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Quantum dynamics of the Bose-Hubbard model is investigated through a semiclassical Hamiltonian
picture provided by the time-dependent variational principle method. The system is studied within
a factorized slow/fast dynamics. The semiclassical requantization procedure allows one to account
for the strong quantum nature of the system whentyU ø 1. The phase diagram is in good
agreement with quantum Monte Carlo results and third order strong coupling perturbative expansion.
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In recent years outgrowing interest has been devot
to many-body systems which can be modeled in terms
bosonic degrees of freedom. Examples are granular
perconductors, short-length superconductors, and Jose
son junction arrays [1]. The relevant physics of thes
systems is captured by the Bose-Hubbard model (BHM
which represents a boson gas of identical charges hopp
through aD dimensional lattice. The boson dynamics i
described by the second quantized Hamiltonian

H ­
X

i

fUsni 2 1d 2 mgni 2
t
2

X
ki,jl

say
i aj 1 a

y
j aid ,

(1)

where the operatorsni 8 a
y
i ai count the number of

bosons at sitei, while the annihilation and creation
operatorsai , a

y
i obey the canonical commutation relation

fai , a
y
j g ­ dij. The parameters of Hamiltonian (1)U .

0, t, andm correspond to the strength of the Coulomb on
site repulsion, the hopping amplitude, and the chemic
potential, respectively. The rich structure of the BHM
phase diagram has been investigated by a number
theoretical methods, from mean field [2], variational [3
and perturbative [4] approaches, to quantum Monte Ca
[5] technique.

At T ­ 0 and integer fillings, the system undergoe
a quantum phase transition, between a Mott insulat
(MI) and a superfluid (SF) phase. Att ­ 0 the filling
is fixed to the integern that minimizes the on-site
contribution of the Hamiltonian (1). In this limit, the
existence of a finite energym ­ 2U, required to add one
boson to the system, reflects the MI nature of this phas
characterized by a vanishing compressibility (gappe
particle-hole excitations). The MI survives (except fo
the degeneration points withmyU ­ 2n ) whentyU . 0,
inside extendedlobes in the tyU, myU plane attached
to the intervalsIsnd ­ s 2sn 2 1dU , 2nU d of the myU
axis [2]. Elsewhere, in the phase plane, the syste
is superfluid and appears to be compressible since
addition of a particle free to hop through the lattice bring
up a reduction of the Coulomb repulsion. A crucia
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property has to be mentioned, at this point, concerning t
MI-SF phase lobe boundary. At the transition points th
appearance of superfluidity is announced by the vanish
of the energy gap between the states corresponding tn
(n 2 1) and n 1 1 (n) particles (holes). Such a feature
characterizes the whole frontier between the MI and t
SF phase and will play a central role in the sequel.

In spite of the great amount of work devoted to studyin
the several aspects of the BHM, no investigation, to t
best of our knowledge, has been made on the dynam
of boson degrees of freedoms. The attempt of relati
the onset of the macroscopic order leading to the MI a
SF phases with the microscopic behavior of the syste
motivates the dynamical approach to the BHM. Th
should be useful as well to study both the emergence
vortex dynamics and the transport properties. In particul
in the present paper we shall show the mean field pha
diagram of the BHM results to be quite improved if th
dynamicsof the SF order parameter is accounted for.

Indeed, it is possible to develop such a program, a
though several features of Hamiltonian (1) (nonlinearit
the many-body character, and its quantum nature) make
investigation of its dynamical behavior a hard problem.

The time-dependent variational principle (TDVP
method [6] offers a quite general procedure for co
structing an approximate macroscopic wave function f
many-body systems. Such a method, recently employ
for studying the fermionic Hubbard Model dynamics [7
is based on the idea of constraining the time evolutio
of the system’s statejFl via the weaker form of the
Schrödinger equationkFj sih̄≠t 2 Hd jFl ­ 0. Upon
settingjFl ­ expsiSyh̄d jZl one obtains

ÙS ­ ih̄kZj≠tjZl 2 kZjHjZl , (2)

where thetrial macroscopic statejZl, the basic ingredient
of the method, must be structured so as to conta
as much information as possible on the microscop
dynamics. The labelZ is thus identified with a vector
of microscopic parameters that are required to accou
for the dominating physical processes at microscop
© 1998 The American Physical Society 2189
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level and represent the effective dynamical variables
the system. For this reasonÙS and kZjHjZl can be
properly seen as functions ofZ and we denote them
by L fZg and H fZg, respectively. The TDVP theory
identifies the effective Lagrangian of the system wit
L fZg and its semiclassical model Hamiltonian with
H fZg. The quantum dynamics is thus described throug
a set of semiclassical Hamiltonian equations obtained
implementing the stationarity conditiondS ­ 0 on the
actionS of L fZg.

A thorough analysis of the semiclassical equations r
lated toH is interesting in itself due to their complexity.
Here, we intend instead to employ the TDVP method fo
finding the ground-state configurations of the model an
examining their dependence from the microscopic param
terstyU andmyU. In other words, we aim to work out the
phase diagram of the BHM starting from the study of th
semiclassical equations of motion. Let us apply the TDV
method to the BHM model (1). We write the statejFl
as jFl ; expfiSyh̄g ≠i jzil once the trial macroscopic
statejZl is assumed to have the formjZl ; ≠ijzil. Here
the statesjzil are the Glauber coherent states [6] assoc
ated with the boson lowering operatorsai , solutions of the
equationai jzil ­ zijzil for eachi. The choice ofjZl, of
course, is suggested by the fact thatH belongs to the en-
veloping algebra of theNs-boson Weyl-Heisenberg alge-
bra hI, aj , a

y
j , nj : j [ Lj, Ns being the number of sites

of the latticeL. In this case Eq. (2) becomes

L fZg ­ ih̄
X

i

1
2

sz̄i Ùzi 2 Ù̄zizid 2 H sZd , (3)

where the semiclassical model HamiltonianH sZd ­
kZjHjZl is easily shown to have the form

H ­
X

i

sUjzij
2 2 md jzij

2 2
t
2

X
ki,jl

sz̄izj 1 z̄jzid . (4)

Lagrangian (3) yields the equations of motion

ih̄ Ùzi ­ 2mzi 1 2Uzi jzij
2 2

t
2

X
j[sid

zj , (5)

where sid indicates the set of the nearest neighbor site
aroundi and we have omitted the equation forz̄i directly
ensuing from Eqs. (5) via complex conjugation. Notic
that Eqs. (5) can be obtained as well through the sta
dard formulasih̄ Ùzj ­ hzj , H j, based on the canonical
Poisson bracketshzk , z̄jj ­ dkjyih̄ replacing commutators
fai , a

y
j g ­ dij in the TDVP semiclassical scenery. This

checks their hamiltonian character. As expected, Eqs. (
are not integrable (integrability occurs only when eithe
U ­ 0 or when t ­ 0) since the only known constant
of motion, a part fromH , is the semiclassical version
N ­

P
i jzij

2 of number operatorN ­
P

i ni .
We simplify the structure of Eqs. (5) by separation o

slow and fast dynamics, a procedure which is in som
way the analog, in a dynamical contest, of the mea
field approximation (MFA) usually employed in statistica
2190
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h

h
by

e-

r
d
e-

e
P

i-

s

e
n-

5)
r

f
e
n

l

mechanics. To this end we set, at each site,zi ­ ci 1 hi

and assume thatci is a slow variable whereashi is a fast
oscillating term describing the complex, high-frequenc
part of the dynamics taking place on the microscop
interactions time scale (the hopping interaction, in th
case). Thencj ­ kzjlt (k≤lt denotes time average
when the time scalet is larger than that of thehj ’s.
The onset of order in the system at the macrosco
scale should reflect the dominating role of thecj ’s in
the lattice dynamics. Imposing the standard conditi
szi 2 cid sz̄j 2 cjd ­ hihj ø 0 of the MFA procedure
involves the dynamical mean field decouplingzi z̄j ø
ci z̄j 1 cjzi 2 cicj which implies, in turn, the random
phase approximationkz̄jzilt ø kz̄jltkzjlt . The dynamical
scenery just depicted together with an ergodic assumpt
leads thus naturally to defining

C ;
1

Ns

X
j

kzjlt (6)

as the macroscopic order paramenter revealing when o
issues from the lattice dynamics.

When our dynamical MFA is applied to Hamiltonian
(4), and the further assumptioncj ; ci for j [ sid is
made (smoothing condition), the kinetic term modifies
follows:

t
2

X
ki,jl

sz̄izj 1 z̄jzid !
qt
2

X
i

sz̄ici 1 cizi 2 jcij
2d ,

(7)

whereq denotes the number of nearest neighbors per s
The resulting Hamiltonian reduces thus to a sum of o
site terms:Hmf ­

P
j Hj , where

Hj ­ Ujzjj
4 2 mjzj j

2 2
qt
2

szjcj 1 cjzj 2 jcjj
2d .

(8)

The Hamiltonian equations ensuing from Eq. (8),

ih̄ Ùzi ­ 2mzi 1 2Uzi jzij
2 2

qt
2

ci , (9)

bear memory of the off-site dynamics only through th
on-site termci . When compared with the exact one
(5), they imply the relationqci ø

P
j[sid zj consistently

leading to an identity once time average is carried
and the smoothing conditions are used. It is importa
to notice that N ­

P
i jzij

2 is no longer a constant
of motion while the mean field HamiltonianHmf ­P

j Hj, that should approximateH , might represent a
time-dependent total energy (whichH is not) since it
depends oncj ’s. In order to recover such features,
seems reasonable to introduce some restriction on
form of cjstd, whose time behavior, so far, has no
been specified at all. We do this looking for solution
of Eqs. (9) whereuj, xj , the phases ofzj ­ jzj jeiuj ,
cj ­ jcjjeixj , respectively, are locked one to the othe
in such a way thatDf 8 uj 2 xj ­ const, the constant
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being zero orp . In view of Eqs. (9), this entails that
any jzj j

2 has a zero time derivative, thereby restorin
the particle total numberN to its proper role of time-
independent quantity. The same effect is obtained for a
Hj , and thus forHmf, only adding the further condition
jcjj ­ const. Solutions of the formzjstd ­ jzj jeiuj std

whose phase, due to Eq. (9), obeys the equation

2h̄jzj j Ùuj ­ s2Ujzjj
2 2 mdjzj j 2

qt
2

jcjj , (10)

successfully fulfill the conditions just stated. Despite th
elimination of any residual dynamical complexity, we ar
able to characterize the MI and some features of the
phase via the phase dynamics of Eq. (10).

We examine first the dynamics related to the MI. In th
case,ci must have a zero time average along macrosco
time scales. Such a behavior occurs when the unifo
filling conditionsni ­ n, for all i (we identify here number
operatorsni ’s with their integer spectral values) is inserte
in (10) by settingjzij

2 ­ n. Such a substitution is the
natural consequence of the requantization process [6] of
actionlike variablesjzij

2 (notice thathjzij
2, ujj ­ dijyh̄)

strongly requested from the pure quantum character of
MI. Equation (10) is thus solved byujstd ­ l6tyh̄ 1

aj (aj is the initial condition), where

l6 8
1

p
n

µ
Ud

p
n 6

qt
2

jcij

∂
, (11)

d ­ myU 2 2n, and l2 (l1) is related to the choice
Df ­ p (Df ­ 0). Notice that the indexj does not label
l6 since the requestkzjlt ; cjstd leads tojcjj ­

p
n at

each site. In the present theory, the frequenciesl6 play
the role of time correlation length governing the phas
transition. Our theory givesl6 ­ U

p
nsm 2 mcd for

fixed t andl6 ­ qjci jy2st 2 tcd for fixed m (mc andtc

are the critical values ofm and t). Defining the critical
exponentsz andn as in the Ref. [2], we argue that [8]

zn ­ 1 . (12)

By replacing in the reduced Hamiltonian (8) the value o
jci j provided by Eq. (11), the energy of the MI reads

Ensm, t; l6d ­ n

"
Ud 2 Un 1

2
qt

sl6 1 Udd2

#
,

(13)

where the subscriptn reminds us that the fillingn
is accounted for. The oscillating behavior ofC ­
seil6tyNsd

P
j cjeiaj , having a vanishing long time aver-

age, identifies the MI. This, in fact, implies that the gaug
symmetry breaking expected in the SF phase cannot t
place. Notice that the ordinary (time-independent) MF
cannot describe the MI fort . 0, since the hopping term
of the reduced Hamiltonian is canceled by the vanishi
of the order parameterc ­ 0. Within our scheme, in-
stead, the conditionkClt ­ 0 can be realized also for
c fi 0.

All dynamics disappears at the degeneration poin
myU ­ 2n, tyU ­ 0, that represent the limiting points
g
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e
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of the SF domain separatingIsnd from Isn 1 1d. Within
our theory, the fixed points of the equations of motio
(l6 ­ 0) correspond to the SF system configuration
This is but the oversimplified version of the low frequenc
dynamics expected in the SF phase. Considering s
configurations (the trivial caseÙzj ­ 0 due tozj ­ cj ­
0 is excluded) allows one to recast Eq. (9) in the form

cj ­
2
qt

s2Ujzj j
2 2 mdzj , (14)

makingcj a function ofzj. The energy associated to th
HamiltonianHj , in turn, reduces to

esm, t, zjd ­ jzj j
2

∑
2
qt

sm 2 2Ujzjj
2d2

1 sm 2 3Ujzj j
2d

∏
,

once (14) is inserted in (8).esm, t, zjd is the on-site
energy accounting for the absence of dynamics. The lim
l6 ! 0, in fact, shows thatEnsm, t; l6d ! esm, t, zjd
provided jzj j

2 ­ n. Its lowest value is found to be, via
minimization, esz d ­ 2Ujz j4, where the value ofjzj j

2

corresponding to the minimum isjz j2 ­ sm 1 2tdys2Ud.
It is worth noticing that insertingjz j in (14) implies
cj ­ zj so that the minimum energy configuration natu
rally satisfies the consistency condition on which o
dynamical MFA is based.

Let us consider, instead, how the MI characters refle
on the macroscopic phase—viable to experimental obs
vations—S . Notice, first, that inserting Eqs. (5) in the
Lagrangian (3) impliesÙS ­ U

P
j jzjj

4 and that the same
result is found in the MFA scheme in thatcj ø zj. Then
the exponential factor ofjFl has a frequencyÙS which re-
duces to

ÙS ­ UNsn2, (15)

when the system is a MI withjzj j
2 ­ n for each j.

A transition leading from then lobe to the sn 1 1d-
lobe thus involves a change of the phase frequency
UNss2n 1 1d, whereas in the case of a transition betwe
any two superfluid states, whereÙSmf ­ UNsjCj4, since
zj ­ C for each j, no quantization of the frequency
variation appears, in thatC takes continuous values.

Now, we employ the expression (13) for the on
site energy to reconstruct the lobelike structure of t
phase diagram. In the SF phase, the states withn and
n 1 1 (adding a particle), as well as the states wi
n 2 1 and n (adding a hole) must be degenerate. Th
curves representing then-lobe boundary are identified
by implementing both gauge symmetry breaking throu
the limits l6 ! 0 and vanishing of the energy gap
En 2 En61. In other words, we require

lim
l1!0

sEn 2 En11d ­ 0 sd , 0d , (16)

lim
l2!0

sEn21 2 End ­ 0 sd . 0d . (17)
2191
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FIG. 1. The phase diagram of the BHM forD ­ 1. The er-
ror boxes are the QMC results of Batrouniet al. Relatively to
the first lobe (ni ­ 1), stcyUd ­ 0.5. QMC gives stcyUd ­
0.43 6 0.002 and the SCPEstcyUd ­ 0.43. For (ni ­ 3),
QMC and SCPE givestcyUd ­ 0.2 andstcyUd ­ 0.18, respec-
tively. Our theory givesstcyUd ­ 0.16.

For solving Eqs. (16) and (17) we introduce the var
ablesd6 ­ myU 2 2n 1 s1 6 1d. By insertingd1 $ 0
[d2 # 0] in Eq. (16) [(17)], and definingr ­ qty4U,
one gets the quadratic equationsd2

6 1 2rd6 2 2r s2n 7

1d ­ 0 providing the curves

m6

U
­ 2fn 2 s1 6 1dg 2 r 6 fr2 1 2r s2n 7 1dg1y2.

(18)

The lower branchm1std and the upperm2std constitute
the boundary encircling thenth lobe. We conclude by
retrieving from Eq. (18) the position of the farthest poin
on the n-lobe boundary from them axis. By setting
m2std ­ m1std one finds the lobe tip coordinates

tc ­ Uyqn (19)

and mstcdyU ­ 2n 2 1 2 s1y2nd. In the captions of
Figs. 1 and 2 the values oftc furnished by the present
approach are compared for theD ­ 1 and D ­ 2 cases
with QMC [5] and the strong coupling perturbative
expansion (SCPE) [4].

The dynamical approach we have developed appears
succeed in describing the quantum MI-SF phase transiti
of BHM. The resulting phase diagram indeed exhibits a
excellent agreement with QMC simulations and SCPE r
sults. This suggests that Eqs. (5), here faced solely with
the dynamical MFA, deserve a systematic investigation
the methods of dynamical system theory. The dynami
they account for, in fact, should describe not only ze
temperature configurations but also excited states invo
ing density waves as well as vortices. Moreover, a sy
tematic analysis of Eqs. (5) should be interesting both
relation to the dynamical scaling theory [9] and for ca
culating the dynamical correlation functions in the MI
Work is in progress along these lines.
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FIG. 2. The phase diagram of the BHM forD ­ 2. The
error box indicates the QMC tricritical point obtained by Krauth
and Trivedi [5]. Forni ­ 1, stcyUd ­ 0.25 while QMC gives
stcyUd ­ 0.244 6 0.002 and SCPE providesstcyUd ­ 0.272.
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