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Master Stability Functions for Synchronized Coupled Systems
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We show that many coupled oscillator array configurations considered in the literature can be
put into a simple form so that determining the stability of the synchronous state can be done by
a master stability function, which can be tailored to one’s choice of stability requirement. This
solves, once and for all, the problem of synchronous stability for any linear coupling of that oscillator.
[S0031-9007(98)05387-3]

PACS numbers: 05.45.+b, 84.30.Ng

A particularly interesting form of dynamical behavior hyperplane in the phase space and number (2) makes
occurs in networks of coupled systems or oscillatorghe stability diagram specific to our choice of oscillators
when all of the subsystems behave in the same fashiomnd the components. Number (4) is the choice of many
that is, they all do the same thing at the same timestudies of coupled systems since it is often a good
Such behavior of a network simulates a continuousapproximation and can be considered prototypical.
system that has a uniform movement, models neurons In determining the stability of the synchronous state,
that synchronize, and coupled synchronized lasers andhrious criteria are possible. The weakest is that the
electronic circuit systems. A central dynamical questiormaximum Lyapunov exponent or Floquet exponent be
is: When is such synchronous behavior stable, especiallyegative. This is a universal stability standard, but it
in regard to coupling strengths in the network? Interest irdoes not guarantee that there are not unstable invariant
this question has been high over the last several years Bets in the synchronous state [8] or areas on the attractor
both chaotic [1-11] as well as limit cycle systems [12—-that are locally unstable [1,16,17], both of which can
14]. Such studies typically assumed a particular form oftause attractor bubbling and bursting of the system away
coupling in the network and then analyzed the features offom synchronization when there is noise or parameter
stability of, and bifurcations from the synchronized state. mismatch. The theory we develop below will apply

We have made progress toward developing a generad almost any criterion that depends on the variational
approach to the synchronization of identical dynamicakquation of the system. Each stability criterion will lead
systems, building on the ideas of scaling in our previougo its own master stability function. For that reason, we
work [15]. The consequence of this is a master stabilitydevelop the theory in the context of Lyapunov exponents
equation, which allows us to calculate the stability (asas a stability criterion and show in the conclusions how
determined from a particular choice of stability measurethe other criteria can be used.
like Lyapunov or Floquet exponentepce and for allfor Let there beN nodes (oscillators). Lek’ be the
a particular choice of system (e.g., Rdssler, Lorenz, etcin-dimensional vector of dynamical variables of thté
and a particular choice of component coupling (exgy, node. Let the isolated (uncoupled) dynamics He—=
etc.). Then, we can generate the stability diagrams for anf(x’) for each node. H: R — R™ is an arbitrary
other linear coupling scheme involving that system andunction of each node’s variables that is used in the
component. coupling. Thus, the dynamics of théh node arex’ =

Any one system can have a wide variety of desynchroF(x’) + o 3 ; G;;H(x/), whereo is a coupling strength.
nizing bifurcations. Using the master stability diagram,The sum}_; G;; = 0, so that assumption (3) above holds.
we can predict a diversity of spatial-mode instabilitiesThe N — 1 constraintsx! = x? = ... = x" define the
including bursting or bubbling patterns [8]. The mastersynchronization manifold.
stability diagram makes it obvious why particular cou- Let x = (x',x?,...,x"), F(x) = [F(x'),F(x?),...,
pling schemes may have an upper limit on the numbeF(x")], H(x) = [H(x!), H(x?),...,H(x")], and G be
of oscillators that can be coupled while still retaining athe matrix of coupling coefficient&,;}, then
stable, synchronous state. x = Fx) + 0G ® H(x), Q)

We assume the following: (1) The coupled oscillatorsyhere® is the direct product. Note, we could start with
(nodes) are all identical, (2) the same function of thea more general, nonlinear form in the coupling term and
components from each oscillator is used to couple tahen assume that evaluation of the Jacobian of (1) leads to
other oscillators, (3) the synchronization manifold is ana constant matrix on the synchronization manifold. Either
invariant manifold, and (4) the nodes are coupled in agyay, the analysis from here on follows the same pattern
arbitrary fashion which is well approximated near theand we present (1) for its greater clarity.
synchronous state by a linear operator. Numbers (1) Many coupling schemes are covered by Eq. (1). For
and (3) guarantee the existence of a synchronizatioBxample, if we use Lorenz systems for our nodes= 3.
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If the coupling is through the Lorenz" component, then
the functionH is just the matrix

1 00
0 00
0 00

Our choice ofG will provide the connectivity of nodes.
Equation (2) shows& for nearest-neighbor diffusive cou-
pling and star coupling [18]. Similarly, all-to-all coupling
has all 1's forG;; (i # j) and =N + 1 for G;. The
boundary conditions are all cyclic in Egs. (2), but many

E

the master stability equatiorand the associatemhaster
stability function: We calculate the maximum Floquet
or Lyapunov exponents., for the generic variational
equation

¢ =[DF + (a + iB)DH]{ (5)

as a function ofae and 8. This yields the stability
function An.x as a surface over the complex plane [see
Fig. 1, inset (a)]. Complex numbers are used sifite
may have complex eigenvalues. Then, given a coupling
strengtho-, we locate the poingry, in the complex plane.

others are possible. The majority of coupling schemedhe sign of A,,,, at that point will reveal the stability
treated in the dynamics literature can be put into the fornof that eigenmode—hence, we have a master stability

of Eq. (1) by choosing the righ& matrix.
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function. If all of the eigenmodes are stable, then the
synchronous state is stable at that coupling strength.

To illustrate, we chose chaotic Rossler systems [19]
(a =b =02,c =1.0) as the nodes and coupled them
through thex component; thudl = E andE is as above.
Figure 1 shows a contour plot of the master stability
function for this oscillator. We see that there is a region
of stability defined by a roughly semicircular shape. The
plot is symmetric in the imaginary directions about the real
axis. Ata = B = 0, Anax > 0 since this is just the case
of isolated, chaotic Rossler systems. dicreases (with
B = 0), Amax Crosses a threshold and becomes negative.

Further increase inv reveals another threshold as,.x

‘We get the variational equation of Eq. (1) by letting
&' be the variations on thah node and the collection of
variations is¢ = (¢, &2,...,&N). Then,

& =[1y ® DF + oG ® DH]¢. 3)

WhenH is just a matrixE, DH = E. Equation (3) is
used to calculate Floquet or Lyapunov exponents. We
really want to consider only variationg which are
transverse to the synchronization manifold. We want
those variations to damp out. We next show how to
separate out those variations and simplify the problem.

The first term in Eq. (3) is block diagonal with X m
blocks. The second term can be treated by diagonalizing
G. The transformation which does this does not affect
the first term since it acts only on the matdy. This
leaves us with a block diagonalized variational equation
with each block having the form

& = [DF + oy DH]E,, (4) . . i} .

. . FIG. 1. Master stability function fox-coupled Réssler oscil-
where y, is an eigenvalue 06, k = 0,1,2,...,N — 1. Jators. Lightly dashed lines show contours of negative ex-
For k = 0, we have the variational equation for the syn-ponents and solid lines show contours of positive exponents.
chronization manif0|c{70 = (), so we have succeeded in Circles show the eigenvalues for the diffusive coupling ex-

separating that from the other, transverse directions. ARmpPle. Stars show the eigenvalues for a star-coupled ex-
therk’ dtot . t W ample. The bold, dotted semiellipse is the line of eigenvalues
otherx's correspond 1o transverse eigenvectors. € Cafif an asymmetrically coupled Rdssler system for particular cou-

think of these as transverse modes and we will refer t@jing strengths. LWB, IWB, and SWB label long-wavelength,
them as such. intermediate-wavelength, and short-wavelength bifurcations, re-
The Jacobian function®F and DH are the same for Sspectively, that occur with diffusive-coupling schemes when

each block, since they are evaluated on the synchronizéﬂgenvalues cross the stability threshold. For the star configu-
tate. Th ’ f I the f f h block [Eq. (4 ration DHB labels a drum-head-mode bifurcation. Inset (a)
state. us, for each, the torm of eac ock [Eq. (4)] shows a typical surface for the master stability function. Inset

is the same with only the scalar multipliery, differing () shows the relation between the hub and spokes oscillators
for each. This leads us to the following formulation of when a DHB takes place.
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crosses over to become positive again. This implies thadll-to-all coupling. Thex coupling term in the Roéssler

if the coupling is too strong the synchronous state willexample becomes (¢, — ¢,)x't! + (¢; + ¢, )x'™ ! —

not be stable. Ifa is set to be in the stable range and2c,x’ + ¢, Z,-(xf — x'). This is the sum ofG; [in

B is increased, then,,, can also cross a threshold and Eq. (2)], G, [Eq. (2)], andG3, an antisymmetric matrix
become positive, implying that a large imaginary couplingwith —1 on the row above the diagonat,l on the row be-
can destabilize the system. Imaginary eigenvalues aridew the diagonal, and zeros elsewhere. With each matrix is

from antisymmetric couplings (see below). associated a coupling strength c,, andc,, respectively.
Diffusive coupling in a circular array [using the The matrices are simultaneously diagonalizable using
first G matrix in Eq. (2)] gives eigenvalues of, =  sinusoidal modes. The eigenvalues are complex (due to

4 sirt(wk/N), each twice degenerate and the eigenmodethe antisymmetric part)y, = —2c¢,[1 — cog27k/N)] +
are discrete sine and cosine functions of the node indicex,i sin2#7k/N) — c,N, and they must lie on an ellipse
i [6,20]. For a particular coupling strength, we show centered at-2¢; — ¢,N (see Fig. 1). We can always
the pointso 7y, in Fig. 1 for an array of 10 Résslers. The adjust the coupling strengths so all transverse eigenvalues
array has a stable synchronous state. As the coupting lie in the stable region. Increasing will elongate the
increases from O, the first mode to become stable is thellipse along the real axis. Depending on where the
shortest spatial-frequency mode; the last mode to becornsdlipse is centered, this can cause either a LWB or a SWB.
stable is the longest spatial-frequency mode. Thus, itncreasing ¢, can cause an intermediate wavelength
a stable, synchronous state, decreasingvill cause a bifurcation (IWB) for the Rdssler situation, since the
desynchronization with the long-wavelength mode goingellipse can elongate in the imaginary direction causing the
unstable first, a long-wavelength bifurcation (LWB). intermediate wavelengths to become unstable (IWB).
Increasingo causes the shortest wavelength to become We experimentally tested the dependence of bifurcation
unstable, a short-wavelength bifurcation (SWB) [9,15]. type (LWB, IWB, or SWB) as a function of couplings
Note, as more oscillators are added to the array, more; and ¢, using a set of eight coupled Rossler-like
transverse modes are created and the distance (along ttiecuits [6] which have individual attractors with the same
real axisa) between the longest and shortest wavelengttiopology as the Rdssler system in the chaotic regime.
modes increases. Eventually, the system will reach &Ve initially setc; = 0.2, ¢, = 0, andc¢, = 0.1 so that
point at which we will increaser to stabilize the long- the Rdéssler circuits were in the synchronous state. We
wavelength mode only to have the short-wavelength modeontrolled the coupling constants andc,, using a digital-
become unstable at the same time. There will bager to-analog convertor in a computer. The circuits were
limit on the size of a stable, synchronous array of chaotistarted in the synchronous state and then the coupling
Rossler oscillators [9,15]. Such a size limit wdlways was instantaneously reset to new valuego0ndc,. At
exist in arrays of chaotic oscillators with such limited the same time, we recorded thesignals from all eight
stable regimes. Such a size limit will not exist if the oscillators simultaneously with a 12-bit eight-channel
oscillators are limit cycles, but the stable rangevotvill digitizer card. We arbitrarily chose the threshold of the
be compressed down toward the origin as more oscillatorsum of modes 1-4 exceeding 5% of the synchronous
are added to the array. mode to determine when the oscillators were not in sync.
In all-to-all coupling schemes the transverse eigenvalMore experimental information will be given elsewhere.
ues are all the samey, = —oN. The all-to-all scheme After we switched the coupling constants and c,
can support synchronous chaos for the Rdssler oscillatdrom the synchronous state to a nonsynchronous state,
example for the righto. Unlike diffusive coupling,all  we fit the transient portion of each mode-amplitude time
modes become unstable when the threshold is crossed. series to an exponential function to find a growth rate
Star coupling [the second matrix in Eq. (2)—see insefor each mode. We recorded the mode with the largest
(b) of Fig. 1] results in two eigenvaluesy, = —o A as being the most unstable mode. Figure 2(a) shows
and y, = —oN. This yields two points on the master the experimental results. In Fig. 2(b), we plot the least
stability surface (see Fig. 1 for seven oscillators). If westable eigenmode found from the master stability function.
decreaser, we get a desynchronizing bifurcation in which Theory and experiment compare well. The synchronous
sinusoidal modes that are on the spokes of the star becomegion has a similar shape, including the sharp peak just
unstable and grow. If we increase we get an interesting before the SWB region. Other bifurcation regions agree
desynchronization bifurcation where the nodes on theeasonably well, including the small mode 3 region near
spokes remain synchronous, but the hub node begins the peak of the sync region.
develop motions of opposite sign to the former. We call We noted that other stability criteria are possible. Each
this a drum-head bifurcation (see the inset in Fig. 1)will produce its own master function over the complex
There is also a size limit for the star configuration. Forcoupling plane. Among them are the following three:
the x-coupled Rossler example, the maximum number o{1) Calculate the maximum Lyapunov exponent or Floquet
synchronized oscillators is 45. multiplier for the least stable invariant set [8,17], e.g.,
We now consider a more complex coupling schemean unstable periodic orbit in a chaotic attractor, (2) cal-
with asymmetric nearest-neighbor coupling. We also addulate the maximum (supremum) of the real part of the
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Eq. (3) near the synchronization manifold. The latter is a
more common scenario. The issues in this last paragraph
will be covered in more detail elsewhere.
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