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Selection of the Saffman-Taylor Finger Width in the Absence of Surface Tension:
An Exact Result
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Using exact time-dependent nonsingular solutions [Mineev-Weinstein and Dawson, Phys. Rev. E
50, R24 (1994); Dawson and Mineev-Weinstein, Physica (Amsterdadmn), 373 (1994)], we solve
the Saffman-Taylor finger selection problem in the absence of surface tension. We show that a
generic interface in a Hele-Shaw cell evolves to a nonlinearly stable single uniformly advancing finger
occupying one-half of the channel width. This result contradicts the generally accepted belief that
surface tension is indispensable for the selection of%ﬂ\m'dth finger. [S0031-9007(98)05459-3]

PACS numbers: 47.15.Hg, 47.20.Hw, 68.10.—m, 68.70.+w

The problem of the finger width selection was posed The solution of the system (1), describing a finger mov-
in 1958 by Saffman and Taylor [1] in their study of ing in thex direction with velocityl /A and occupying the
displacement of oil by water in a Hele-Shaw cell. Thisportion A of the Hele-Shaw channel width, is [1]
cell consists of two parallel glass plates separated by a . B
thin gap occupied by a viscous liquid which is pushed x =21 = Alnfcosy/21)] + ¢/A. @)
by a less viscous one. This simple device is useful for We parametrize the moving interface(s, ¢) =
modeling flows in porous media, the study of which isx(z,¢) + iy(z, ) at timer by the paramete € [0, 27 ].
vitally important for many applications. Flows in uniform After the shifty — y — 7 A, Eq. (2) can be rewritten as
porous media and in the Hele-Shaw cell are described d.d) = /A + (1 — @i + alnf(e® — 1)/2i].

by the same Darcy lawy = —Vp, wherev is fluid
velocity, andp is pressure. For the Hele-Shaw cell, this 3)
the direction perpendicular to the parallel plates. what we call the Laplacian growth equation (LGE) for the

Saffman and Taylor [1] observed that an almost planamoving frontz(z, ¢) (see [3] and references therein),
initial oil /water interface becomes unstable and gives rise

to many competing fingers which eventually evolve to a Im(Zzg) = 1. 4)

single uniformly advancing finger occupyirape-halfof  Here the bar denotes the complex conjugateand z

the channel width, if the surface tension is very small.g ¢ partial derivatives, and the mafy, ¢) is conformal

But, as was analytically shown in the same paperdhly  tor |m # = 0. One can easily see thatt, ¢) given by

finger widthis possible. So the selection problem Was(3) is the traveling-wave solution of the LGE given by

stated: why does nature choose the width of one-half? (4)  The finger widtha is here a free parameter, while
This problem appeared to be universal; i.e., the sam xperimentally it is alwayé. What determines?

selgctlon.phenorlnengn I;S ;:omm_on for d|splafcen_1ent_o In [1] Saffman and Taylor proposed that surface tension
Various VISCoUus Tiquids Dy eSS VISCOUS Ones 101 IMMISyapyeen the two fluids would solve the selection problem.
cible incompressible liquids. This problem is related t0gjnce then it has been widely accepted thatinclusion
the problem.of pattern selection in nonequ|I|b_r|um Phe-of surface tension is the only way to select the most stable
nomena, Wh'Ch. has .been of much subseqyent interest [2 inger width and much work was done toward solving
‘When the viscosity of water is negligible comparedy,q sgjection problem in this way (see books [4] and
W'tT)IO'I \_/lscr?snyk; the me}ther?atlcal fo_rmutl1at|onh 0‘; this | oterences therein). While mathematically nontrivial and
problem in the absence of surlace tension has the form challenging [4], this activity, especially intensive in the

V2) = 0 (in the oil domain, 1980s, was nonetheless successfully completed [4] and

P Z —x if x — +o0 (oil pushed to the right summarjzed in [5]'. In short, geveral groups in 1986—1987
p=0 (at the oif/water interfacg, [6] cor_1f|rmed (usmg expansion “beyond all orders” a_nd
ap =0 fory = +7 (at the channel walls re(_Juctlon to a nonlln_ear eigenvalue problem) n_umerlcal
V, = —a,p (atthe oifwater interfac, evidence [7] of the discrete spectrum kf decreasing to

1 1/2, in the limit of low surface tension. Surface tension
() was claimed to be responsible for the selection: equating
whereV, is the normal velocity of the interface,, p is it to zero would make this analysis senseless.

the normal component of the pressure gradient, and the We see two reasons for the absence of attempts to
channel width is chosen to B3er in our scaled units. explain the selection without the inclusion of surface
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tension. First, because of the absence of analytic time- A
dependent solutions, all selection studies were focused on y
linear stability analysis of asteady-statdraveling finger

in the presence of surface tension, which is the main
physical factor neglected when the continuous family of

“"more

fingers (2) was derived [1]. The second reason to include .

surface tension stems from the observation that almost o ;Illn;?us

all exact zero surface tension solutions of this problem

obtained before 1994 [8] exhibit finite-time singularities

(cusps). Because of the belief that these solutions are -

general and thus capture main features of this problem, 0 »>
X

it was concluded that to reach long times, it is necessary
to include surface tension to eliminate singularities [9]. FIG. 1. Geometrical interpretation of the complex constants
In 1994, we reported [3] a new class of exact time-of motiona; andBy; k = 1,..., N.
dependent solutions of the LGE (4) having the form
N A nentially slowly, namely, proportional to efpr/Re ay).
2, ) = 7(1) + ipd + D arln[e’® — ar(1)], (5)  Near thekth stagnation point, a groove with parallel walls
k=1 originates, with widthm |« | and angle with respect to the
where u = 1 — Zi\;l ay, ap = const, and |az| < 1. horizor_ltal axisf, = arg ai. In terms of these stagna-
With some (quite modest) constraints dm}, these tON points and grooves given by constafygs} and{ax},
solutions remain nonsingular and analytic for all times@!l the dynamical features mentioned above are especially
(no cusps) [3]. The time dependence @f(r) and (1) clear (see Fig. 1). These grooves merge and finally co-

is given by alesce to a single growing finger in accordance with all
N known experiments and simulations [1,4]. Formally this

— tilna) =7 —[1 - Ina means that a generlc_lnmal interface given bny}élnger
B = 2(t.ilnay = ( z=Zl al) @ solution (5) necessarily evolves to a single uniformly ad-

N : vancing finger (see [14] for details).
+ Za, In(_— - lll) = const, (6) In this paper, we will solve the%-width selection
a problem analytically in the absence of surface tension
" " (while interfacial tension is required to linearly stabilize
+c=[(1-=2 + = | . 7 the finger, as previously showf#-6]). It is known
! ( 2 kzlak)T 2 kZ:lak n(ax) O [11] that the development of a single finger with a

] o relative widthA = 1 — «/2 in the long-time limit is de-
wherek = 1,2,...,N and C is a constant in time [10]. gcrihed by

Equations (6) and (7) follow from the substitution of (5) . ”
into (4). z2(t,¢) = 7(t) + pi¢ + alnle’® —a@@)], (8)

All g, are located inside the unit circle and, if the sameyhere 0 < & <2, 0 <a < 1. Fort— o, 7 =2t/
holds for the roots ok, thenz(s, ¢) is conformal for (3 — ) and a(r) = 1 — cexgd—2t/a(2 — )], where
Im ¢ = 0. We called these solutiomé-finger solutions, . and« are constants in time. Choosing the width of the
since they describe the evolution of fingers. The Hele-Shaw cell to be, we havez(r,27) — z(t,0) =
class of solutions (5) contains all previously knownjz; hecause of the periodic boundary conditions. Cal-

exact solutions [8,11,12], including those which divergeculating z2(t,27) — z(¢,0) from (8) and using the fact
in finite time.  The subclass of these solutions withoutihat |4 < 1, we obtain that2zi = 27iu + 27ia =

finite-time singularities was also shown to be dense in;(, + ), or finally
the space of all analytic curves [13]The dynamics of
an arbitrary initial interface can be faithfully described mtoa=1. )

within this class.In addition to possessing these attractiveThen we note that the second term in the right-hand side

mathematical properties, these solutions are very physicags (8) namely,ui ¢, is the limiting value of the logarithm
They describe tip splitting, sidebranching, competition,yith a logarithmic polee located at zero,
coarsening, and screening of growing fingers which are

observed in all known experiments and simulations. Mip = p IEerg)In(e“f’ —€). (10)
The following geometrical interpretation of the con-
stants{a,} and {B;} [3] is of great help: the complex
number B8, — a;In2 is the location of thekth stagna-
tion point which the interface does not cross (tips of
white grooves in Figs. 1 and 2), but approaches expo- z(r,¢) =7 + plIn(e’® — €) + aln(e’® — a). (11)

Let us perturb the interface (8), correspondingetc=
0, by the initially small nonzeroe, 0 < e < 1. The
perturbed interface will have the form

2114



VOLUME 80, NUMBER 10 PHYSICAL REVIEW LETTERS 9 MRcH 1998

Now one can easily see that the valae= 0 [and thus AV =1—(u +a)/2=1/2. (20)
the finger described by (8) with # 0] is unstable. The

point is that Eq. (11) is exactly th& = 2 case of the Both (20) and (15) indicate that, for obtaining instability
N-finger solution (5) of the LGE (4). As one can see fromof non--width finger and formation of thé-width finger
(6) and (7),a(r) ande(r) merge at unity whem — o, in a long-time limit, surface tension is not needed.

Now we start from an arbitrary initial interface in terms

a=1-he", e=1- _lze ’ (12) of nonsingular solutions (5) (Re; > 0). Because of the

where the constants and/, are determined by coalescence of all initially nonzero poles at the unit
Bi = pIn(ly + L) + aln2l), C|rcle, th_e long-time limit of (5) is glven.by a flnge'r 3)

B> = uIn(2b) + aln(l, + b). (13)  with a width of 2 — 3}, @;)/2. TheN-finger solution

(5) is the limit of (N + k)-finger solution expressed by
In view of (12), we substituté for both a and e with the the same equation, but without the teﬂ;m¢ This limit
accuracyO(e~7), and thus obtain from (11), far— <, corresponds to equating of the poles to zero, and this
2t ) =7+ (u + a)ln(e® — 1). (14) value of zero can easily be shown (in the same way as
above) to be unstable for all of thegepoles. Because
Yot the density of these solutions in the class of all analytic
curves [13], thigN + k)-finger solution can be arbitrarily
close to any analytic interface. Again, alj(z) merge to

Let us interpret the result (14): because of the instabili
of the initial finger (8) with widthA = 1 — «/2, the new
finger described by (14) has been formed. Its width is

AV =1—(u + a)2=1/2, (15)  1inthe limitr — « [as stated earlier and proven in [14]].
in accordance with the condition (9) that+ « = 1. Thus we have in the long-time limit
Let us perturb the finger (8) in a more general way than N4k
we did in (11). We note that 2t ) = 7 + (Z ak>|n(ei¢ -1
N k=1
b = i i¢ _ .
,Lle) all||£I'I_>0 ;5]("1(6 Ek) S In(ezqﬁ _ 1).
if Z_f:lc?k = p. Choosing alle; to be nonzero, we Here we used ;[ a; = 1, since 27i = z(1,27) —
rewrite the finger (8) in a perturbed way as z(1,0). So, we have demonstrated that initial interfaces
il i i@ evolving to the non;-—width finger are unstable with re-
) =71+ k; BiIn(e™® = &) + aln(e’ — a). spect to formation of the-width finger, which thus is

(16) shown to be the only attractor for all generic moving
) ) ] ) fronts in the Hele-Shaw cell represented by (5). (Solu-
Equation (16) is the(N + 1)-finger solution (5) of the {jons with several parallel fingers forming in asymptotics
LGE (4) with dynamical conditions (6) and (7). Becausecan also be easily shown to be unstable.) The dynam-
of the density of the subclass of smooth solutions given byes of the transition from an arbitrary interface to the
(5) we conclude that (16) describes a general perturbatioh. yiqih finger is exactly described by the set of transcen-
of the finger (8), iV is large enough. As follows from  gena| equations (6) and (7) which involve only elemen-
(6) and (7), generally all logarithmic poles in the absencggy fynctions. This selection of one-half is in agreement
of finite-time singularitiesmerge [similarly to (12) for  ith known experiments and simulations in the limit of
N = 2] in the long-time limit to 1 with exponential |4 surface tension.
accuracyO(e”") [14], where Now we will extend these results obtained for peri-
1 (& odic boundary conditions to the more physical “no-flux”
r= {1 ) (Z O + 01)} . 17) boundary conditions (no flow across the lateral boundaries
k=1 of the channel). This requires that the moving interface
Because of this merging near the unit circle we substitut@rthogonally intersects the walls of the Hele-Shaw cell.
1 for all €,(¢) anda(z) in (16) whens — « and obtain However, unlike the case of periodic boundary conditions,
N the end points at the two boundaries do not necessarily
z2(t,p) =17 + (Z Sy + a> In(e’® — 1). (18) have the same horizontal coordinate. This is also a peri-
k=1 odic problem where the period equals twice the width of
This formula describes the single finger formed from (8)the Hele-Shaw cell. The analysis is the same as before,

under the perturbation (16). Its width is but now only half of the strip should be considered as the
N physical Hele-Shaw channel, while the second half is the
ATV =1 — (Z 6 + a>/2, (19)  unphysical mirror image (see Fig. 2).
k=1 To be brief we will perform the analysis fof = 2, but

which is exactly one-half sincEkN=l or = u (see above) one can trivially extend it to an arbitraty. The easily
andu + « = 1 by an argument analogous to (9), so thatobtainable extension of (8) for the development of a single
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(5). Namely, the shape of the finger can be destroyed at
the initial (linear) stage, but eventually téewidth finger

will be restored, because of the coalescence described
above. (Of course, thé—width finger islinearly unstable
without interfacial tension in accordance with previous
studies[4—6].)

Regarding surface tension, we think that, while mathe-
matically still singular (because a small number multiplies
the highest derivative), physically surface tension is a
regular perturbation for this problem (unless very high
curvatures exist which surface tension suppresses).

In conclusion, we have analytically solved the finger
selection problem in the absence of surface tension. By
FIG. 2. Only half of the periodic cell should be considered asusing the nonsingular exact solutions of the LGE (4),
the physical _HeIeTShaW channel, while the second half is th‘%ve have demonstrated that téewidth finger is the only
unphysical mirror image. attractor for all generic moving fronts in a Hele-Shaw cell
in the long-time limit.
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