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Master Stability Functions for Synchronized Coupled Systems
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We show that many coupled oscillator array configurations considered in the literature ca
put into a simple form so that determining the stability of the synchronous state can be don
a master stability function, which can be tailored to one’s choice of stability requirement. T
solves, once and for all, the problem of synchronous stability for any linear coupling of that oscill
[S0031-9007(98)05387-3]
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A particularly interesting form of dynamical behavio
occurs in networks of coupled systems or oscillato
when all of the subsystems behave in the same fashi
that is, they all do the same thing at the same tim
Such behavior of a network simulates a continuo
system that has a uniform movement, models neuro
that synchronize, and coupled synchronized lasers a
electronic circuit systems. A central dynamical questio
is: When is such synchronous behavior stable, especia
in regard to coupling strengths in the network? Interest
this question has been high over the last several years
both chaotic [1–11] as well as limit cycle systems [12
14]. Such studies typically assumed a particular form
coupling in the network and then analyzed the features
stability of, and bifurcations from the synchronized state

We have made progress toward developing a gene
approach to the synchronization of identical dynamic
systems, building on the ideas of scaling in our previo
work [15]. The consequence of this is a master stabil
equation, which allows us to calculate the stability (a
determined from a particular choice of stability measur
like Lyapunov or Floquet exponents)once and for allfor
a particular choice of system (e.g., Rössler, Lorenz, et
and a particular choice of component coupling (e.g.,x, y,
etc.). Then, we can generate the stability diagrams for a
other linear coupling scheme involving that system an
component.

Any one system can have a wide variety of desynchr
nizing bifurcations. Using the master stability diagram
we can predict a diversity of spatial-mode instabilitie
including bursting or bubbling patterns [8]. The maste
stability diagram makes it obvious why particular cou
pling schemes may have an upper limit on the numb
of oscillators that can be coupled while still retaining
stable, synchronous state.

We assume the following: (1) The coupled oscillato
(nodes) are all identical, (2) the same function of th
components from each oscillator is used to couple
other oscillators, (3) the synchronization manifold is a
invariant manifold, and (4) the nodes are coupled in
arbitrary fashion which is well approximated near th
synchronous state by a linear operator. Numbers
and (3) guarantee the existence of a synchronizat
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hyperplane in the phase space and number (2) mak
the stability diagram specific to our choice of oscillator
and the components. Number (4) is the choice of man
studies of coupled systems since it is often a goo
approximation and can be considered prototypical.

In determining the stability of the synchronous state
various criteria are possible. The weakest is that th
maximum Lyapunov exponent or Floquet exponent b
negative. This is a universal stability standard, but
does not guarantee that there are not unstable invaria
sets in the synchronous state [8] or areas on the attrac
that are locally unstable [1,16,17], both of which can
cause attractor bubbling and bursting of the system aw
from synchronization when there is noise or paramet
mismatch. The theory we develop below will apply
to almost any criterion that depends on the variation
equation of the system. Each stability criterion will lead
to its own master stability function. For that reason, w
develop the theory in the context of Lyapunov exponen
as a stability criterion and show in the conclusions how
the other criteria can be used.

Let there beN nodes (oscillators). Letxi be the
m-dimensional vector of dynamical variables of theith
node. Let the isolated (uncoupled) dynamics beÙxi ­
Fsxid for each node. H: Rm ! Rm is an arbitrary
function of each node’s variables that is used in th
coupling. Thus, the dynamics of theith node areÙxi ­
Fsxid 1 s

P
j GijHsxjd, wheres is a coupling strength.

The sum
P

j Gij ­ 0, so that assumption (3) above holds
The N 2 1 constraintsx1 ­ x2 ­ · · · ­ xN define the
synchronization manifold.

Let x ­ sx1, x2, . . . , xNd, Fsxd ­ fFsx1d, Fsx2d, . . . ,
FsxN dg, Hsxd ­ fHsx1d, Hsx2d, . . . , HsxN dg, and G be
the matrix of coupling coefficientshGijj, then

Ùx ­ Fsxd 1 sG ≠ Hsxd , (1)
where≠ is the direct product. Note, we could start with
a more general, nonlinear form in the coupling term an
then assume that evaluation of the Jacobian of (1) leads
a constant matrix on the synchronization manifold. Eithe
way, the analysis from here on follows the same patte
and we present (1) for its greater clarity.

Many coupling schemes are covered by Eq. (1). Fo
example, if we use Lorenz systems for our nodes,m ­ 3.
© 1998 The American Physical Society 2109
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If the coupling is through the Lorenz “x” component, then
the functionH is just the matrix

E ­

0B@ 1 0 0
0 0 0
0 0 0

1CA .

Our choice ofG will provide the connectivity of nodes.
Equation (2) showsG for nearest-neighbor diffusive cou-
pling and star coupling [18]. Similarly, all-to-all coupling
has all 1’s forGij si fi jd and 2N 1 1 for Gii. The
boundary conditions are all cyclic in Eqs. (2), but man
others are possible. The majority of coupling schem
treated in the dynamics literature can be put into the for
of Eq. (1) by choosing the rightG matrix.

G1 ­

0BBBBBB@
22 1 0 · · · 1

1 22 1 · · · 0
0 1 22 · · · 0
...

...
...

...
...

1 0 · · · 1 22

1CCCCCCA ,

G2 ­

0BBBBBB@
2N 1 1 1 1 · · · 1

1 21 0 · · · 0
1 0 21 · · · 0
...

...
...

...
...

1 0 · · · 0 21

1CCCCCCA .

(2)

We get the variational equation of Eq. (1) by lettin
ji be the variations on theith node and the collection of
variations isj ­ sj1, j2, . . . , jN d. Then,

Ùj ­ f1N ≠ DF 1 sG ≠ DHgj . (3)

When H is just a matrixE, DH ­ E. Equation (3) is
used to calculate Floquet or Lyapunov exponents. W
really want to consider only variationsj which are
transverse to the synchronization manifold. We wa
those variations to damp out. We next show how
separate out those variations and simplify the problem.

The first term in Eq. (3) is block diagonal withm 3 m
blocks. The second term can be treated by diagonaliz
G. The transformation which does this does not affe
the first term since it acts only on the matrix1N . This
leaves us with a block diagonalized variational equatio
with each block having the form

Ùjk ­ fDF 1 sgkDHgjk , (4)

wheregk is an eigenvalue ofG, k ­ 0, 1, 2, . . . , N 2 1.
For k ­ 0, we have the variational equation for the syn
chronization manifoldsg0 ­ 0d, so we have succeeded in
separating that from the other, transverse directions.
otherk’s correspond to transverse eigenvectors. We c
think of these as transverse modes and we will refer
them as such.

The Jacobian functionsDF and DH are the same for
each block, since they are evaluated on the synchroni
state. Thus, for eachk, the form of each block [Eq. (4)]
is the same with only the scalar multipliersgk differing
for each. This leads us to the following formulation o
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the master stability equationand the associatedmaster
stability function: We calculate the maximum Floquet
or Lyapunov exponentslmax for the generic variational
equation

Ùz ­ fDF 1 sa 1 ibdDHgz (5)

as a function ofa and b. This yields the stability
function lmax as a surface over the complex plane [se
Fig. 1, inset (a)]. Complex numbers are used sinceG
may have complex eigenvalues. Then, given a couplin
strengths, we locate the pointsgk in the complex plane.
The sign of lmax at that point will reveal the stability
of that eigenmode—hence, we have a master stabil
function. If all of the eigenmodes are stable, then th
synchronous state is stable at that coupling strength.

To illustrate, we chose chaotic Rössler systems [19
sa ­ b ­ 0.2, c ­ 7.0d as the nodes and coupled them
through thex component; thus,H ­ E andE is as above.
Figure 1 shows a contour plot of the master stabilit
function for this oscillator. We see that there is a regio
of stability defined by a roughly semicircular shape. Th
plot is symmetric in the imaginary directions about the rea
axis. At a ­ b ­ 0, lmax . 0 since this is just the case
of isolated, chaotic Rössler systems. Asa increases (with
b ­ 0), lmax crosses a threshold and becomes negativ
Further increase ina reveals another threshold aslmax

FIG. 1. Master stability function forx-coupled Rössler oscil-
lators. Lightly dashed lines show contours of negative ex
ponents and solid lines show contours of positive exponen
Circles show the eigenvalues for the diffusive coupling ex
ample. Stars show the eigenvalues for a star-coupled e
ample. The bold, dotted semiellipse is the line of eigenvalue
of an asymmetrically coupled Rössler system for particular co
pling strengths. LWB, IWB, and SWB label long-wavelength
intermediate-wavelength, and short-wavelength bifurcations, r
spectively, that occur with diffusive-coupling schemes whe
eigenvalues cross the stability threshold. For the star config
ration DHB labels a drum-head-mode bifurcation. Inset (a
shows a typical surface for the master stability function. Inse
(b) shows the relation between the hub and spokes oscillato
when a DHB takes place.
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crosses over to become positive again. This implies th
if the coupling is too strong the synchronous state w
not be stable. Ifa is set to be in the stable range an
b is increased, thenlmax can also cross a threshold an
become positive, implying that a large imaginary couplin
can destabilize the system. Imaginary eigenvalues ar
from antisymmetric couplings (see below).

Diffusive coupling in a circular array [using the
first G matrix in Eq. (2)] gives eigenvalues ofgk ­
4 sin2spkyNd, each twice degenerate and the eigenmod
are discrete sine and cosine functions of the node indic
i [6,20]. For a particular coupling strengths, we show
the pointss gk in Fig. 1 for an array of 10 Rösslers. The
array has a stable synchronous state. As the couplings

increases from 0, the first mode to become stable is
shortest spatial-frequency mode; the last mode to beco
stable is the longest spatial-frequency mode. Thus,
a stable, synchronous state, decreasings will cause a
desynchronization with the long-wavelength mode goin
unstable first, a long-wavelength bifurcation (LWB)
Increasings causes the shortest wavelength to becom
unstable, a short-wavelength bifurcation (SWB) [9,15].

Note, as more oscillators are added to the array, mo
transverse modes are created and the distance (along
real axisa) between the longest and shortest waveleng
modes increases. Eventually, the system will reach
point at which we will increases to stabilize the long-
wavelength mode only to have the short-wavelength mo
become unstable at the same time. There will be anupper
limit on the size of a stable, synchronous array of chao
Rössler oscillators [9,15]. Such a size limit willalways
exist in arrays of chaotic oscillators with such limite
stable regimes. Such a size limit will not exist if the
oscillators are limit cycles, but the stable range ofs will
be compressed down toward the origin as more oscillat
are added to the array.

In all-to-all coupling schemes the transverse eigenv
ues are all the same,gk ­ 2sN. The all-to-all scheme
can support synchronous chaos for the Rössler oscilla
example for the rights. Unlike diffusive coupling,all
modes become unstable when the threshold is crossed

Star coupling [the second matrix in Eq. (2)—see ins
(b) of Fig. 1] results in two eigenvalues,gk ­ 2s

and gk ­ 2sN. This yields two points on the maste
stability surface (see Fig. 1 for seven oscillators). If w
decreases, we get a desynchronizing bifurcation in which
sinusoidal modes that are on the spokes of the star beco
unstable and grow. If we increases, we get an interesting
desynchronization bifurcation where the nodes on t
spokes remain synchronous, but the hub node begins
develop motions of opposite sign to the former. We ca
this a drum-head bifurcation (see the inset in Fig. 1
There is also a size limit for the star configuration. Fo
the x-coupled Rössler example, the maximum number
synchronized oscillators is 45.

We now consider a more complex coupling schem
with asymmetric nearest-neighbor coupling. We also a
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all-to-all coupling. Thex coupling term in the Rössler
example becomes scs 2 cudxi11 1 scs 1 cudxi21 2

2csxi 1 ca
P

jsxj 2 xid. This is the sum ofG1 [in
Eq. (2)], G2 [Eq. (2)], andG3, an antisymmetric matrix
with 21 on the row above the diagonal,11 on the row be-
low the diagonal, and zeros elsewhere. With each matrix
associated a coupling strengthcs, ca, andcu, respectively.
The matrices are simultaneously diagonalizable usi
sinusoidal modes. The eigenvalues are complex (due
the antisymmetric part),gk ­ 22csf1 2 coss2pkyNdg 1

2cui sins2pkyNd 2 caN , and they must lie on an ellipse
centered at22cs 2 caN (see Fig. 1). We can always
adjust the coupling strengths so all transverse eigenval
lie in the stable region. Increasingcs will elongate the
ellipse along the real axis. Depending on where t
ellipse is centered, this can cause either a LWB or a SW
Increasing cu can cause an intermediate waveleng
bifurcation (IWB) for the Rössler situation, since th
ellipse can elongate in the imaginary direction causing t
intermediate wavelengths to become unstable (IWB).

We experimentally tested the dependence of bifurcati
type (LWB, IWB, or SWB) as a function of couplings
cs and cu using a set of eight coupled Rössler-lik
circuits [6] which have individual attractors with the sam
topology as the Rössler system in the chaotic regim
We initially set cs ­ 0.2, cu ­ 0, and ca ­ 0.1 so that
the Rössler circuits were in the synchronous state. W
controlled the coupling constantscs andcu using a digital-
to-analog convertor in a computer. The circuits we
started in the synchronous state and then the coupl
was instantaneously reset to new values ofcs andcu. At
the same time, we recorded thex signals from all eight
oscillators simultaneously with a 12-bit eight-chann
digitizer card. We arbitrarily chose the threshold of th
sum of modes 1–4 exceeding 5% of the synchrono
mode to determine when the oscillators were not in syn
More experimental information will be given elsewhere.

After we switched the coupling constantscs and cu

from the synchronous state to a nonsynchronous sta
we fit the transient portion of each mode-amplitude tim
series to an exponential function to find a growth ratel

for each mode. We recorded the mode with the large
l as being the most unstable mode. Figure 2(a) sho
the experimental results. In Fig. 2(b), we plot the lea
stable eigenmode found from the master stability functio
Theory and experiment compare well. The synchrono
region has a similar shape, including the sharp peak j
before the SWB region. Other bifurcation regions agr
reasonably well, including the small mode 3 region ne
the peak of the sync region.

We noted that other stability criteria are possible. Ea
will produce its own master function over the comple
coupling plane. Among them are the following three
(1) Calculate the maximum Lyapunov exponent or Floqu
multiplier for the least stable invariant set [8,17], e.g
an unstable periodic orbit in a chaotic attractor, (2) ca
culate the maximum (supremum) of the real part of th
2111
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FIG. 2. (a) Plot of experimental results for asymmetri
cally coupled Rössler-like circuits showing the classes o
desynchronizing bifurcations that occur when the sym
metric scsd or antisymmetric scud part of the coupling is
changed from a synchronous state to a state in which t
theory predicts that one of the eigenmodes should be u
stable. The labeling scheme isj ­ synchronous mode,
­ ­ long wavelength (mode 1)nn ­ intermediate wavelength
(mode 2), white space­ intermediate wavelength (mode 3),
and 3 ­ short wavelength (mode 4). (b) Similar plot of
theoretical prediction of which modes are least stable.

eigenvalues of the (instantaneous) Jacobian (including t
coupling terms) at all points or some representative s
of points on the attractor [16]; e.g., when negative, th
function guarantees ultimate transverse-direction contra
tion everywhere on the attractor, and (3) calculate th
maximum eigenvalue of the (instantaneous) symmetriz
Jacobian (including the coupling terms) at all points o
some representative set of points on the attractor [1]; e.
this guarantees monotone damping of transverse pert
bations [21]. Using the same analysis as above, crite
(1) and (2) come down to Eq. (5), although the evalu
ation of the stability function will be on the special,
unstable invariant set or of the real part of the eigen
value of the right-hand-side linear operator. Criterion (3
can also be analyzed in the same way provided there
some common restrictions. These, again, lead to a blo
diagonalization of the variational equation in the sam
way as before with the final stability function being the
maximum eigenvalue on the attractor of the linear op
erator Ùz ­ fDF 1 DFT 1 sa 1 ibdDHgz [22]. Many
other stability criteria, such as the recently introduce
Brown-Rulkov criterion [23,24] will also produce a mas-
ter stability function. Which one to use depends on one
requirements.

The master stability function allows one to quickly
establish whetherany linear coupling arrangement will
produce stable synchronous dynamics. In addition,
reveals which desynchronization bifurcation mode wi
occur when the coupling scheme or strength change
Attractor bubbling or bursting behavior [8] shows up
mainly as bursts of the particular mode or modes th
are closest to instability. Using Eq. (5) for largea or
b, we can explain why the synchronous state is unstab
for certain systems in the asymptotic limit of large real o
imaginary coupling. Finally, the coupling need only be
locally linear for there to be a master stability function
i.e., the form of the variational equation is similar to
2112
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Eq. (3) near the synchronization manifold. The latter is
more common scenario. The issues in this last paragra
will be covered in more detail elsewhere.
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