VOLUME 80, NUMBER 10 PHYSICAL REVIEW LETTERS 9 MRcH 1998

Constrained Randomization of Time Series Data
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A new method is introduced to create artificial time sequences that fulfil given constraints but are
random otherwise. Constraints are usually derived from a measured signal for which surrogate data are
to be generated. They are fulfilled by minimizing a suitable cost function using simulated annealing.
A wide variety of structures can be imposed on the surrogate series, including multivariate, nonlinear,
and nonstationary properties. When the linear correlation structure is to be preserved, the new approach
avoids certain artifacts generated by Fourier-based randomization schemes. [S0031-9007(98)05488-X]

PACS numbers: 05.45.+b

Randomization of data and Monte Carlo resampling This paper will introduce a general method for generat-
of probability distributions is a common technique ining random time sequences subject to quite general con-
statistics [1]. In the context of nonlinear time seriesstraints. Any null hypothesis that leads to a complete set
analysis it has been discussed by several authors and d$§ observables can thus be tested for. All of the above
usually referred to as thmethod of surrogate datf?].  cases can be dealt with (often with higher accuracy), but
A null hypothesis for the nature of a time series can bealso multivariate, nonstationary, nonlinear, or other con-
tested by comparing the value of an observabtebtained straints can be implemented. In all of the applications in
using the data with values obtained using a collectiorthis paper, the single time probability distribution will be
of surrogatetime series representing the null hypothesis.one of the constraints, leading to the requirement that the
All but the simplest null assumptions allow for certain randomized sequence is a permutation of a fixed collec-
structures, for example, linear serial correlations. Therdion of values. All other constraints, for example part or
are two distinct ways to implement such structures wherall of the lags of the autocorrelation function, will be for-
creating surrogate series. Traditional bootstrap methodsiulated in terms of a cost function which is then minimi-
use explicit model equations that have to be extracteded among all possible permutations by the method of
from the data. Thistypical realizationsapproach can simulated annealing.
be very powerful for the computation of confidence After giving the actual randomization scheme we will
intervals, provided the model equations can be extractediscuss some major applications. We will show that the
successfully. As discussed in Ref. [3], the alternativealgorithm yields a more accurate nonlinearity test and
approach ofconstrained realizationgs more suitable for avoids known artifacts that are introduced by end effects
the purpose of hypothesis testing. It avoids the fittingwith ordinary, Fourier-based surrogates [6,7]. We will
of model equations by directly imposing the desiredalso give examples with a more general null hypothesis
structures onto the randomized time series. Howevethan that of a rescaled stationary linear stochastic process.
the choice of possible null hypothesis has so far beelor these examples, previous methods could not provide
limited by the difficulty of imposing arbitrary structures appropriate surrogates.
on otherwise random sequences. Algorithms exist mainly The algorithm is conceptually very simple: (1) Specify
for the following cases. (1) The null hypothesis of constraints C;({%,}) = 0 in terms of acost function
independent random numbers from a fixed but unknowr({x,}), constructed to have a global minimum when
distribution can be tested against permutations withouthe constraint is fulfilled. (2) Minimize£({%,}) among
repetition of the data since these conserve the samphdl permutations(%,} of a time seriegx,} by simulated
distribution exactly. (2) The case of Gaussian noiseannealing. Configurations are updated by exchanging
with arbitrary linear correlations leads to the Fourierpairs in{x,}. Examples of its use will be given below.
transform method. The Fourier transform of the data The simulated annealing method is particularly useful
is multiplied by random phases and then transformedor combinatorial minimization with false minima. It goes
back, conserving the sample periodogram. (See Ref. [4ack to Metropoliset al. [8], and is thoroughly discussed
for the multivariate case.) (3) Surrogates with a givenin the literature [9]. Essentially, the cost function is inter-
distribution and given linear correlations are needed fopreted as an energy in a thermodynamic system. At some
the null hypothesis of a monotonically rescaled Gaussiafinite “temperature”T, system configurations are visited
linear stochastic process. This is approximately achievedonsecutively with a probability according to the Boltz-
by the amplitude adjusted Fourier transform (AAFT)mann distributiore %/ of the canonical ensemble. This
algorithm [2] and the more accurate iterative methods achieved by accepting changes of the configuration with
proposed in Ref. [5]. a probabilityp = 1 if the energy is decrease\E < 0)
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and p = ¢ 2E/T if the energy is increaseAE = 0).  surrogates. Note that although even different realizations
The temperature is decreased slowly, thereby “annealingdf the same process will have the same sample auto-
the system to the ground state of minimal “energy,” thatcovariance function only up to statistical fluctuations, it is
is, the minimum of the cost function. In the linfit — 0, essential that the surrogates are constrained 19922 as

all ground state configurations can be reached with equalccurately as possible—since almost every discriminating
probability. Although some general rigorous convergencestatisticy will depend onC(7), we are otherwise likely to
results are available, in practical applications of simulatedntroduce a bias and possibly spurious rejections of the
annealing some problem-specific choices have to be madeull hypothesis. See also the discussion in Ref. [3].

In particular, apart from the cost function itself, one has Previous attempts to implement the above constraints
to specify a method of updating the configurations anchave been only partially successful. In the scheme intro-
a schedule for lowering the temperature. A way to effi-duced here, property (i) is easily implemented by consid-
ciently reach all permutations by small individual changesering as candidates for randomized series all permutations
is by exchanging randomly chosen (not necessarily closesf the measured time sequenfg,}. Requirement (ii)

by) pairs. In many cases, an exchange of two points isan be achieved by finding a permutation{®f} which,
reflected in a rather simple update of the cost functionwithin the desired accuracy, minimizes a cost function
This is important for speed of computation. Many coolinglike the following [12]:

schemes have been discussed in the literature [9]. In this Nl g
work, the temperature is multiplied by at each cooling E@ — { Z IC(r) — C(data)(T)lq:| )
step. Cooling is done if either the number of successful ’
updates since the last cooling exceéds.., or the total
number of configurations visited during this cooling step
exceedsVy,.;. It is difficult to give general rules on how
to choosex, Ny, and Ny Slow cooling is necessary
if the desired accuracy of the constraint is high. It seem?2

reasonable to increas¥y.. and Ny, With the system - h qin 5
size, but also with the number of constraints incorporateg€4u€nces. e iterative scheme proposed in [5] removes
this bias to a satisfactory approximation for practical

in the cost function. Generally, one can choose a toler*
ork. Let us, however, compare the accuracy of the

ance for the constraints, start with rather fast cooling, a
uprewously proposed schemes to the present algorithm. For

repeat the analysis with a slower cooling rate if the acc
racy has not been met. Other more sophisticated coolin omparability, a cost function is chosen with respect to the
me periodic sample auto-covariance function

schemes may be suitable depending on the specific situ
tion. The reader is referred to the standard literature [9]. g

Let us first demonstrate that the algorithm yields Cplr) = N Zx”x(”*”m"df\” (3)
more accurate results than previous methods for the "0 .
most prominent application of surrogate data, which?/ Which — corresponds ~ to  the  Fourier spectrum
is statistical testing for nonlinearity in a time series. th(y(;ugh th§/2W|ener Kh”(‘d‘;[;;” theorem.  Minimizing
Consider the null hypothesis that there is a sequépge Er = MaX—o |C (7') - ()| will reproduce the
that has been generated by a Gaussian linear stochastiato- covarlancé‘p measured on the data. Time series
process. As the only allowed kind of nonlinearity, of length N = 1000 are generated by an autoregressive
the actual data{x,} consists of observations ofy,} = model, but measured using a nonlinear measurement func-
made through a monotone instantaneous measuremerdn: x, = y,%,y,, = 09y,-1 + m,. The residual maxi-
function: x, = f(y,). As discussed, e.g., in Ref. [5], the mal deviations of the auto-covariances of the time series
corresponding Monte Carlo sample has to be constraineshd surrogate sets were determined for (i) random per-
to have (i) the same single time probability distribution mutations of the data, (ii) usual AAFT surrogates [2],
and (ii) the same sample auto-covariance function [10] (iii) surrogates created with the iterative scheme given in

Ref. [5], and (iv) outcomes of the annealing procedure for
Xn—7 (1) different cooling protocols. Note that with slower cool-
ing, arbitrarily high accuracy can be reached in principle.

for all lags 7 =0,...,N — 1. (Zero mean has been Averages over 20 realizations were determined for cases
imposed for simplicity of notation.) (i) to (iii). The iterative scheme (iii) was repeated until

In the actual test, a nonlinear observaplés computed a fixed point was reached which was the case after about
for the data and a collection of surrogate data set200 iterations. Table | summarizes the results. Compu-
(See Ref. [11] for a comparison of the performance oftation time on a DEC alpha workstation at 400 MHz clock
different statisticgy.) The null hypothesis will be rejected rate is given only for relative comparison. The price for
if the result y, obtained for the data is incompatible the superior accuracy of the annealing scheme is its much
with the probability distribution ofy estimated from the higher computational cost.

7=0

Provided the annealing scheme is brought to convergence
with high accuracy, the known artifacts that remain with
previous approaches can be avoided.

As discussed in [5], the original (AAFT) algorithm

] can show a bias towards a flat spectrum for short

C(r) =
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TABLE I. Residual deviation from the desired auto- ous surrogate data schemes. Let us first study a multivari-
covariance function for different methods of randomizing time gte example, a simultaneous recording of the breath rate

senes. and the instantaneous heart rate of a human subject dur-
Algorithm @ CPU time (N/2)7'EY) ing sleep. (Data set B of the Santa Fe Institute time series
Scramble 0.82 + 0.02 contest in 1991 [13], samples 1800-4350.) Regarding the
AAFT 001s 0.08 = 0.02  heart rate recording on its own, one easily detects nonlin-
lterative 2s 0.03 = 0.01 earity, in particular, an asymmetry under time reversal. An
Annealing 0.8 2m 0.0055 interesting question, however, is how much of this struc-
0.9 25 m 0.0009 ture can be explained by linear dependence on the breath
0.98 10 h 0.0003 rate, the breath rate also being non-time-reversible. In or-

der to answer this question, one has to make surrogates that
have the same autocorrelation structure, but also the same
As mentioned earlier, all previous randomizationcross-correlation with respect to the fixed input signal, the
schemes [2,5] make use of the Fourier transform irbreath rate. (Here the breath rate data is not randomized,
order to achieve the desired linear correlation structurewhich is, of course, also possible within this framework.)
Note, however, that two sequences with the same Fourigkccordingly, a constraint is formulated involving all lags
amplitudes do not quite have the same auto-covarianogp to 500 of the auto-covariance and the cross-covariance
function C(7), Eq. (1). The Wiener-Khinchin theorem (C,,) functions. The cost function is taken to be
says only that theperiodic sample auto-covariance func- <|C(7‘) _ C(data)(T)l>

tion C,(7), Eq. (3), will be the same. This amounts to max®%,
assuming that the measured time series is exactly one (data)

period of an infinite periodic signal, which is, of course, + max® <|ny(7) — Cy (”)|>

not what we believe to be the case. The artifact generated =300 7| + 1 ’

by this flaw of previous algorithms has been discussedsgther choices are possible. Further suppose that during
e.g., in Ref. [7]. The periodically extended sequenceyne minute the equipment spuriously recorded a constant
may undergo a phase slip or even a finite jump a N.  value. In order not to interpret this artifact as structure,
The surrogate series will have the power contained in thahe same artifact is generated in the surrogates, simply by
slip spread out over the whole observation time, leadingxcluding these data points from the permutation scheme.
to additional high frequency content. Although spurious Figure 1 shows the measured breath rate (upper trace)
results can be partially suppressed by selecting a segmeaid instantaneous heart rate (middle trace). The lower
of the data that apprOXimately returns to the initial Value,trace shows a surrogate Conserving both, auto- and cross-
it is desirable to preserve the auto-covariance functiogorrelations. The cooling rate was = 0.95, Ngec =

C(7) in Eq. (1) rather tharC,(7) in Eq. (3). With the 10000, Ny = 3 X 105. None of the auto- and cross-
annealing scheme proposed in this paper, this can h&variances differed from the goal by more ttfax 10~*

easily done by choosing an appropriate cost function. in units of the variance of the data after 3 h of annealing.
As an illustration, consider a particular autoregressive

process of order twoyx, = 1.3x,—; — 0.31x,—2 + 7,.
Since it is almost unstable, short realizations often show
a large difference between the first and the last point.
Periodic continuation turns this difference into a large
step with broad frequency content. For a realization of
160 points we found that for a Fourier-based surrogate
[method in Ref. [5], sameeriodic auto-covariance func- 80
tion C,(7)], the sample autocorrelatiafi(1)/C(0) was re- 70 | ‘
duced from 0.92 to 0.85. Consequently, the power in the
first differences is increased by a factor of 2 and short
term predictability is strongly reduced. This can lead 80 Fyig | | I
to spurious rejections of the null hypothesis of a linear 70 ‘ '
pro)ceesls. A sequ:enc):e obtained by minimizia§? = i t
max,— |C(r) — C944)(7)|/r yielded the correct value of . .
C(1) within 2 % 10~*. 7y 0 10 min 20 min

Apart from its potential for greater accuracy, the mostFIG. 1. Simultaneous measurements of breath and heart rates
striking feature of the new scheme is its generality and flex13, upper and middle traces. Lower trace: a surrogate heart rate

- . . . . . series preserving the autocorrelation structure and the cross-
ibility. This point will be demonstrated in the following . elation to the fixed breath rate series, as well as a gap in

examples which are by no means exhaustive. Note thage data. Auto- and cross-correlation together seems to explain
none of the examples below could be studied with previsome, but not all of the structure present in the heart rate series.

T

—
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imposed. To which extent reliable error distributions can
10 |- - be obtained by selecting a minimal set of constraints and
0 using resampling with replacement will be a subject of
future work.
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