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Quantum dynamics of the Bose-Hubbard model is investigated through a semiclassical Hamiltonian
picture provided by the time-dependent variational principle method. The system is studied within
a factorized slow/fast dynamics. The semiclassical requantization procedure allows one to account
for the strong quantum nature of the system whei/ < 1. The phase diagram is in good
agreement with quantum Monte Carlo results and third order strong coupling perturbative expansion.
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In recent years outgrowing interest has been devotedroperty has to be mentioned, at this point, concerning the
to many-body systems which can be modeled in terms oMI-SF phase lobe boundary. At the transition points the
bosonic degrees of freedom. Examples are granular sappearance of superfluidity is announced by the vanishing
perconductors, short-length superconductors, and Josepbf the energy gap between the states corresponding to
son junction arrays [1]. The relevant physics of thesgn — 1) andr + 1 (n) particles (holes). Such a feature
systems is captured by the Bose-Hubbard model (BHMEharacterizes the whole frontier between the MI and the
which represents a boson gas of identical charges hoppirgF phase and will play a central role in the sequel.
through aD dimensional lattice. The boson dynamics is In spite of the great amount of work devoted to studying

described by the second quantized Hamiltonian the several aspects of the BHM, no investigation, to the
t + " best of our knowledge, has been made on the dynamics

H = Z[U(”i =D = pln — B Z(ai aj + aja;), of boson degrees of freedoms. The attempt of relating
! @) (1) the onset of the macroscopic order leading to the MI and

+ SF phases with the microscopic behavior of the system
where the operators; = a;a; count the number of motivates the dynamical approach to the BHM. This
bosons at sitei, while the annihilation and creation should be useful as well to study both the emergence of
operatorsz;, a,T obey the canonical commutation relations vortex dynamics and the transport properties. In particular,
[a,-,a;r] = §;;. The parameters of Hamiltonian (1) >  in the present paper we shall show the mean field phase
0, 1, and . correspond to the strength of the Coulomb on-diagram of the BHM results to be quite improved if the
site repulsion, the hopping amplitude, and the chemicaflynamicsof the SF order parameter is accounted for.
potential, respectively. The rich structure of the BHM Indeed, it is possible to develop such a program, al-
phase diagram has been investigated by a number #fiough several features of Hamiltonian (1) (nonlinearity,
theoretical methods, from mean field [2], variational [3] the many-body character, and its quantum nature) make the
and perturbative [4] approaches, to quantum Monte Carl@vestigation of its dynamical behavior a hard problem.
[5] technique. The time-dependent variational principle (TDVP)
At T =0 and integer fillings, the system undergoesmethod [6] offers a quite general procedure for con-
a quantum phase transition, between a Mott insulatostructing an approximate macroscopic wave function for
(MI) and a superfluid (SF) phase. At= 0 the filling  many-body systems. Such a method, recently employed
is fixed to the integern that minimizes the on-site for studying the fermionic Hubbard Model dynamics [7],
contribution of the Hamiltonian (1). In this limit, the is based on the idea of constraining the time evolution
existence of a finite energy = 2U, required to add one of the system’s stat¢d) via the weaker form of the
boson to the system, reflects the MI nature of this phaséchrodinger equatiod®| (izio, — H)|®) = 0. Upon
characterized by a vanishing compressibility (gappedetting|®) = exp(iS/%)|Z) one obtains
particle-hole excitations). The MI survives (except for L B
the degeneration points wiila/U = 2n ) when:/U > 0, S = inz19:12) = (ZIH|Z), (2)
inside extendedobesin the /U, wu/U plane attached where thetrial macroscopic statéZ), the basic ingredient
to the intervalsi(n) = (2(n — 1)U, 2nU) of the u/U  of the method, must be structured so as to contain
axis [2]. Elsewhere, in the phase plane, the systemas much information as possible on the microscopic
is superfluid and appears to be compressible since thdynamics. The labeF is thus identified with a vector
addition of a particle free to hop through the lattice bringsof microscopic parameters that are required to account
up a reduction of the Coulomb repulsion. A crucial for the dominating physical processes at microscopic
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level and represent the effective dynamical variables ofnechanics. To this end we set, at each sjtes ; + 7,

the system. For this reasof and (Z|H|Z) can be and assume that; is a slow variable whereas; is a fast

properly seen as functions o and we denote them oscillating term describing the complex, high-frequency

by £[Z] and H[Z], respectively. The TDVP theory part of the dynamics taking place on the microscopic

identifies the effective Lagrangian of the system withinteractions time scale (the hopping interaction, in this

L[7] and its semiclassical model Hamiltonian with case). Theny; = (z;); ((¢). denotes time average)

H[Z]. The quantum dynamics is thus described throughwhen the time scale is larger than that of they;’s.

a set of semiclassical Hamiltonian equations obtained byhe onset of order in the system at the macroscopic

implementing the stationarity conditioAS = 0 on the scale should reflect the dominating role of tite's in

actionS of L[Z]. the lattice dynamics. Imposing the standard condition
A thorough analysis of the semiclassical equations retz; — ¢:) (Z; — ¢;) = n;m,; =~ 0 of the MFA procedure

lated toH is interesting in itself due to their complexity. involves the dynamical mean field decoupling; ~

Here, we intend instead to employ the TDVP method foriZ; + ¢,z — ¢i4; which implies, in turn, the random

finding the ground-state configurations of the model andhase approximatiof;z;), = (z;)-(z;)-. The dynamical

examining their dependence from the microscopic paramescenery just depicted together with an ergodic assumption

terst/U andu/U. Inother words, we aim to work out the leads thus naturally to defining

phase diagram of the BHM starting from the study of the 1

semiclassical equations of motion. Let us apply the TDVP = — Z(;,-}T (6)

method to the BHM model (1). We write the stdt) Ny 5

as |®) = exdiS/h] ®; |z;) once the trial macroscopic a5 the macroscopic order paramenter revealing when order

state|Z) is assumed to have the forfd) = ®;|z;). Here iissues from the lattice dynamics.

the sta_tesiz,) are the Glal_Jber coherent states [6] assocCi- \when our dynamical MFA is applied to Hamiltonian

ated with the boson lowering operaters solutions of the (4), and the further assumption; = y; for j € (i) is

equationa;|z;) = z;lz;) for eachi. The choice 0fZ), of  made (smoothing condition), the kinetic term modifies as
course, is suggested by the fact tiibelongs to the en-  ¢5/ows:

veloping algebra of th&v;-boson Weyl-Heisenberg alge-
bra{l,aj,a;,n; : j € A}, N, being the number of sites L~ (Gizi + 2,2) — qt G + Tz — Wil?),
of the latticeA. In this case Eq. (2) becomes 2 (,% ! ’ 2 z,:

(7)

1. .
Zl=1ih —(Zizi — Zizi) — Z), 3 . .
Llzl=i Zl: 2 (&2 sz) = H(2) ®) whereg denotes the number of nearest neighbors per site.

. . iitonigH (Z) — The resulting Hamiltonian reduces thus to a sum of on-
where the semiclassical model Hamiltonigh (Z) = e terms:H ¢ =Zj.7{j,where

(Z|H|Z) is easily shown to have the form

Ul = el = LG+ T — |l
H = Z(U|Zi|2 —_—) |Zi|2 _ é Z(ZiZj + iji)_ (4) j{/ U|ZJ| M|Z,/| > @) + ¢JZ,1 W}l ).
i (i) (8)

Lagrangian (3) yields the equations of motion The Hamiltonian equations ensuing from Eq. (8),

% = —pz + 20zl - = Y 5. (6
2 =
JE)
where (i) indicates the set of the nearest neighbor sitegear memory of the off-site dynamics 0n|y through the
aroundi and we have omitted the equation fordirectly  on-site term;. When compared with the exact ones
ensuing from Egs. (5) via complex conjugation. Notice(s), they imply the relationy; = Zie(i) z; consistently
that Egs. (5) can be obtained as well through the staneading to an identity once time average is carried on
dard formulasiiiz; = {z;, H{}, based on the canonical and the smoothing conditions are used. It is important
Poisson bracket&y, z;} = 8x;/ih replacing commutators to notice thatN" = Y, |z;|* is no longer a constant
[ai,a;r] = §;; in the TDVP semiclassical scenery. This of motion while the mean field HamiltoniadH s =
checks their hamiltonian character. As expected, Egs. (5, H;, that should approximaté{, might represent a
are not integrable (integrability occurs only when eithertime-dependent total energy (which{ is not) since it
U = 0 or whent = 0) since the only known constant depends ony;’s. In order to recover such features, it
of motion, a part fromZ{, is the semiclassical version seems reasonable to introduce some restriction on the
N =3, z* of number operatoN = >, n;. form of ¢;(r), whose time behavior, so far, has not
We simplify the structure of Egs. (5) by separation ofbeen specified at all. We do this looking for solutions
slow and fast dynamics, a procedure which is in somef Egs. (9) whered;, x;, the phases of; = |z;|e'’,
way the analog, in a dynamical contest, of the meany; = |i;|et;, respectively, are locked one to the other
field approximation (MFA) usually employed in statistical in such a way that\¢ = 6; — y; = const, the constant
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being zero orar. In view of Egs. (9), this entails that of the SF domain separatidgn) from I(n + 1). Within

any |z;|*> has a zero time derivative, thereby restoringour theory, the fixed points of the equations of motion
the particle total numbefN" to its proper role of time- (A+ = 0) correspond to the SF system configurations.
independent quantity. The same effect is obtained for anyhis is but the oversimplified version of the low frequency
H;, and thus forH,,¢, only adding the further condition dynamics expected in the SF phase. Considering such
l;] = const. Solutions of the form;(r) = |z;|e!%”  configurations (the trivial casg = 0 due toz; = ¢; =
whose phase, due to Eq. (9), obeys the equation 0 is excluded) allows one to recast Eqg. (9) in the form

. t 2
—hlzjl0; = (2U|Zj|2 - wlzjl — % il (10) g = Z(ZUlzjl2 - Wz, (14)

successfully fulfill the conditions just stated. Despite themakin A function of-.. The enerav associated to the
elimination of any residual dynamical complexity, we are amilt%lrfi]an:]—[ in turnzjréduces to 9y
able to characterize the Ml and some features of the SH 7 '

phase via the phase dynamics of Eq. (10). o[ 2 "o
We examine first the dynamics related to the M. In this e(p,t,7;) = Izl [E (e — 2U|z;|%)

case; must have a zero time average along macroscopic

time scales. Such a behavior occurs when the uniform + (n = 3U|Zj|2)i|,

filling conditionsn; = n, for all i (we identify here number

operatorsy;’s with their integer spectral values) is insertedonce (14) is inserted in (8).€(u.t,z;) is the on-site

in (10) by setting|z;|> = n. Such a substitution is the energy accounting for the absence of dynamics. The limit
natural consequence of the requantization process [6] of thee= — 0, in fact, shows thatE,(u,t; A+) — €(u,1,z;)
actionlike variabledz;|* (notice that{|z;|*, 6} = 8;;/h) provided|z;|> = n. Its lowest value is found to be, via

strongly requested from the pure quantum character of thinimization, e({) = —U|{|*, where the value ofz; |
MI. Equation (10) is thus solved b§;(r) = A=7/k +  corresponding to the minimum Ig|* = (u + 21)/(20).
a; (a; is the initial condition), where It is worth noticing that insertingZ| in (14) implies
1 gt Y;j = z; so that the minimum energy configuration natu-
A = ﬁ(Uc?x/ﬁ * 7|¢i|>, (11) rally satisfies the consistency condition on which our

dynamical MFA is based.

8 = u/U — 2n, and A— (A4) is related to the choice  Let us consider, instead, how the MI characters reflect
A¢ = 7 (A¢ = 0). Notice thatthe index does notlabel on the macroscopic phase—viable to experimental obser-
A= since the request;), = ;(7) leads toly;| = \/nat  vations—S. Notice, first, that inserting Egs. (5) in the
each site. In the present theory, the frequenaieplay | agrangian (3) impliess = UY,lzl|* and that the same
the role of time correlation length governing the phaseesylt is found in the MEA scheme in thét = z;. Then

transition. Our theory gives\+ = U./n(ux — u.) for - : )
fixed  and A~ — qlul/2(t — 1.) for fixed u (i, andr, the exponential factor dfP) has a frequency which re

" o " duces to
are the critical values oft andr). Defining the critical .
exponentg andv as in the Ref. [2], we argue that [8] S = UNn?, (15)
v =1. (12)  when the system is a MI withz;|> = n for each j.

By replacing in the reduced Hamiltonian (8) the value ofA transition leading from then lobe to the(n + 1)-

l;| provided by Eq. (11), the energy of the MI reads lobe thus involves a change of the phase frequency of
UN;(2n + 1), whereas in the case of a transition between

E,(u,t;A+) = n|:U8 — Un + z(/\i + UB)Z] any two superfluid states, whet%,; = UN,|¥|*, since
qar z; = ¥ for each j, no quantization of the frequency
(13)  variation appears, in thak takes continuous values.

where the subscriptz reminds us that the fillingn Now, we employ the expression (13) for the on-
is accounted for. The oscillating behavior oF =  site energy to reconstruct the lobelike structure of the
(e'*=7/Ns) > ; je’®, having a vanishing long time aver- phase diagram. In the SF phase, the states witnd
age, identifies the MI. This, in fact, implies that the gaugen + 1 (adding a particle), as well as the states with
symmetry breaking expected in the SF phase cannot take — 1 and n (adding a hole) must be degenerate. The
place. Notice that the ordinary (time-independent) MFAcurves representing the-lobe boundary are identified
cannot describe the MI far > 0, since the hopping term by implementing both gauge symmetry breaking through
of the reduced Hamiltonian is canceled by the vanishinghe limits A~ — 0 and vanishing of the energy gaps
of the order parameteyy = 0. Within our scheme, in- E, — E,+;. In other words, we require
stead, the conditioqW¥), = 0 can be realized also for

All dynamics disappears at the degeneration points . _
u/U = 2n, t/U = 0, that represent the limiting points JETO(E"‘I —E)=0 (6>0). (7)
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FIG. 1. The phase diagram of the BHM fér = 1. The er- FIG. 2. The phase diagram of the BHM fa» = 2. The
ror boxes are the QMC results of Batrowgtial. Relatively to  error box indicates the QMC tricritical point obtained by Krauth
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