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Local Fractional Fokker-Planck Equation
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We propose a new class of differential equations, which we call local fractional differential equations.
They involve local fractional derivatives and appear to be suitable to deal with phenomena taking place
in fractal space and time. A local fractional analog of the Fokker-Planck equation has been derived
starting from the Chapman-Kolmogorov condition. We solve the equation with a specific choice of the
transition probability and show how subdiffusive behavior can arise. [S0031-9007(97)04966-1]

PACS numbers: 05.40.+j, 02.50.Ga, 05.60.+w, 47.53.+n

In recent studies of scaling phenomena [1-3,4], many12], in particular, that the LFD of Weierstrass nowhere
applications for derivatives and integrals of fractional or-differentiable function exists up to (critical) ordér— v,
der have been found. The main aim of most of thesavherel + v (0 < y < 1) is the box dimension of the
papers is to formulate fractional integrodifferential equa-graph of the function. Further, the use of LFD to study
tions to describe some scaling process. Modifications opointwise behavior of multifractal functions was also
equations governing physical processes such as the diffdemonstrated. The definition was generalized [15] for
sion equation, the wave equation, and the Fokker-Planc& function for which the firstN derivatives exist by
equation have been suggested [5—10] which incorporateeplacing[ f(x) — f(y)] on the RHS of Eq. (1) by
fractional derivatives with respect to time. Recently, N N "(y)
Zaslavsky [11] argued that the chaotic Hamiltonian dy- Fy(e,y) = fx) = > STy) x—y)", @)
namics of particles can be described by using fractional iz T+ 1)
generalization of the Fokker-Planck-Kolmogorov (FPK) yith g in the interval (N,N + 1]. Sometimes it is
equation. However, fractional derivatives are nonlocalssential to distinguish between limits taken from above
and hence such equations are not suitable for the study,g pelow. In that case we define
of local scaling behavior. In the present work we rigor- ~
ously derive fractional analogs of equations like the FPK DL F(y) = lim diFy(x,y)
equation involving one space variable. Our approach dif- x—yt [d = (x — y))a°
fers from the above mentioned ones since we use local

. . . . i qd = q i i
fractional Taylor expansion, which was established only’/€ Will assumeD? = D: unless mentioned otherwise.

recently [12]. As is argued below, such equations caﬁA’{e note tt;at whery = n, an integerD?f(y) is simply
provide appropriate schemes for describing evolutioné f(y)/dy".

(e.g., sub- or superdiffusive) normally not obtained from The importance of the above definition also lies in the
the usual FPK equation. fact that the LFDs appear naturally in the fractional Taylor

It was realized recently [12] that there is a direct quanti-£XPansion as the coefficient of the power with fractional

tative connection between fractional differentiability prop- €XPonent. Thus, fod = x —y
erties of continuous but nowhere differentiable functions

(4)

N (n) q

and the dimensions of their graphs. In order to show this, T + 1) T(q + 1)
a new notion of local fractional derivative (LFD) was in- n=0
troduced. The LFD of ordey of a function f(y) was + Ry(y,4), (5)
defined by whereR,(y,A) is the remainder [12].
di f(x) — f(y)] The basic idea of the present paper is to utilize such

Df(y) = )I(L”} [dx —y)]¢ ° 0<g=1,1) factonal Taylor expansions in the Chapman-Kolmogorov

where the derivative on the right-hand side (RHS) is thefondition and obtain analogs of the FPK equation. We
Riemann-Liouville fractional derivative [13,14], viz., for P€gin by recalling the usual procedure and difficulties

0<g<l1 of obtaining the FPK equation. Lé¥(x,t) denote the
. . probability density for a random variablé taking value
dif(x)  _ 1 i[ &dy. (2) xattimer, then
[dx —a)lt T —q)dxJa (x = y)
As is obvious from Eq. (2), the operataf /[d(x — a)]? W(x,t + 1) = [ P(x,t + 7lx', )W (', t)dx',  (6)

is nonlocal, and, further, thé? f(x)/[d(x — a)]? # 0 for
f(x) = const. The moativation for the definition db? where P(xy,11]x2, 1) denotes the transition probability
was to correct for both of these features. It was shown irffrom x; at times, to x, at timez, and= = 0. The usual
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FPK equation is obtained [16] from Eq. (6) by expandingis when we have a fractal function as the initial probabil-
the integrand in a Taylor series. ity density. In such a case even the usual Fokker-Planck
There are a number of limitations of this approachoperator cannot be operated on the initial density.

arising naturally from the assumptions going into its It is thus of interest to broaden the class of differen-
derivation. For instance, as noted in [17], probability dis-tial equations one can derive starting from the Chapman-
tributions whose second moment does not exist are nd€olmogorov equation and to study various processes
described by the FPK equation even though such distridescribed by them. In this paper we pursue the possibility
butions may satisfy the original Chapman-Kolmogorovof removing the assumption of differentiability of proba-
equation. Also, as emphasized in [18], the differentiabil-bility densities. We follow the usual procedure to derive
ity assumption may also break down in various situationsthe Fokker-Planck equation from Eq. (6), except that we
For instance, the transitional probability density may nothow expand the integrand using fractional Taylor expan-
be differentiable at = x/, in which case the derivation of sion (5) instead of ordinary Taylor expansion. Thus, if
the FP equation itself will break down. Another situaticTnA =x —x,

N
Wt + 1) = W) + S F(nl-l-

- [fxw dy(y — x)PP(y,t + 7lx,)W(x, 1)}

0 n o
1) <a(—x)> fdx A"P(x + At + 7lx, )W(x, 1)

I o5
+F(B+1)[Dxi

+ m [Df{f_m dy (x — y)PP(y,t + 7lx, t)W(x,t):| + remainder @
where D, is a partial LFD with respect ta. Now if ! _ u a \' ., B 4B
0<a=1 L(x,t) = ; pras AL (x, 1) + DE_AP_(x,1)
B 4B
‘DEW(x,t . + DitAg+(x, 1),
Wt + 7) — Wx, 1) = TDfWx, 1) + remainder D+ At (x,1) (13)
(e + 1) where
whereD); is a partial LFD with respect to. In general, 8 ] M/;f(x,t, )(a + 1)
a and 8 may depend on and:. But we assume that Agz(x,1) = L'Lno «T(B + 1) (14)
and B are constants. Therefore we get and
TDEW(x,1) ( 9 )[M (x.1,7) } B
TR WD L AB(x,1) = Ans(x,1) + AP _(x,1). 15
T(a + 1) ; o= L T+ 1) V&0 a(x ) (0 1) + Ag(x ), (15)
M} (x.t.7) Here corresponding,’s are assumed to exist. We would
+ Df[# (x,t)} like to point out that Eq. (12) is analogous to truncated
I +1 Kramers-Moyal expansion. Two rather important special

g [Mpg(x,t,7) casesar® < B < landl < B < 2. In the former case
+ Dixr T@B + 1) W.n) . (8)  we get the operator

L(x,t)=DP AP (x,1) + DI AL (x1),

o and in the latter case we get

M, (x,1,7) = f dy(y — x)* d
x L(x,1) = ——Aé(x,t) + [D)f,Ag,(x,t)
X P(y,t + 7lx,1) a>0, (9 ox

where

+ Df+Ag+(X, 1.

M, (x,t,7) = f dy (x = y)* This operator can be identified as generalizations of the
o Fokker-Planck operator in one space variable. It is clear
X P(y,t +7lx,0)  a>0, (10)  that whena = 1 and B = 2 we get back the usual
and Fokker-Planck operator.

" _ It may be pointed out that the local fractional differ-
Ma(x,1,7) = Mg (v, 1,7) + My (e t,7) - (11) 0 g equations (LFDE) that we are proposing here are a

are transitional moments. The limit— 0 gives us an new kind of differential equations. To our knowledge this
equation is the first direct occurrence of such equations. We note

o _ that they are different from the conventional fractional dif-
DEW(x, 1) = L(x, hW(x. 1), (12) " ferential equations which have been studied to some ex-

where the operataf is given by tent in the literature [13,14] and which have found several
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applications ranging from solutions of Bessel equation,and when the operator depends on time we have
diffusion on curved surfaces to wave equation etc. In fact, _ 5 [ Laar

the equations appearing in [1,2,5—-9,11] are all conven- W, t) = Teo W(x,O()_, (19)
tional fractional differential equations. On the other handwhere £ is an operator in Eq. (12) an@ is the time
the present LFDE involve operatof$?, which found ordering operator.

successful applications [12] in studying differentiability ~For the symmetric stable Lévy process of ingexthe
properties of nowhere differentiable functions and relatimoments scale a¥, (A7) = AY/“My(t) and we get

ing them to dimensions. They are appropriate to address DY *W(x.1) = DY [AY W (x. 1

scaling phenomena. It is for this reason that one would ! (x, 1) "’[y 7/"7‘(}(’ W, )]

expect the equations governing the fractal processes to be + DatlAy ) e, HW(x, )], (20)

LFDE. At this stage it is worth reflecting for a moment since the process is symmetric the first derivative does
on the behavior of meaningful solutions of simple LFDE. not appear. The order of the time derivative depends on
We begin by considering the equation that of the space derivative but it is always less than 1.
Dif(x) = g(x). (16)  Now there is only one free parametemwhich is restricted
The questions of the general conditions guaranteeintp the range0 < y < u. In this case the value of
solutions of such an equation is an involved one. We not&vill be decided by the differentiability class of the initial
that the equatiorD? f(x) = const does not have a finite distribution function. (The details and intricacies will be
solution when0 < ¢ < 1. Interestingly, the solutions addressed in[19].) When = 2 andy = 2 we get back
to (16) can exist wherg(x) has a fractal support. For the usual Fokker-Planck equation describing a Gaussian
instance, wherg(x) = yc(x), the membership function process. Equation (20) forms one example where the
of a cantor seC [i.e., g(x) = 1if xisin C andg(x) = 0  usual derivation of the FPK equation breaks down and
otherwise], the solution with initial conditiorf(0) = 0  we get nontrivial values for the orders of the derivatives.
exists if g = a = dimyC. Explicitly, generalizing the As our next example, we consider the transition proba-

Riemann integration procedure, bility
Pc(x) S e — ) 1
(X =—"" — |im T FL (17 / — —(x—x")?/APc(t,7)
f ) F(a + 1) N—x IZO F(a + 1) ¢ ( ) P(X,l + Tlx ’t) WAP(I, 'T) e (21)
where x; are subdivision points of the intervdlk, = = 8(x — x') if APc(t,7) =0, (22)

0,xy = x] and F¢ is a flag function which takes value ) N
1 if the interval[x;, x; 1] contains a point of the set and ~ WhereAPc(1,7) = Pc(t + 7) — Pc(r). This transition
0 otherwise. Note thalc(x) is a Lebesgue-Cantor (stair- Probability describes a nonstationary process which cor-
case) function and satisfies the bounds' < Pc(x) < responds to transitions occurring only at times which lie
bx® wherea and b are suitable positive constants. In 0N a fractal set. Such a transition probability can be used
general, the algorithm of Eq. (17) will work only for the 0 model _phe_nomena where transition is very rare, for in-
setsC for which dimzC = dimyC (in fact in this case Stance, dl_ffu5|on in the presence of traps. The second mo-
only N terms in the summation are nonzero). More de-mentis given, from Eq. (11), by
tails about solutions of such equations and algorithms will AP(t,7) 1 D*Pc(t)
be discussed elsewhere [19]. My(t,7) = ) ) T + 1) T
Returning back to Eq. (14) it is clear that the small
time behavior of different transitional moments decide _ T (1) 23)
the order of the derivative with respect to time (in order y At
to demonstrate this point we consider the example of &
Lévy process below). On the other hand, small distanc
behavior of transitional probability or the differentiability
property of the initial probability density would dictate the
order of space derivative. Depending on the actual values
of @ and B as well as their interrelation the above local
FFPK equation will describe different processes.
Equations which give rise to an evolution-semigroup
[i.e., corresponding to evolution operators satisfy-
ing Py = identity and P,+; = P, o Pg,s,t =0, as in
Eq. (27) below] are of interest in physics. Equation (12) W(x,t) = P, ,W(x, 1), (25)
corresponds to a semigroupdf = 1. One can then write Where
down a formal solution of the above equation in this case

as follows. In the time independent case we have : N_l[ 1 92 }
P,—, = lim 1+ —(tjs1 — 4)°F-—|. (26
Wx,t) = eLD'W(x,0), (18) Tl N il:([) 4 (ti1 )"Fe dx2 (26)

a

his gives us the following local fractional Fokker-Planck
%quation (in this case an analog of a diffusion equation):

Tl +1)
4

We note that even though the variablés taking all real

positive values the actual evolution takes place only for

values ofz in the fractal selC. The solution of Eq. (24)
can be easily obtained as

2
DEW (x, 1) el % Wi, (24)
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The above product converges because except for tHdsing them it may be possible to obtain the local FPK
number of terms of ordeN“ all other terms take value equation involving several variables.
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