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A unified presentation of the perturbation and variational methods for the generalized statistical
mechanics based on Tsallis entropy is given here. In the case of the variational method, the Bogoliubov
inequality is generalized in a very natural way following the Feynman proof for the usual statistical
mechanics. The inequality turns out to beform invariant with respect to the entropic indexq. The
method is illustrated with a simple example in classical mechanics. The formalisms developed here are
expected to be useful in the discussion of nonextensive systems. [S0031-9007(97)05008-4]
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Nonextensive effects are common in many branch
of the physics, for instance, anomalous diffusion [1–4
astrophysics with long-range (gravitational) interactio
[5–9], some magnetic systems [10–12], and some surf
tension questions [13,14]. These examples indicate t
the standard statistical mechanics and thermodynam
need some extensions. In this direction, a theoreti
tool based in a nonextensive entropy (Tsallis entrop
[15] has successfully been applied in several situatio
for example, Lévy-type anomalous superdiffusion [16
Euler turbulence [17], self-gravitating systems [17–21
cosmic background radiation [22], peculiar velocities
galaxies [23], linear response theory [24] and electro
phonon interaction [25], and ferrofluidlike systems [26
Lavenda and co-workers [27] stress that any new
proposed entropy [28] must have “concavity” proper
for it to be correct. Tsallis [15] and Mendes [29
have shown that the Tsallis entropy indeed satisfies t
criterion and hence meets this requirement of concav
The above features of Tsallis entropy thus make
unique among other forms for entropy suggested
the literature. In this context, it is very important t
understand more deeply the properties of the generali
statistical mechanics based on the Tsallis entropy.
particular, a generalization of the approximate methods
calculation of its thermodynamical functions is of gre
value, as, for instance, the semiclassical approximat
[30], perturbation, and variational methods. The prese
Letter deals with the last two questions. We develop he
the perturbation and variational methods in a unified wa
This approach provides the generalization of the Feynm
proof [31] of the Bogoliubov inequality, which appear
to be a natural generalization of this inequality. Indee
we shall prove thatthe original form of the inequality
is preserved[see inequality (9)]. This inequality does
not coincide from that proposed in Ref. [32], except fo
q ­ 1. This is due to the fact that we use differen
mathematical inequalities to derive our final results.
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The Tsallis entropy and aq-expectation value for
an observableA [33] is defined, respectively, asSq ­
k Tr rs1 2 rq21dysq 2 1d and kAlq ­ Tr rqA, where
r is the density matrix,q [ R gives the degree of
nonextensivity, andk is a positive constant. Without loss
of generality, we employk ­ 1 in the following analysis.
By using the above definitions with Trr ­ 1 one obtains
the canonical distribution [33],

pn ­ psEnd ­
f1 2 s1 2 qdbEng1ys12qd

Zq
, (1)

where hpnj are the probabilities,b is the inverse of
the temperature,hEnj is the set of eigenvalues of the
Hamiltonian, and

Zq ­
X
n

f1 2 s1 2 qdbEng1ys12qd (2)

is the generalized partition function. In the expre
sions (1) and (2) we assumed that1 2 s1 2 qdbEn $ 0.
When this condition is not satisfied we have a cutoff. F
instance, when a classical partition function is calculate
the integration limits in phase space are given by the co
dition 1 2 s1 2 qdbH $ 0. From Eqs. (1) and (2) sev-
eral relations can be obtained; for instance, the generali
free energy becomes

Fq ­ Uq 2 TSq ­ 2
1
b

Z
12q
q 2 1
1 2 q

, (3)

whereUq ­
P

n p
q
n En is the generalized internal energy

and T is the temperature which satisfies the relatio
1yT ­ ≠Sqy≠Uq. Note that the previous expressions a
reduced to the usual ones in the limit caseq ! 1.

To develop the perturbation method in this generaliz
statistical mechanics we assume that the Hamiltonian
the system is

H ­ H0 1 lHI . (4)

In this expression,H0 is the Hamiltonian of a soluble
model,lHI is small enough so that it can be considere
© 1998 The American Physical Society
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as a perturbation onH0 (H0 andHI need not necessaril
commute), andl is the perturbation parameter. Thus, t
perturbative expansion of the free energy can be writ
asFqsld ­ Fs0d

q 1 lFs1d
q 1

l2

2 Fs2d
q 1 . . . .
r
th
(

i

a

e
n

To understand how the correctionsFsnd
q are calculated

it suffices to evaluate the first three terms. The fir
term is the free energy for the case without perturbatio
Fs0d

q ­ Fqs0d. The second term is obtained from the firs
derivative ofFqsld at l ­ 0,
n

Fs1d
q ­

≠Fqs0d
≠l

­ 2
1

bZ
q
q

≠

≠l

X
n

f1 2 s1 2 qdbEng1ys12qd

É
l­0

­ kHI ls0d
q , (5)

where the superscripts0d indicates that theq-expected value is calculated forl ­ 0. To obtain the last equality it is
necessary to exchange the order of derivative with respect tol and the sum overn. Furthermore, the Hellmann-Feyman
theorem was used,≠Eny≠l ­ knj≠Hy≠ljnl, or equivalently the relation≠jnly≠l ­

P
mfinkmjHI jnlysEn 2 Emd, which

was obtained from the first order perturbation theory. The calculation ofFs2d
q is similar. Thus, by using the above

considerations we obtain

Fs2d
q ­

≠2Fqs0d
≠l2

­ 2bqsZs0d
q dq21

X
n

psEs0d
n d hfpsEs0d

n dq21knjHI jnls0d 2 kHI ls0d
q g2j

2
X
n

X
mfin

jknjHI jmls0dj2
psEs0d

m dq 2 psEs0d
n dq

E
s0d
n 2 E

s0d
m

. (6)
.
ed
When H0 and HI commute (in the classical case, fo
instance) the expression (6) is more simple, i.e.,
second term in the right side is zero. Notice that Eqs.
and (6) are correct for anyl, but in this case it is
e
5)

necessary to consider the dependence ofjnl with l and to
substituteEs0d

n by En. This property will be used later on
Finally, the free energy up to the corrections calculat

above is
Fqsld ­ Fqs0d 1 lkHI ls0d
q 2

l2

2
bqsZs0d

q dq21
X
n

psEs0d
n d hfpsEs0d

n dq21knjHI jnls0d 2 kHI ls0d
q g2j

2
X
n

X
mfin

jknjHI jmls0dj2
psEs0d

m dq 2 psEs0d
n dq

E
s0d
n 2 E

s0d
m

1 O sl3d , (7)
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where jnl is evaluated withl ­ 0. It is important to
emphasize that the previous calculation was perform
supposing that the derivative with respect tol can
commute with the sum over the states, but generally
is not true because the sum, through its upper limit, c
depend onl. Indeed, when the factor1 2 s1 2 qdbEn

is negative the sum in (2) must be truncated, and
En depends onl it follows that the upper limit of
the sum over the states also depends onl. Without
losing generality one can considerb . 0 in the following
analysis (forb , 0 the analysis is essentially the same
Therefore, we can suppose thatEn $ 0 for all n. In this
case,1 2 s1 2 qdbEn is not negative forq . 1, then
the order of the derivative inl with the sum inn can
be interchanged. For the caseq , 1 the analysis is more
complicated, and we will return to this question later
the classical context.

Consider now the variational method. In this cas
the Hamiltonian of the system isH ­ H0 1 HI , but
in the following analysis it is convenient to employ
Hamiltonian that interpolates continuouslyH0 and H.
Thus, we use the Hamiltonian (4) withl [ f0, 1g. Now,
we will employ the general identity for free energy,

Fqsld ­ Fqs0d 1 lF0
qs0d 1

l2

2
F00

q sl0d , (8)
ed

it
an

as

).

n

e,

where each prime indicates a derivative with respe
to l, and l0 [ f0, 1g. On the other hand, the ex
pression (6) is not positive forq . 0, and it is not
negative for q , 0 for l ­ l0. In fact,

P
n psEnd 3

hfpsEndq21knjHI jnl 2 kHI lqg2j $ 0, and psEnd #

psEmd for En $ Em. Therefore, by considering (5)
and (8) we conclude thatFqsld $ Fqs0d 1 lkHI ls0d

q for

q , 0, and Fqsld # Fqs0d 1 lkHI ls0d
q for q . 0. But

these conclusions, as we discussed at the end of the
paragraph, cannot always be true for allq. Thus, when
we considerb . 0, En $ 0 and the fact that the last
inequality is correct for all possible values ofl, we can
choosel ­ 1 and conclude that

Fq # Fs0d
q 1 kHI ls0d

q (9)

for q $ 1. As we can see immediately, the inequalit
(9) is a natural generalization of the usual Bogoliubo
inequality,F # Fs0d 1 kHI ls0d.

To analyze the contribution of the cutoff in the pertu
bation and variational methods it is convenient to consid
the generalized classical statistics forb . 0 andEn $ 0
(the analysis forb , 0 and En , 0 can be extended
analogously). In this case, there is cutoff only for the ca
q , 1, so we are going to restrict the following analys
to the caseq , 1. Now, we change

P
n by

R
dG, where
219
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dG ­
Q

ssdxsdpsyhd (h is the Planck constant), and th
integration is over the phase space region defined by
inequality 1 2 s1 2 qdbH $ 0. Thus, to analyzeFsnd

q
we make use of the following identity:

d
dl

Z
dG f ­

Z
dG

≠f
≠l

1
Z

≠V

X
u

dSu

√
f

dyu

dl

!
.

(10)

In the present application,f is a function of phase space
variables,yu, and≠V is the hypersurface defined by th
equation1 2 s1 2 qdbH ­ 0.

When the last term in the right side of (10) is zero
the previous analysis is recovered. In general, this occ
when f ­ 0 and dynydl is finite on ≠V . By using
these conditions andf ­ f1 2 s1 2 qdbHg1ys12qd we
conclude immediately that (5) remains intact forq , 1.
For F

s2d
q the function f contains a term proportiona

to f1 2 s1 2 qdbHgqys12qd. Thus, the conditionf ­ 0
on ≠V is satisfied only forqys1 2 qd . 0, i.e., q .

0. For F
snd
q the functionf contains terms proportiona

to f1 2 s1 2 qdbHgfnq2sn21dgys12qd. Consequently, it is
necessary thatq . 1 2 1yn in order thatFsnd

q does not
contribute to the last term of (10). These observatio
indicate that arbitrarily high orders in the perturbatio
expansion, developed in preceding discussions, can
used only forq $ 1. On the other hand, the variationa
approach can be used, in general, for allq . 0. When the
last term of (10) is not zero, there is no guarantee thatFs2d

q
remains negative, because, in general, the sign ofdyuydl

is not known. In this case, the inequality (9) cannot b
generally employed.

To illustrate the methods developed above, we consi
a one-dimensional harmonic oscillator,H ­ p2y2m 1

mw2x2y2, which we will approximate by a particle in
a square well potential,H0 ­ p2y2m 1 V0 with V0 ­
0 for jxj # Ly2 and V0 ­ ` for jxj . Ly2. In this
example, we are assumingb . 0. The partition function
of the unperturbed system and theq-expectation value for
H1 ­ H 2 H0 can be directly calculated, i.e.,

Zs0d
q ­

8>><>>:
L
h f 2mp

s12qdb g1y2
Gs 22q

12q
d

Gs 22q

12q
1 1

2
d , q , 1 ,

L
h f 2mp

sq21db g1y2
Gs 1

q21
2 1

2
d

Gs 1

q21
d , q . 1 ,

(11)

and

kH 2 H0ls0d
q ­

8>><>>:
mv2L3

24hZ
s0dq
q

f 2mp

s12qdb g1y2
Gs 1

12q
d

Gs 1

12q
1 1

2
d , q , 1 ,

mv2L3

24hZ
s0dq
q

f 2mp

sq21db g1y2
Gs q

q21
2 1

2
d

Gs q

q21
d , q . 1 .

(12)

Thus, the free energy,Fqs0d, can be obtained directly
from Eqs. (11) and (3). Note thatZs0d

q is convergent only
for q , 3.

Now, we consider the variational method. In this cas
the minimization ofFs0d

q 1 kH 2 H0ls0d
q leads to
220
he

,
rs

s
n
be

l

e

er

e,

L ­
4

3 2 q

√
3

mv2b

!1y2

(13)

for both q , 1 andq . 1. Substitution of this result in
Fs0d

q 1 kH 2 H0ls0d
q leads to the optimum approximation

for the free energy. Finally, the comparison of thi
approximation for the free energy with the exact on
(valid only for q , 2),

F ­ 2
1

s1 2 qdb

"√
2p

hvb

1
2 2 q

!12q

2 1

#
, (14)

gives a good approximation, as in the caseq ! 1 (see
Fig. 1). Furthermore, Fig. 1 shows that the approxim
tion is improved for largerq. Notice that all previous
expressions reduce to the usual one in the limitq ! 1.
The perturbative contributions can be obtained in a sim
lar way.

Summing up, we have developed here generalized p
turbation and variational methods for the nonextensi
context in a unified way. In this approach, a generaliz
tion of the Bogoliubov inequality which is form invariant
for all q is obtained. This property is in variance with
the generalization presented in Ref. [32]. When we co
sider arbitrary high orders in the perturbation expansio
we must haveq $ 1. On the other hand, the Bogoliubov

FIG. 1. Free energy approximated and exact vs temperat
for three typical values ofq (with v ­ m ­ h ­ 1).
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inequality can be generally used forq . 0. We believe
that approaches presented here are useful in the discus
of the anomalies currently associated with nonextens
systems.
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