Goa and Fou and, henceG4 do  he _flux gauge, onlyb; (i)b»()) is nonzero in the BPC.
not depend om4, so thatj = 0. As x. varies fromx  agier heing transformed to thé-wave gauge(hb’) be-
to 0, « interpolates between 0 and 1. [Note that is  comes the one that we used below Eg. (7). We expect

dgfingd as the normal state Fermi velocity in the (1,1}ne energy gaph,, to scale with the effective “Fermi’
direction,vr = 9xEV. Itis also exactly equal to the QP energy, i.e.x.

velocity in the (1,1) direction at the SC nodes.] Because |, summary have developed a theory for quasiparti-

of strong quantum fluctuations of bosons,~ x. is of  ¢jag in the highT. superconducting state. Our theory re-
orderx anq, henceg is order un.|ty. The main question is produces both small superfluid density ~ x and large
whethera is exactly 1. According to our model, whether ,, _ | ¢ required by experiments.

a = 1 depends on whether there is a SBC. Thusitisvery p a | acknowledges support by NSF-MRSEC Grant
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