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Perturbation and Variational Methods in Nonextensive Tsallis Statistics
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A unified presentation of the perturbation and variational methods for the generalized statistical
mechanics based on Tsallis entropy is given here. In the case of the variational method, the Bogoliubov
inequality is generalized in a very natural way following the Feynman proof for the usual statistical
mechanics. The inequality turns out to fmm invariantwith respect to the entropic index The
method is illustrated with a simple example in classical mechanics. The formalisms developed here are
expected to be useful in the discussion of nonextensive systems. [S0031-9007(97)05008-4]
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Nonextensive effects are common in many branches The Tsallis entropy and a-expectation value for
of the physics, for instance, anomalous diffusion [1-4],an observabled [33] is defined, respectively, as, =
astrophysics with long-range (gravitational) interactionsk Tr p(1 — p?~1)/(¢ — 1) and (A), = Tr p?A, where
[5-9], some magnetic systems [10—12], and some surfage is the density matrix,g € R gives the degree of
tension questions [13,14]. These examples indicate thatonextensivity, and is a positive constant. Without loss
the standard statistical mechanics and thermodynamiasf generality, we employ = 1 in the following analysis.
need some extensions. In this direction, a theoreticaBy using the above definitions with T¢ = 1 one obtains
tool based in a nonextensive entropy (Tsallis entropy}he canonical distribution [33],

[15] has successfully been applied in several situations, [1 — (1 — g)BE,]"/0-9

for example, Lévy-type anomalous superdiffusion [16], pn = p(E,) = 7 . (D)
Euler turbulence [17], self-gravitating systems [17-21], oo _

cosmic background radiation [22], peculiar velocities inwhere {p,} are the probabilities is the inverse of
galaxies [23], linear response theory [24] and electronthe temperature{E,} is the set of eigenvalues of the
phonon interaction [25], and ferrofluidlike systems [26]. Hamiltonian, and

Lavenda and co-workers [27] stress that any newly _

proposed entropy [28] must have “concavity” property Zg = Z[l = (1= q)BEJ"? (2)
for it to be correct. Tsallis [15] and Mendes [29] . " " .
have shown that the Tsallis entropy indeed satisfies thi§ the generalized partition function. In the expres-

criterion and hence meets this requirement of concavity?Ions (1) and (2) we assumed that- (1 — g)BE, = 0.

The above features of Tsallis entropy thus make it\/Vhen this condition is not satisfied we have a cutoff. For

unique among other forms for entropy suggested i
the literature. In this context, it is very important to
understand more deeply the properties of the generaliz
statistical mechanics based on the Tsallis entropy. “S;
particular, a generalization of the approximate methods o 1—g
calculation of its thermodynamical functions is of great F.=U, — TS, — 1 Zg  —1 3)
value, as, for instance, the semiclassical approximation ¢ 1 1 B 1—gq °

[30], perturbat_ion, and variational methods. The preser\;vherqu — Y plE, is the generalized internal energy,
Letter deals with the last two questions. We develop hertand T is the temperature which satisfies the relation

the perturbation and variational methods in a unified WaYy 7 — a5 /9U,. Note that the previous expressions are
This approach provides the generalization of the Feynmaﬂeduced tg thequsuaI ones in the limit cases 1
proof [31] of the Bogoliubov inequality, which appears To develop the perturbation method in this generalized

to be a natural generallza_tu_)n of this mequalyty. Ir'O!eecj‘statistical mechanics we assume that the Hamiltonian of
we shall prove thathe original form of the inequality . system is

is preserved[see inequality (9)]. This inequality does
not coincide from that proposed in Ref. [32], except for H = Ho + AH;. (4)

g = 1. This is due to the fact that we use differentIn this expressionH, is the Hamiltonian of a soluble
mathematical inequalities to derive our final results. model, AH; is small enough so that it can be considered

nstance, when a classical partition function is calculated,

he integration limits in phase space are given by the con-
qjtion 1 - (1 —-¢g)BH = 0. From Egs. (1) and (2) sev-

e . ) . .

ral relations can be obtained; for instance, the generalized
ee energy becomes
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as a perturbation ofly (H, and H; need not necessarily ~ To understand how the correctiof§” are calculated
commute), and is the perturbation parameter. Thus, theit suffices to evaluate the first three terms. The first
perturbative expansion of the free energy can be writteterm is the free energy for the case without perturbation,
asF,(A) = FO + AF() + %zFff) + F = F,(0). The second term is obtained from the first
| derivative ofF ,(A)ata =0,

IF4(0) _ 1 9
I Bz 9

F = a2l (= @BENTO ] = (). (5)

A=0

where the superscrifd) indicates that the-expected value is calculated far= 0. To obtain the last equality it is
necessary to exchange the order of derivative with respecatal the sum ovet. Furthermore, the Hellmann-Feymann
theorem was usedkE,/dA = (n|dH/dA|n), or equivalently the relation|n)/dA = > ., (m|H;|n)/(E, — E,,), which
was obtained from the first order perturbation theory. The caIcuIanﬁ%fls similar. Thus, by using the above
considerations we obtain

P = IR0 0 S B L )~ T
o)
B Z ,,; KnlH lm) O p(EmE)m - Ef,(f = ©)

When H, and H; commute (in the classical case, for necessary to consider the dependenc pfith A and to
instance) the expression (6) is more simple, i.e., thsubstituteEff)) by E,,. This property will be used later on.
second term in the right side is zero. Notice that Egs. (5) Finally, the free energy up to the corrections calculated
and (6) are correct for any, but in this case it is| above is

2
Fa(A) = Fg(0) + XH)Y - A 5 BaZ" 1Zp(E DL pEDY N nlHln)® — (H)YO T

—ZZMMWWWMQQQ$)+@WL )

n m¥#n

where |n) is evaluated withA = 0. It is important to | where each prime indicates a derivative with respect
emphasize that the previous calculation was performetb A, and Ao € [0,1]. On the other hand, the ex-
supposing that the derivative with respect fo can pression (6) is not positive fog > 0, and it is not
commute with the sum over the states, but generally inegative forg < 0 for A = A¢. In fact, >, p(E,) X

is not true because the sum, through its upper limit, cafl p(E,)? " "(n|H;|n) — (H;),} =0, and p(E,) =
depend on. Indeed, when the factor — (1 — ¢)BE, p(E,) for E, = E,. Therefore, by considering (5)
is negative the sum in (2) must be truncated, and agnd (8) we conclude thatl,, (1) = F (0) + A<H1>51) for

E, depends onA it follows that the upper limit of g <0, and F,(}) = F,(0) + )\<H1>q for ¢ > 0. But

;[he_ sum ovelr_tthe states alsq de>p%n_dstr)]onfvl\lllth(_)ut these conclusions, as we discussed at the end of the last
05|r|19 _gerllceralz%ntican C(I)ns_,ld_ﬁr mt' (Iel (1howmg paragraph, cannot always be true for @ll Thus, when
analysis (for3 € analysis IS essentially the same).We considerB8 > 0, E, = 0 and the fact that the last

There{oie,d/vi ca)n zup_pose tﬂﬁl 2,[.0 fo; all ”> lln t:]h's inequality is correct for all possible values #f we can
case, q)BE, 1s not negative forg > 1, then . ,n00) " 4 and conclude that

the order of the derivative il with the sum inn can
be interchanged. For the cage< 1 the analysis is more Fg=FQ + H)Y (9)
complicated, and we will return to this question later in
the classical context.

Consider now the variational method. In this case
the Hamiltonian of the system i# = Hy + H;, but
in the following analysis it is convenient to employ a
Hamiltonian that interpolates continuousk, and H.
Thus, we use the Hamiltonian (4) with& [0,1]. Now,
we will employ the general identity for free energy,

for ¢ = 1. As we can see immediately, the inequality
(9) is a natural generalization of the usual Bogoliubov
inequality, F = F©O + (H;)©,

To analyze the contribution of the cutoff in the pertur-
bation and variational methods it is convenient to consider
the generalized classical statistics fér> 0 andE,, = 0
(the analysis for8 < 0 and E, < 0 can be extended
analogously). In this case, there is cutoff only for the case
g < 1, so we are going to restrict the following analysis

/\2
_ / A o
Fq(A) = F4(0) + AFy(0) + 2 Fq o), (8) to the case; < 1. Now, we changé&, by [dT, where

219



VOLUME 80, NUMBER 2 PHYSICAL REVIEW LETTERS 12 ANUARY 1998

dT' = [1,(dx,dp,/h) (h is the Planck constant), and the 4 ( 3 )1/2 13
13

integration is over the phase space region defined by the L= 3-4 mw’p
inequality 1 — (1 — ¢)8H = 0. Thus, to analyzeFfZ") d
we make use of the following identity: for bothg < 1 andg > 1. Substitution of this result in

FO + (H — Hy)Y leads to the optimum approximation
a4 dez]dF%Jrf ZdSu<fdy”). \ &
Vou

n JA for the free energy. Finally, the comparison of this
approximation for the free energy with the exact one

(10) (valid only for g < 2),
In the present applicatiory, is a function of phase space 1 2 1 =g
variables,y,, anddV is the hypersurface defined by the F = T [(h = ) - 1:|, (14)
equationl — (1 — ¢)BH = 0. 9B L \hop 1

When the last term in the right side of (10) is zero,gives a good approximation, as in the cage> 1 (see
the previous analysis is recovered. In general, this occurig. 1). Furthermore, Fig. 1 shows that the approxima-
when f = 0 and dy,/dA is finite on 9V. By using tion is improved for largery. Notice that all previous
these conditions and = [1 — (1 — ¢)BH]/!~9 we expressions reduce to the usual one in the ligit 1.
conclude immediately that (5) remains intact #pr< 1.  The perturbative contributions can be obtained in a simi-
For FEIZ) the function f contains a term proportional lar way.
to[1 — (1 — ¢)BH]'~9. Thus, the conditiorf = 0 Summing up, we have developed here generalized per-
on 9V is satisfied only forg/(1 — ¢) > 0, i.e., ¢ > turbation and variational methods for the nonextensive
0. For Fy" the function f contains terms proportional context in a unified way. In this approach, a generaliza-
to[1 — (1 — g)BH]"a~(=DV(1-a)  Consequently, it is tion of thg Bogo!lubov me_quallty WhIC'h is form invariant
necessary thag > 1 — 1/n in order thatF" does not for all ¢ is obtained. This property is in variance with

contribute to the last term of (10). These observationdh€ generalization presented in Ref. [32]. When we con-
indicate that arbitrarily high orders in the perturbationSider arbitrary high orders in the perturbation expansion,

expansion, developed in preceding discussions, can B&e musthave; = 1. On the other hand, the Bogoliubov
used only forg = 1. On the other hand, the variational
approach can be used, in general, forgat> 0. When the ——7—
last term of (10) is not zero, there is no guarantee Eljl%:it
remains negative, because, in general, the sigfypfd A 0+
is not known. In this case, the inequality (9) cannot be
generally employed.

To illustrate the methods developed above, we consider
a one-dimensional harmonic oscillatal, = p2/2m +
mw?x?/2, which we will approximate by a particle in
a square well potentialH, = p2/2m + V, with Vy =
0 for |x| = L/2 and Vy = « for |x| > L/2. In this -40

example, we are assumifgy> 0. The partition function ~
of the unperturbed system and tir@xpectation value for S
H; = H — H, can be directly calculated, i.e., & 50
Y 60
Le 2 F(Z:—Z) o
F[(l—mqﬂ)'ﬁ]l/zr(z;lturl) s g <1, LI_L:
zV = e (11)
Lr 2mm _q1/2 "1 2 >1
h[(q—1)5] T q , -80
5 PP approximated
and 1 —— exact
mw?L3 2mm_11/2 F(ﬁ) -100 4
©) 24z, [s] i e <1
<H - H0>q = r 1{]—4 12
mw2L3[ 2mr ]1/2 (qu_E) > 1 E 3
2457 Hlg=DB o - 4 (12)
-120 T T T T T T T T T
Thus, the free energyF,(0), can be obtained directly 2 4 6 8 10
from Egs. (11) and (3). Note th&" is convergent only T
for g < 3. ( Temperature )
Now, we consider the variational method. In this caser|c. 1. Free energy approximated and exact vs temperature
the minimization ofF ") + (H — Hy)\" leads to for three typical values of (with @ = m = h = 1).
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