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Nonlinear Modes of Liquid Drops as Solitary Waves
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The nonlinear dynamic equations of the surface of a liquid drop are shown to be directly connected
to Korteweg—de Vries (KdV) systems, giving traveling solutions that are cnoidal waves. They
generate multiscale patterns ranging from small harmonic oscillations (linearized model), to nonlinear
oscillations, up through solitary waves. These non-axis-symmetric localized shapes are also described
by a KdV Hamiltonian system. Recently such “rotons” were observed experimentally when the shape
oscillations of a droplet became nonlinear. The results apply to droplike systems from cluster formation
to stellar models, including hyperdeformed nuclei and fission. [S0031-9007(98)05553-7]

PACS numbers: 47.55.Dz, 24.10.Nz, 36.40.—c, 97.60.Jd

A fundamental understanding of nonlinear oscillationsliquid drops are described in [5]. Similar traveling or
of a liquid drop (NLD), which reveals new phenomenarunning waves are also discussed or quoted in [2,6].
and flows more complicated than linear theory suggests, i§hese results suggest that higher amplitude nonlinear
needed in diverse areas of science and technology. Besidescillations can lead to a traveling wave that originates on
their direct use in rheological and surfactant theory [1—7]the drop’s surface and develops towards the interior. This
such models apply to cluster physics [8], super- and hypelis shown to be related in a simple way to special solitary
deformed nuclei [1], nuclear breakup and fission [2,3,8]wave solutions, called “rotons” in the present analysis.
thin films [9], radar [4], and even stellar masses and suRecent experiments and numerical tests [8,12] suggest
pernova [1,10]. Theoretical approaches are usually basetle existence of stable traveling waves for a nonlinear
on numerical calculations within different NLD models dynamics in a circular geometry, reenforcing the theory.
[2—-4], and explain/predict axis-symmetric, nonlinear os- A new NLD model for describing an ideal, incompress-
cillations that are in very good agreement with experimentble fluid drop exercising irrotational flow with surface
[1,5-7]. However, there are experimental results whichtension, is employed in the analysis. Series expansion
show non-axis-symmetric modes, for example, travelingn terms of spherical harmonics is replaced by localized,
rotational shapes [5,6] that can lead to fission, cluster emisionlinear shapes shown to be analytic solutions of the
sion, or fusion [5-7]. system. The flow is potential and therefore governed by

In this Letter the existence of analytic solutions of NLD Laplace’s equation for potential flowhd = 0, while the
models that give rise to traveling solutions which are soli-dynamics is described by Euler’'s equation,
tary waves is proven. Second order nonlinear terms in oo 0 + @ - V)o] = —VP + f, (1)

the deviation of the shape from a sphere produce surfaceh Pi If the densitv of th ¢ |'f
oscillations that are cnoidal waves [11]. By increasingW Ere” 1S pressure. € densily of the external force

the amplitude of these oscillations, the nonlinear contriJield is also potential,f = —VW¥, where ¥ is propor-

bution grows and the drop’s surface, under special congtional to the potential (gravitational, electrostatic, etc.),

tions (nonzero angular momentum), can transform from d"en EQ. (1) reduces to Bernoulli's scalar equation. The
cnodial wave form into a solitary wave. This same evo-poundary conditions (BC) on the external free surface

lution can occur if there is a nonlinear coupling betweer?f the drop, %1, and on the inner surfac®2 [2,3,11],
the normal modes. Thus this approach leads to a un@r€7lsi = (rr + r¢0 + rg¢)ls; andr|s, = 0, respec-
fying dynamical picture of such modes; specifically, thetively. ®, = 7 is the radial velocity®, = 6, 4 =
cnoidal solution simulates harmonic oscillations develop+?sinfd¢ are the tangential velocities. The second BC
ing into anharmonic ones, and under special circumstancexcurs only in the case of fluid shells or bubbles. A con-
these cnoidal wave forms develop into solitary waves. Of/enient geometry places the origin at the center of mass
course, in the linear limit the theory reproduces the normabf the distributionr (8, ¢,1) = Ro[1 + g(0)n(d — Vi)]
modes of oscillation of a surface. and introduces for the dimensionless shape funcgign
Two approaches are used: Euler equations [2,3], and variable denoted. Here R, is the radius of the un-
Hamiltonian equations, which describe the total energy ofleformed spherical drop and is the tangential veloc-
the system [2]. We investigate finite amplitude waves, foiity of the traveling solutioné moving in the¢ direction
which the relative amplitude is smaller than the angulaand having a constant transversal profilen the  direc-
half-width. These excitations are also “long” waves,tion. The linearized form of the first BG;|s; = 74|31,
important in the cases of externally driven systems, wherallows only radial vibrations and no tangential motion of
the excited wavelength depends on the driving frequencythe fluid onX1 [2,3,11]. The second BC restricts the ra-
The first original observations of traveling waves ondial flow to a spherical layer of depth(#) by requiring
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®,|,—g,—» = 0. This condition stratifies the flow in the model, namely, the normal modes of oscillation of a liquid
surface layerRy — h = r = Ry(1 + £), and the liquid drop with spherical harmonic solutions [2,3]. Differenti-
bulk r = Ry — k. In what follows the flow in the bulk ation of Eqg. (6) with respect t@ together with Egs. (3)
will be considered negligible compared to the flow in theand (5) yields the dynamical equation for the evolution of
surface layer. This condition does not restrict the generthe shape functiom(¢ — Vi):

ality of the argument becaude can always be taken to

be Ry. Nonetheless, keeping < R, opens possibilities Ane + Bng + Cgnng + Dnggs =0, (7)

for the investigation of more complex fluids, e.g., superwhich is the Korteweg—de Vries (KdV) equation [8,11]

fluids, flow over a rigid core, multilayer systems [2,7] or with coefficients depending parametrically 6n
multiphases, etc. Instead of an expansionbofn terms

) . : . 2 :

of spherical harmonics, consider the following form: A= Ri(Ry + 2h)sin’ @

o] h 9

© = (r/Ro = 1)"fu(6.$.1). 0y s 7 (28 +Ang)

n=0 - R ’
The convergence of the series is controlled by the value V2R sirt 0
of the small quantityg = maxlr,_e—f(’l [11]. The condition C = 8( 032' - )
max|h/Ro| = € is also assumed to hold in the following 8h pRo
development. Laplace’s equation introduces a system p=-—22
of recursion relations for the functions,, f>» = —f1 — pRosir? 6

Afo/2, etc., wheredg is the(6, ¢) part of the Laplacean. | the case of a two-dimensional liquid drop, the coeffi-
Hence the set of unknowf),’s reduces tgy andf,. The  gients in Eq. (8) are all constant. Equation (7) has trav-
second BC, plus the conditiofy = —V &, for traveling  gjing wave solutions in the direction if Cg/(B — AV)
waves, yields to second order én andD/(B — AV) do not depend o. These two con-
fos = VRISIPOE(L + 26)/h + O5(¢), (3) ditions introduce two differential equations fgf6) and

i.e., a connection between the flow potential and theh(e) which can be solved with the boundary conditions

shape, which is typical of nonlinear systems. Equa® z h :_(})20; 0.: O’W't. Fcir exalrn?Ierl :I:]O .Sin2 gl'd
tion (3) together with the relationg, = R3¢, = i—hfz ~ andg = P;(6) is a particular solution which 1S vall
hAfo . Ko for h < Ry. It represents a soliton with a quadrupole
— ®o+2i» Which follow from the BC and recursion, charac- transverse profile, which is in good agreement with [2,6].
terize the flow as a function of the surface geometry. Therne next higher order term in Eq. (6),3&2&,ctg6, in-
balance of the dynamic and (_:aplllary pressure across theoduces an’n, nonlinear term into the dynamics and
surfaceX1 follows by expanding up to third order i transforms the KdV equation into the modified KdV equa-
the square root of the surface energy of the drop [2,3,11]iion [11]. The traveling wave solutions of Eq. (7) are then

Us = aR%f 1+ &) described by the Jacobi elliptic function (sn) [11]
> n =as + (a2 — az)sw
XL+ &2 + & + &3/siP0ds,  (4) . ( Clas — a)

and by equating its first variation with the local mean cur- 12D
vature of2 1 under the restriction of volume conservation.
The surface pressure, in third order, reads

(¢ — Vt);m>, (9)

where theq; are the constants of integration introduced
through Eg. (7) and are related through the velo®ity=

Pls; = —(—2& — 462 — Aq¢ + 3¢€3c1gh), (5) Clay + ag + a3)/3A + B/A and m* = =2 m €

Ro [0, 1] is the free parameter of the elliptic sn function. This

where o is the surface pressure coefficient and the termsesult for Eq. (9) is known as a cnoidal wave solution
£p0, £4.¢, and &g are neglected because the relativewith angular periodl’ = K[m]/C(a3 — «;)/3D, where
amplitude of the deformatiore is smaller than the K(m) is the Jacobi elliptic integral. I, — a; — 0,
angular half-widthL, & = £,4 = €*/L* < 1, as most thenm — 1,7 — « and a one-paramete) family of
of the experiments [6,7,9,12] concerning traveling surfacaraveling pulses (solitons or antisolitons) is obtained,
patterns show. Equation (5) plus the BC yield, to second

order ine, Y a Nsol = Mo SGCH[((Z) - V1)/L], (10)
Dz + Ls;ng 2 with velocity V = 1,C/3A + B/A and angular half-
2h width L = \/12D/Cn,. Taking for the coefficients to

= T (2F + 482 + Agé — 3¢2¢,c1¢0). (6) D thevalues givenin Eq. (8) fat = /2 (the equatorial
PRy cross section) and;, g; from above, one can calculate
The linearized version of Eq. (6) together with the lin- numerical values of the parameters of any roton excitation
earized BC,®,|s; = Ro&,, yield a limiting case of the function of n, only.
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The soliton, among other wave patterns, has a special
shape-kinematic dependencgy = V = 1/L; a higher
soliton is narrower and travels faster. This relation can
be used to experimentally distinguish solitons from other
modes or turbulence. When a layer thihs{ 0) the co-
efficient C in Eg. (8) approaches zero on average, pro-
ducing a break in the traveling wave solutidin ljecomes 1.199,1.185,2
singular) because of the change of sign under the square
root, Eg. (9). Such wave turbulence from capillary waves
on thin shells was first observed in [9]. For the water
shells described there, Eq. (8) givegtm) = 20v/k, that
iSh =15-25 umatV = 2.1-2.5 ms ™! for the onset of
wave turbulence, in good agreement with the abrupt transi-
tion experimentally noticed. The cnoidal solutions provide
the nonlinear wave interaction and the transition from com-
peting linear wave mode€’(= 0) to turbulence ¢ = 0).

In the KdV Eq. (7), the nonlinear interaction balances or
even dominates the linear damping and the cnoidal (ro-
ton) mode occurs as a bend modesimall and coherent
traveling profile) in agreement with [9]. The condition for
the existence of a positive amplitude solitorgiSD = 0
which, for g = 0, limits the velocity from below to the
valueV = hw,/Ry, Wherew, is the Lamb frequency for
the A = 2 linear mode [2,3]. This inequality can be re-
lated to the “independent running wave” described in [6],
which lies close to thex = 2 mode. Moreover, since
the angular group velocity of théx, u) normal mode,
Vau = wy/p, has practically the same value far= 2

(nw = 0, =1, tesseral harmonics) and far= u, any A
(sectorial harmonics) this inequality seems to be essential
for any combination of rank 2 tesseral or sectorial harmon-
ics, in good agreement with the conclusions in [2]. The
periodic limit of the cnoidal wave is reached far = 0,
that is, a; — a3 = 0, and the shape is characterized by
harmonic oscillations [sA- sin in Eq. (9)] which realize
the quadrupole mode of a linear theoK, limit [2,3], or

the oscillations of tesseral harmonics [2] (Fig. 1).

The NLD model introduced in this paper yields a
smoo_th transi'tion from linear osciIIr_sltions to solitary FIG. 1. The cnoidal solution fo# = 0. The soliton limit and
traveling solutions (rotons) as a function of the paramey nree. and four-mode solution is shown. The closest spherical

ters a;, namely, a transition from periodic to nonpe- harmonics to each of the cnoidal wave profiles (labeled Cn and
riodic shape oscillations. In between these limits theSol, respectively) is given for comparison. The labglsu,

surface is described by nonlinear cnoidal waves. In Fig. Bnd the parameters, 3 of the coresponding cnoidal solution
the transition from a periodic limit to a solitary wave ar€ 9\ven

is shown, in comparison with the corresponding normal

modes which can initiate such cnoidal nonlinear behavedecays rapidly. This approach could be extended to de-
ior. This situation is similar to the transformation of scribe elastic modes of surface as well as their nonlinear
the flow field from periodic modes at small amplitude to coupling to capillary waves. The double-periodic struc-
traveling waves at larger amplitude [2,6]. The solutionture of the elliptic solutions [11] could describe the new
goes into a final form if the volume conservation restric-family of normal wave modes predicted in [4].

tion is enforced:fs[1 + g(0)n(¢, 1) dQ = 47 and re- The development up to this point was based on Eu-
quiresn(¢,t) to be periodic. The periodicity condition, ler's equation. The same result will now be shown to
nK[(a3 — az)/(a3 — ay)] = 7 /az — a; for any pos- emerge from a Hamiltonian analysis of the NLD system.
itive integer n, is fulfilled only for a finite number of Recently, Natarajan and Brown [2] showed that the NLD
n values, and hence a finite number of correspondings a Lagrangian system with the volume conservation con-
cnoidal modes. In the roton limit the periodicity condi- dition being a Lagrange multiplier. In the third order
tion becomes a quasiperiodic one because the amplitudkieviation from spherical, the NLD becomes a KdV
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A=3,u=0

1.239,1.3,2

A=4,1=0
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infinite-dimensional Hamiltonian system described by anances and nonlinear dependence of the shif€os V.

nonlinear Hamiltonian functiodl = [;” H d¢. In the

The special damping of tha = 2 mode for rotating

linear approximation, the NLD is a linear wave Hamilton- drops could also be a consequence of the existence of the

ian system [2,3]. If terms depending @hare absorbed

cnoidal solution. Increasing the velocily produces a

into definite integrals (becoming parameters) the total enmodification of the balance of the coefficierty D which
ergy is a function ofy only. Taking the kinetic energy is equivalent to increasing the dispersion.

from [2,3], ® from Eg. (2), and using the BC, the de-

The model introduced in this Letter proves that traveling

pendence of the kinetic energy on the tangential velocityanalytic solutions exist as cnoidal waves on the surface of
along thed direction,®,, becomes negligible and the ki- a liquid drop. These traveling deformations (rotons) can

netic energy can be expressed dB[&] functional. For
traveling wave solutions, = —V g4, to third order ine,
after a tedious but feasible calculus, the total energy is

2
E= j (Cim + Cam® + Csm® + Cam3)db. (11)
0

where C; = 20R3S1), Co = oR3(Siy + So1/2) +
R§pV2Cy~1/2,Cs = 0R3S13/2 + RSpVA(2ST15Ry +
§733 + RoS®33)/2, Cy = oR3S59"/2, with Sif =
Ro' [ h'g'gysint 6 d6. Terms proportional teynj can
be neglected since they introduce a factg/L? which
is small compared tapg; i.e., it is third order ine. If
Eqg. (11) is taken to be a Hamiltonia&, — H[ 7], then

the Hamilton equation for the dynamical variablg
taking the usual form of the Poisson bracket, gives

21 21
fo N de Zfo (2Cng + 6C3nng
—2Cimggg)dd.  (12)
Since for the functiomm(¢ — Vi) the left-hand side of

range from small oscillations (normal modes), to cnoidal
oscillations, and on out to solitary waves. The same ap-
proach can be applied to bubbles as well, except that the
boundary condition or;, is replaced by a far-field con-
dition [2,3] (recently important in the context of single
bubble sonoluminiscence). Nonlinear phenomena can-
not be fully investigated with normal linear tools, e.g.,
spherical harmonics. Using analytic nonlinear solutions
sacrifices the linearity of the space but replaces it with
multiscale dynamical behavior, typical for nonlinear sys-
tems (solitons, wavelets, compactons [12]). They can be
applied to phenomena like cluster formation in nuclei, frag-
mentation or cold fission, the dynamics of the pellet surface
in inertial fusion, stellar models, and so forth.
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