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Local Fractional Fokker-Planck Equation
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We propose a new class of differential equations, which we call local fractional differential equat
They involve local fractional derivatives and appear to be suitable to deal with phenomena taking
in fractal space and time. A local fractional analog of the Fokker-Planck equation has been de
starting from the Chapman-Kolmogorov condition. We solve the equation with a specific choice o
transition probability and show how subdiffusive behavior can arise. [S0031-9007(97)04966-1]
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In recent studies of scaling phenomena [1–3,4], ma
applications for derivatives and integrals of fractional o
der have been found. The main aim of most of the
papers is to formulate fractional integrodifferential equ
tions to describe some scaling process. Modifications
equations governing physical processes such as the d
sion equation, the wave equation, and the Fokker-Pla
equation have been suggested [5–10] which incorpo
fractional derivatives with respect to time. Recent
Zaslavsky [11] argued that the chaotic Hamiltonian d
namics of particles can be described by using fractio
generalization of the Fokker-Planck-Kolmogorov (FPK
equation. However, fractional derivatives are nonloc
and hence such equations are not suitable for the st
of local scaling behavior. In the present work we rigo
ously derive fractional analogs of equations like the FP
equation involving one space variable. Our approach
fers from the above mentioned ones since we use lo
fractional Taylor expansion, which was established o
recently [12]. As is argued below, such equations c
provide appropriate schemes for describing evolutio
(e.g., sub- or superdiffusive) normally not obtained fro
the usual FPK equation.

It was realized recently [12] that there is a direct quan
tative connection between fractional differentiability pro
erties of continuous but nowhere differentiable functio
and the dimensions of their graphs. In order to show th
a new notion of local fractional derivative (LFD) was in
troduced. The LFD of orderq of a function fs yd was
defined by

Dqfs yd ­ lim
x!y

dqf fsxd 2 fs ydg
fdsx 2 ydgq

, 0 , q # 1 , (1)

where the derivative on the right-hand side (RHS) is t
Riemann-Liouville fractional derivative [13,14], viz., fo
0 , q , 1

dqfsxd
fdsx 2 adgq

­
1

Gs1 2 qd
d

dx

Z x

a

fs yd
sx 2 ydq

dy . (2)

As is obvious from Eq. (2), the operatordqyfdsx 2 adgq

is nonlocal, and, further, thedqfsxdyfdsx 2 adgq fi 0 for
fsxd ­ const. The motivation for the definition ofDq

was to correct for both of these features. It was shown
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[12], in particular, that the LFD of Weierstrass nowhe
differentiable function exists up to (critical) order1 2 g,
where 1 1 g s0 , g , 1d is the box dimension of the
graph of the function. Further, the use of LFD to stud
pointwise behavior of multifractal functions was als
demonstrated. The definition was generalized [15] f
a function for which the firstN derivatives exist by
replacingf fsxd 2 fs ydg on the RHS of Eq. (1) by

eFN sx, yd ­ fsxd 2

NX
n­0

f snds yd
Gsn 1 1d

sx 2 ydn, (3)

with q in the interval sN , N 1 1g. Sometimes it is
essential to distinguish between limits taken from abo
and below. In that case we define

D
q
6fs yd ­ lim

x!y6

dq eFN sx, yd
fd 6 sx 2 ydgq . (4)

We will assumeDq ­ D
q
1 unless mentioned otherwise

We note that whenq ­ n, an integerDqfs yd is simply
dnfs ydydyn.

The importance of the above definition also lies in th
fact that the LFDs appear naturally in the fractional Tayl
expansion as the coefficient of the power with fraction
exponent. Thus, forD ­ x 2 y

fsxd ­
NX

n­0

fsnds yd
Gsn 1 1d

Dn 1
D

q
6 fs yd

Gsq 1 1d
s6Ddq

1 Rqs y, Dd , (5)

whereRqs y, Dd is the remainder [12].
The basic idea of the present paper is to utilize su

fractional Taylor expansions in the Chapman-Kolmogor
condition and obtain analogs of the FPK equation. W
begin by recalling the usual procedure and difficultie
of obtaining the FPK equation. LetW sx, td denote the
probability density for a random variableX taking value
x at timet, then

Wsx, t 1 td ­
Z

Psx, t 1 tjx0, tdW sx0, td dx0, (6)

where Psx1, t1jx2, t2d denotes the transition probability
from x1 at timet1 to x2 at timet2 andt $ 0. The usual
© 1998 The American Physical Society
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FPK equation is obtained [16] from Eq. (6) by expandi
the integrand in a Taylor series.

There are a number of limitations of this approa
arising naturally from the assumptions going into
derivation. For instance, as noted in [17], probability d
tributions whose second moment does not exist are
described by the FPK equation even though such dis
butions may satisfy the original Chapman-Kolmogor
equation. Also, as emphasized in [18], the differentiab
ity assumption may also break down in various situatio
For instance, the transitional probability density may n
be differentiable atx ­ x0, in which case the derivation o
the FP equation itself will break down. Another situatio
g

h
s
-
ot
ri-
v
l-
s.
t

is when we have a fractal function as the initial probab
ity density. In such a case even the usual Fokker-Plan
operator cannot be operated on the initial density.

It is thus of interest to broaden the class of differe
tial equations one can derive starting from the Chapma
Kolmogorov equation and to study various process
described by them. In this paper we pursue the possibi
of removing the assumption of differentiability of proba
bility densities. We follow the usual procedure to deriv
the Fokker-Planck equation from Eq. (6), except that w
now expand the integrand using fractional Taylor expa
sion (5) instead of ordinary Taylor expansion. Thus,
D ­ x 2 x0,
W sx, t 1 td ­ W sx, td 1

NX
n­1

1
Gsn 1 1d

µ
≠

≠s2xd

∂n Z
dx0 DnPsx 1 D, t 1 tjx, tdWsx, td

1
1

Gsb 1 1d
Db

x2

∑Z `

x
dy s y 2 xdbPs y, t 1 tjx, tdWsx, td

∏
1

1
Gsb 1 1d

D
b
x1

∑Z x

2`
dy sx 2 ydbPs y, t 1 tjx, tdWsx, td

∏
1 remainder, (7)
d
al

he
ar

a
s
te
-
x-

al
where Dx is a partial LFD with respect tox. Now if
0 , a # 1

Wsx, t 1 td 2 W sx, td ­
taDa

t W sx, td
Gsa 1 1d

1 remainder,

whereDt is a partial LFD with respect tot. In general,
a andb may depend onx and t. But we assume thata
andb are constants. Therefore we get

taDa
t W sx, td

Gsa 1 1d
­

NX
n­1

µ
≠

≠s2xd

∂n∑
Mnsx, t, td
Gsn 1 1d

W sx, td
∏

1 Db
x2

∑
M1

b sx, t, td
Gsb 1 1d

Wsx, td
∏

1 D
b
x1

∑
M2

b sx, t, td
Gsb 1 1d

Wsx, td
∏

, (8)

where

M1
a sx, t, td ­

Z `

x
dy s y 2 xda

3 Ps y, t 1 tjx, td a . 0 , (9)

M2
a sx, t, td ­

Z x

2`
dy sx 2 yda

3 Ps y, t 1 tjx, td a . 0 , (10)

and

Masx, t, td ­ M1
a sx, t, td 1 M2

a sx, t, td (11)

are transitional moments. The limitt ! 0 gives us an
equation

Da
t W sx, td ; L sx, tdW sx, td , (12)

where the operatorL is given by
L sx, td ­
NX

n­1

µ
≠

≠s2xd

∂n

An
asx, td 1 Db

x2Ab
a2sx, td

1 D
b
x1A

b
a1sx, td , (13)

where

A
b
a7sx, td ­ lim

t!0

M6
b sx, t, tdGsa 1 1d

taGsb 1 1d
(14)

and

Ab
a sx, td ­ A

b
a1sx, td 1 Ab

a2sx, td . (15)

Here correspondingAa ’s are assumed to exist. We would
like to point out that Eq. (12) is analogous to truncate
Kramers-Moyal expansion. Two rather important speci
cases are0 , b , 1 and1 , b , 2. In the former case
we get the operator

L sx, td ­ Db
x2Ab

a2sx, td 1 D
b
x1A

b
a1sx, td ,

and in the latter case we get

L sx, td ­ 2
≠

≠x
A1

asx, td 1 Db
x2Ab

a2sx, td

1 D
b
x1A

b
a1sx, td .

This operator can be identified as generalizations of t
Fokker-Planck operator in one space variable. It is cle
that when a ­ 1 and b ­ 2 we get back the usual
Fokker-Planck operator.

It may be pointed out that the local fractional differ-
ential equations (LFDE) that we are proposing here are
new kind of differential equations. To our knowledge thi
is the first direct occurrence of such equations. We no
that they are different from the conventional fractional dif
ferential equations which have been studied to some e
tent in the literature [13,14] and which have found sever
215
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applications ranging from solutions of Bessel equatio
diffusion on curved surfaces to wave equation etc. In fa
the equations appearing in [1,2,5–9,11] are all conve
tional fractional differential equations. On the other han
the present LFDE involve operatorsDq, which found
successful applications [12] in studying differentiabilit
properties of nowhere differentiable functions and rela
ing them to dimensions. They are appropriate to addr
scaling phenomena. It is for this reason that one wou
expect the equations governing the fractal processes to
LFDE. At this stage it is worth reflecting for a momen
on the behavior of meaningful solutions of simple LFDE
We begin by considering the equation

Dq
xfsxd ­ gsxd . (16)

The questions of the general conditions guarantee
solutions of such an equation is an involved one. We no
that the equationD

q
xfsxd ­ const does not have a finite

solution when0 , q , 1. Interestingly, the solutions
to (16) can exist whengsxd has a fractal support. For
instance, whengsxd ­ xCsxd, the membership function
of a cantor setC [i.e., gsxd ­ 1 if x is in C andgsxd ­ 0
otherwise], the solution with initial conditionfs0d ­ 0
exists if q ­ a ; dimHC. Explicitly, generalizing the
Riemann integration procedure,

fsxd ;
PCsxd

Gsa 1 1d
­ lim

N!`

N21X
i­0

sxi11 2 xida

Gsa 1 1d
Fi

C , (17)

where xi are subdivision points of the intervalfx0 ­
0, xN ­ xg and Fi

C is a flag function which takes value
1 if the intervalfxi , xi11g contains a point of the setC and
0 otherwise. Note thatPCsxd is a Lebesgue-Cantor (stair
case) function and satisfies the boundsaxa # PCsxd #

bxa where a and b are suitable positive constants. I
general, the algorithm of Eq. (17) will work only for the
setsC for which dimBC ­ dimHC (in fact in this case
only Na terms in the summation are nonzero). More d
tails about solutions of such equations and algorithms w
be discussed elsewhere [19].

Returning back to Eq. (14) it is clear that the sma
time behavior of different transitional moments decid
the order of the derivative with respect to time (in ord
to demonstrate this point we consider the example o
Lévy process below). On the other hand, small distan
behavior of transitional probability or the differentiability
property of the initial probability density would dictate th
order of space derivative. Depending on the actual valu
of a and b as well as their interrelation the above loca
FFPK equation will describe different processes.

Equations which give rise to an evolution-semigrou
[i.e., corresponding to evolution operatorsPt satisfy-
ing P0 ­ identity and Pt1s ­ Pt ± PS , s, t $ 0, as in
Eq. (27) below] are of interest in physics. Equation (1
corresponds to a semigroup ifa ­ 1. One can then write
down a formal solution of the above equation in this ca
as follows. In the time independent case we have

W sx, td ­ eL sxdtW sx, 0d , (18)
216
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and when the operator depends on time we have

W sx, td ­ T
√

e
Rt

0
L sx,t0 d dt0

W sx, 0d , (19)

where L is an operator in Eq. (12) andT
√

is the time
ordering operator.

For the symmetric stable Lévy process of indexm, the
moments scale asMgsltd ­ lgymMgstd and we get

D
gym
t W sx, td ­ Dg

x2fAg

gym2sx, tdW sx, tdg
1 D

g
x1fAg

gym1sx, tdWsx, tdg . (20)

Since the process is symmetric the first derivative do
not appear. The order of the time derivative depends
that of the space derivative but it is always less than
Now there is only one free parameterg which is restricted
to the range0 , g , m. In this case the value ofg
will be decided by the differentiability class of the initia
distribution function. (The details and intricacies will b
addressed in [19].) Whenm ­ 2 andg ­ 2 we get back
the usual Fokker-Planck equation describing a Gauss
process. Equation (20) forms one example where t
usual derivation of the FPK equation breaks down a
we get nontrivial values for the orders of the derivatives

As our next example, we consider the transition prob
bility

Psx, t 1 tjx0, td ­
1p

pDPst, td
e2sx2x0 d2yDPC st,td (21)

­ dsx 2 x0 d if DPCst, td ­ 0 , (22)

whereDPCst, td ­ PCst 1 td 2 PCstd. This transition
probability describes a nonstationary process which c
responds to transitions occurring only at times which l
on a fractal set. Such a transition probability can be us
to model phenomena where transition is very rare, for i
stance, diffusion in the presence of traps. The second m
ment is given, from Eq. (11), by

M2st, td ­
DPCst, td

2
.

1
2

DaPCstd
Gsa 1 1d

ta

­
ta

2
xCstd . (23)

This gives us the following local fractional Fokker-Planc
equation (in this case an analog of a diffusion equation)

Da
t W sx, td ­

Gsa 1 1d
4

xCstd
≠2

≠x2
W sx, td . (24)

We note that even though the variablet is taking all real
positive values the actual evolution takes place only f
values oft in the fractal setC. The solution of Eq. (24)
can be easily obtained as

W sx, td ­ Pt2t0W sx, t0d , (25)

where

Pt2t0 ­ lim
N!`

N21Y
i­0

∑
1 1

1
4

sti11 2 tidaFi
C

≠2

≠x2

∏
. (26)
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The above product converges because except for
number of terms of orderNa all other terms take value
1. It is clear that fort0 , t0 , t

Wsx, td ­ Pt2t0 Pt02t0 W sx, t0d (27)

and Pt gives rise to a semigroup evolution. Using
Eq. (17) it can be easily seen that

Wsx, td ­ efPC stdy4g s≠2y≠x2dW sx, t0 ­ 0d . (28)

Now choosing Wsx, 0d ­ dsxd and using the Fourier
representation of delta function then we get the solution

W sx, td ­
1p

pPCstd
e2x2yPCstd. (29)

Its consistency can easily be checked by substituting t
in Chapman-Kolmogorov equation. This solution satisfi
the bounds

1
p

pbta
e2x2yata

# Wsx, td #
1

p
pata

e2x2ybta

(30)

for some 0 , a , b. This is a model solution of a
subdiffusive behavior. It is clear that whena ­ 1 we
get back the typical solution of the ordinary diffusion
equation which issptd21y2 exps2x2ytd.

To conclude, we have derived the generalization
the FP equation which involves the local fractiona
derivatives. Our equations are fundamentally differe
from any of the equations proposed previously sin
they involve LFDs. They are local and more natur
generalizations of ordinary differential equations. LFDE
deserve a separate study in their own right [19]. W
would like to point out that LFDEs naturally give rise
to dynamical systems of a new kind (neither discre
nor continuous) in which time evolution takes plac
for values of time belonging to a Cantor-like set. W
further remark that since the present analog of t
FPK equation is derived from first principles, we fee
that our equation will have general applicability in th
field of physics. We expect them to be of value i
the studies of anomalous diffusion, chaotic Hamiltonia
systems, disordered phenomenon, etc. In our derivat
we assumed that the ordersa and b of derivatives
involved are constants. This would require a modificatio
for the description of multiscaling multifractal processe
We further note that directional LFDs are defined in [20
the
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].

Using them it may be possible to obtain the local FP
equation involving several variables.
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