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Selection of the Saffman-Taylor Finger Width in the Absence of Surface Tension:
An Exact Result
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Using exact time-dependent nonsingular solutions [Mineev-Weinstein and Dawson, Phys. Rev.
50, R24 (1994); Dawson and Mineev-Weinstein, Physica (Amsterdam)73D, 373 (1994)], we solve
the Saffman-Taylor finger selection problem in the absence of surface tension. We show that
generic interface in a Hele-Shaw cell evolves to a nonlinearly stable single uniformly advancing finge
occupying one-half of the channel width. This result contradicts the generally accepted belief th
surface tension is indispensable for the selection of the1

2 -width finger. [S0031-9007(98)05459-3]

PACS numbers: 47.15.Hg, 47.20.Hw, 68.10.–m, 68.70.+w
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The problem of the finger width selection was pose
in 1958 by Saffman and Taylor [1] in their study of
displacement of oil by water in a Hele-Shaw cell. Thi
cell consists of two parallel glass plates separated by
thin gap occupied by a viscous liquid which is pushe
by a less viscous one. This simple device is useful fo
modeling flows in porous media, the study of which i
vitally important for many applications. Flows in uniform
porous media and in the Hele-Shaw cell are describ
by the same Darcy law:v ­ 2=p, where v is fluid
velocity, andp is pressure. For the Hele-Shaw cell, thi
equation follows from the Stokes equation averaged ov
the direction perpendicular to the parallel plates.

Saffman and Taylor [1] observed that an almost plan
initial oilywater interface becomes unstable and gives ri
to many competing fingers which eventually evolve to
single uniformly advancing finger occupyingone-halfof
the channel width, if the surface tension is very sma
But, as was analytically shown in the same paper [1],any
finger width is possible. So the selection problem wa
stated: why does nature choose the width of one-half?

This problem appeared to be universal; i.e., the sam
selection phenomenon is common for displacement
various viscous liquids by less viscous ones for immis
cible incompressible liquids. This problem is related t
the problem of pattern selection in nonequilibrium phe
nomena, which has been of much subsequent interest [

When the viscosity of water is negligible compare
with oil viscosity, the mathematical formulation of this
problem in the absence of surface tension has the form8>>>><>>>>:

=2p ­ 0 sin the oil domaind ,
p ­ 2x if x ! 1` soil pushed to the rightd ,
p ­ 0 sat the oilywater interfaced ,
≠np ­ 0 for y ­ 6p sat the channel wallsd ,
Vn ­ 2≠np sat the oilywater interfaced ,

(1)

whereVn is the normal velocity of the interface,≠np is
the normal component of the pressure gradient, and t
channel width is chosen to be2p in our scaled units.
0031-9007y98y80(10)y2113(4)$15.00
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The solution of the system (1), describing a finger mov
ing in thex direction with velocity1yl and occupying the
portionl of the Hele-Shaw channel width, is [1]

x ­ 2s1 2 ld lnfcossyy2ldg 1 tyl . (2)

We parametrize the moving interfacezst, fd ­
xst, fd 1 iyst, fd at timet by the parameterf e f0, 2pg.
After the shifty ! y 2 pl, Eq. (2) can be rewritten as

zst, fd ­ tyl 1 s1 2 adif 1 a lnfseif 2 1dy2ig ,
(3)

wherel ­ 1 2 ay2. The system (1) can be reduced to
what we call the Laplacian growth equation (LGE) for the
moving frontzst, fd (see [3] and references therein),

Imsz̄tzfd ­ 1 . (4)

Here the bar denotes the complex conjugate,zt and zf

are partial derivatives, and the mapzst, fd is conformal
for Im f # 0. One can easily see thatzst, fd given by
(3) is the traveling-wave solution of the LGE given by
(4). The finger widthl is here a free parameter, while
experimentally it is always12 . What determinesl?

In [1] Saffman and Taylor proposed that surface tensio
between the two fluids would solve the selection problem
Since then, it has been widely accepted thatthe inclusion
of surface tension is the only way to select the most stab
finger width, and much work was done toward solving
the selection problem in this way (see books [4] an
references therein). While mathematically nontrivial an
challenging [4], this activity, especially intensive in the
1980s, was nonetheless successfully completed [4] a
summarized in [5]. In short, several groups in 1986–198
[6] confirmed (using expansion “beyond all orders” and
reduction to a nonlinear eigenvalue problem) numerica
evidence [7] of the discrete spectrum ofl, decreasing to
1y2, in the limit of low surface tension. Surface tension
was claimed to be responsible for the selection: equatin
it to zero would make this analysis senseless.

We see two reasons for the absence of attempts
explain the selection without the inclusion of surface
© 1998 The American Physical Society 2113
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tension. First, because of the absence of analytic tim
dependent solutions, all selection studies were focused
linear stability analysis of asteady-statetraveling finger
in the presence of surface tension, which is the ma
physical factor neglected when the continuous family o
fingers (2) was derived [1]. The second reason to inclu
surface tension stems from the observation that almo
all exact zero surface tension solutions of this proble
obtained before 1994 [8] exhibit finite-time singularitie
(cusps). Because of the belief that these solutions a
general and thus capture main features of this proble
it was concluded that to reach long times, it is necessa
to include surface tension to eliminate singularities [9].

In 1994, we reported [3] a new class of exact time
dependent solutions of the LGE (4) having the form

zst, fd ­ tstd 1 imf 1

NX
k­1

ak lnfeif 2 akstdg , (5)

where m ­ 1 2
PN

k­1 ak , ak ­ const, and jak j , 1.
With some (quite modest) constraints onhakj, these
solutions remain nonsingular and analytic for all time
(no cusps) [3]. The time dependence ofakstd and tstd
is given by

bk ­ zst, i ln ākd ­ t 2

√
1 2

NX
l­1

al

!
ln āk

1

NX
l­1

al ln

µ
1
āk

2 al

∂
­ const, (6)

t 1 C ­

√
1 2

1
2

NX
k­1

ak

!
t 1

1
2

NX
k­1

ak lnsakd , (7)

wherek ­ 1, 2, . . . , N and C is a constant in time [10].
Equations (6) and (7) follow from the substitution of (5
into (4).

All ak are located inside the unit circle and, if the sam
holds for the roots ofzf, then zst, fd is conformal for
Im f # 0. We called these solutionsN-finger solutions,
since they describe the evolution ofN fingers. The
class of solutions (5) contains all previously know
exact solutions [8,11,12], including those which diverg
in finite time. The subclass of these solutions withou
finite-time singularities was also shown to be dense
the space of all analytic curves [13].The dynamics of
an arbitrary initial interface can be faithfully described
within this class.In addition to possessing these attractiv
mathematical properties, these solutions are very physic
They describe tip splitting, sidebranching, competition
coarsening, and screening of growing fingers which a
observed in all known experiments and simulations.

The following geometrical interpretation of the con
stantshakj and hbkj [3] is of great help: the complex
numberbk 2 ak ln 2 is the location of thekth stagna-
tion point which the interface does not cross (tips o
white grooves in Figs. 1 and 2), but approaches exp
2114
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FIG. 1. Geometrical interpretation of the complex constan
of motion ak andbk; k ­ 1, . . . , N.

nentially slowly, namely, proportional to exps2tyRe akd.
Near thekth stagnation point, a groove with parallel walls
originates, with widthpjakj and angle with respect to the
horizontal axisuk ­ arg ak . In terms of these stagna-
tion points and grooves given by constantshbkj andhakj,
all the dynamical features mentioned above are especia
clear (see Fig. 1). These grooves merge and finally c
alesce to a single growing finger in accordance with a
known experiments and simulations [1,4]. Formally thi
means that a generic initial interface given by theN-finger
solution (5) necessarily evolves to a single uniformly ad
vancing finger (see [14] for details).

In this paper, we will solve the1
2 -width selection

problem analytically in the absence of surface tensio
(while interfacial tension is required to linearly stabilize
the finger, as previously shown[4–6]). It is known
[11] that the development of a single finger with a
relative widthl ­ 1 2 ay2 in the long-time limit is de-
scribed by

zst, fd ­ tstd 1 mif 1 a lnfeif 2 astdg , (8)

where 0 , a , 2, 0 , a , 1. For t ! `, t ­ 2ty
s2 2 ad and astd ­ 1 2 c expf22tyas2 2 adg , where
c anda are constants in time. Choosing the width of the
Hele-Shaw cell to be2p, we havezst, 2pd 2 zst, 0d ­
2pi, because of the periodic boundary conditions. Ca
culating zst, 2pd 2 zst, 0d from (8) and using the fact
that jaj , 1, we obtain that2pi ­ 2pim 1 2pia ­
2pism 1 ad, or finally

m 1 a ­ 1 . (9)

Then we note that the second term in the right-hand sid
of (8), namely,mif, is the limiting value of the logarithm
with a logarithmic polee located at zero,

mif ­ m lim
e!0

ln
°
eif 2 e

¢
. (10)

Let us perturb the interface (8), corresponding toe ­
0, by the initially small nonzeroe, 0 , e ø 1. The
perturbed interface will have the form

zst, fd ­ t 1 m lnseif 2 ed 1 a lnseif 2 ad . (11)
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Now one can easily see that the valuee ­ 0 [and thus
the finger described by (8) withm fi 0] is unstable. The
point is that Eq. (11) is exactly theN ­ 2 case of the
N-finger solution (5) of the LGE (4). As one can see from
(6) and (7),astd andestd merge at unity whent ! `,

a ­ 1 2 l1e2t , e ­ 1 2 l2e2t , (12)

where the constantsl1 andl2 are determined by(
b1 ­ m lnsl1 1 l2d 1 a lns2l1d ,
b2 ­ m lns2l2d 1 a lnsl1 1 l2d . (13)

In view of (12), we substitute1 for botha ande with the
accuracyOse2td, and thus obtain from (11), fort ! `,

zst, fd ­ t 1 sm 1 ad lnseif 2 1d . (14)

Let us interpret the result (14): because of the instabil
of the initial finger (8) with widthl ­ 1 2 ay2, the new
finger described by (14) has been formed. Its width is

lnew ­ 1 2 sm 1 ady2 ­ 1y2 , (15)

in accordance with the condition (9) thatm 1 a ­ 1.
Let us perturb the finger (8) in a more general way tha

we did in (11). We note that

mif ­ lim
all ek!0

NX
k­1

dk lnseif 2 ekd

if
PN

k­1 dk ­ m. Choosing allek to be nonzero, we
rewrite the finger (8) in a perturbed way as

zst, fd ­ t 1

NX
k­1

dk lnseif 2 ekd 1 a lnseif 2 ad .

(16)

Equation (16) is thesN 1 1d-finger solution (5) of the
LGE (4) with dynamical conditions (6) and (7). Becaus
of the density of the subclass of smooth solutions given
(5) we conclude that (16) describes a general perturbat
of the finger (8), ifN is large enough. As follows from
(6) and (7), generally all logarithmic poles in the absen
of finite-time singularitiesmerge [similarly to (12) for
N ­ 2] in the long-time limit to 1 with exponential
accuracyOse2td [14], where

t ­ t

"
1 2

1
2

√
NX

k­1

dk 1 a

!#
. (17)

Because of this merging near the unit circle we substitu
1 for all ekstd andastd in (16) whent ! ` and obtain

zst, fd ­ t 1

√
NX

k­1

dk 1 a

!
lnseif 2 1d . (18)

This formula describes the single finger formed from (8
under the perturbation (16). Its width is

lnew ­ 1 2

√
NX

k­1

dk 1 a

!,
2 , (19)

which is exactly one-half since
PN

k­1 dk ­ m (see above)
andm 1 a ­ 1 by an argument analogous to (9), so tha
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lnew ­ 1 2 sm 1 ady2 ­ 1y2 . (20)

Both (20) and (15) indicate that, for obtaining instability
of non-12 -width finger and formation of the12 -width finger
in a long-time limit, surface tension is not needed.

Now we start from an arbitrary initial interface in terms
of nonsingular solutions (5) (Reak . 0). Because of the
coalescence of all initially nonzero polesak at the unit
circle, the long-time limit of (5) is given by a finger (3)
with a width of s2 2

PN
k­1 akdy2. TheN-finger solution

(5) is the limit of sN 1 kd-finger solution expressed by
the same equation, but without the termmif. This limit
corresponds to equatingk of the poles to zero, and this
value of zero can easily be shown (in the same way
above) to be unstable for all of thesek poles. Because
of the density of these solutions in the class of all analyt
curves [13], thissN 1 kd-finger solution can be arbitrarily
close to any analytic interface. Again, allakstd merge to
1 in the limit t ! ` [as stated earlier and proven in [14]].
Thus we have in the long-time limit

zst, fd ­ t 1

√
N1kX
k­1

ak

!
lnseif 2 1d

­ t 1 lnseif 2 1d .

Here we used
PN1k

k­1 ak ­ 1, since 2pi ­ zst, 2pd 2

zst, 0d. So, we have demonstrated that initial interface
evolving to the non-12 -width finger are unstable with re-
spect to formation of the1

2 -width finger, which thus is
shown to be the only attractor for all generic moving
fronts in the Hele-Shaw cell represented by (5). (Solu
tions with several parallel fingers forming in asymptotic
can also be easily shown to be unstable.) The dyna
ics of the transition from an arbitrary interface to the
1
2 -width finger is exactly described by the set of transce
dental equations (6) and (7) which involve only elemen
tary functions. This selection of one-half is in agreemen
with known experiments and simulations in the limit o
low surface tension.

Now we will extend these results obtained for peri
odic boundary conditions to the more physical “no-flux
boundary conditions (no flow across the lateral boundari
of the channel). This requires that the moving interfac
orthogonally intersects the walls of the Hele-Shaw ce
However, unlike the case of periodic boundary condition
the end points at the two boundaries do not necessar
have the same horizontal coordinate. This is also a pe
odic problem where the period equals twice the width o
the Hele-Shaw cell. The analysis is the same as befo
but now only half of the strip should be considered as th
physical Hele-Shaw channel, while the second half is th
unphysical mirror image (see Fig. 2).

To be brief we will perform the analysis forN ­ 2, but
one can trivially extend it to an arbitraryN. The easily
obtainable extension of (8) for the development of a sing
2115
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FIG. 2. Only half of the periodic cell should be considered a
the physical Hele-Shaw channel, while the second half is th
unphysical mirror image.

finger with the widthl ­ 1 2 sa1 1 a2dy2 is

zst, fd ­ tstd 1 mif 1 a1 lnfeif 2 a1stdg
1 a2 lnfeif 1 a2stdg , (21)

where0 , a1,2std , 1. The generalization of (9) is

m ­ 1 2 sa1 1 a2d . (22)

We note that

mif ­ s 1
2 2 a1 1 dd lim

e1!01
lnseif 2 e1d

1 s 1
2 2 a2 2 dd lim

e2!01
lnseif 1 e2d . (23)

Substituting this into (21) and allowinge1,2 to be func-
tions of time, we note thatzst, fd is the N ­ 4 solu-
tion (5) of Eq. (4), whered and e1,2 must be real. If
jdj , 1y2, all four logarithmic singularitiesa1,2std and
e1,2std merge to 1. So we have in the long-time limit

zst, fd ­ tstd 1 s 1
2 1 dd lnseif 2 1d

1 s 1
2 2 dd lnseif 1 1d . (24)

This describes a finger moving between two grooves wi
widthsps1 1 2ddy2 andps1 2 2ddy2, respectively (see
the geometrical interpretation above). Thus the portion
the channel width occupied by the moving finger is

lnew ­
2p 2 ps1 1 2ddy2 2 ps1 2 2ddy2

2p
­

1
2

,

(25)

as before. So, for the no-flux boundary conditions, w
have obtained the12 -width finger as expected. In experi-
ments, the finger in the long-time limit is centralized in th
sense that axes of symmetry of the finger and Hele-Sh
cell coincide. This corresponds to the conditiond ­ 0,
so both grooves are of equal width.

The finger with a width of one-half isnonlinearly stable
with respect to generic perturbation of logarithmic type
2116
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(5). Namely, the shape of the finger can be destroyed
the initial (linear) stage, but eventually the1

2 -width finger
will be restored, because of the coalescence descri
above. (Of course, the12 -width finger islinearly unstable
without interfacial tension in accordance with previou
studies[4–6].)

Regarding surface tension, we think that, while math
matically still singular (because a small number multiplie
the highest derivative), physically surface tension is
regular perturbation for this problem (unless very hig
curvatures exist which surface tension suppresses).

In conclusion, we have analytically solved the finge
selection problem in the absence of surface tension.
using the nonsingular exact solutions of the LGE (4
we have demonstrated that the1

2 -width finger is the only
attractor for all generic moving fronts in a Hele-Shaw ce
in the long-time limit.

The author thanks H. Makaruk, W. MacEvoy, J
Pearson, V. Lvov, I. Procaccia, M. Feigenbaum, a
D. H. Sharp for helpful discussions.
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