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Constrained Randomization of Time Series Data
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A new method is introduced to create artificial time sequences that fulfil given constraints but
random otherwise. Constraints are usually derived from a measured signal for which surrogate da
to be generated. They are fulfilled by minimizing a suitable cost function using simulated annea
A wide variety of structures can be imposed on the surrogate series, including multivariate, nonli
and nonstationary properties. When the linear correlation structure is to be preserved, the new app
avoids certain artifacts generated by Fourier-based randomization schemes. [S0031-9007(98)054
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Randomization of data and Monte Carlo resamplin
of probability distributions is a common technique in
statistics [1]. In the context of nonlinear time serie
analysis it has been discussed by several authors and
usually referred to as themethod of surrogate data[2].
A null hypothesis for the nature of a time series can b
tested by comparing the value of an observableg obtained
using the data with values obtained using a collectio
of surrogatetime series representing the null hypothesis
All but the simplest null assumptions allow for certain
structures, for example, linear serial correlations. The
are two distinct ways to implement such structures whe
creating surrogate series. Traditional bootstrap metho
use explicit model equations that have to be extract
from the data. Thistypical realizationsapproach can
be very powerful for the computation of confidence
intervals, provided the model equations can be extract
successfully. As discussed in Ref. [3], the alternativ
approach ofconstrained realizationsis more suitable for
the purpose of hypothesis testing. It avoids the fittin
of model equations by directly imposing the desire
structures onto the randomized time series. Howeve
the choice of possible null hypothesis has so far be
limited by the difficulty of imposing arbitrary structures
on otherwise random sequences. Algorithms exist main
for the following cases. (1) The null hypothesis o
independent random numbers from a fixed but unknow
distribution can be tested against permutations witho
repetition of the data since these conserve the sam
distribution exactly. (2) The case of Gaussian nois
with arbitrary linear correlations leads to the Fourie
transform method. The Fourier transform of the dat
is multiplied by random phases and then transforme
back, conserving the sample periodogram. (See Ref.
for the multivariate case.) (3) Surrogates with a give
distribution and given linear correlations are needed f
the null hypothesis of a monotonically rescaled Gaussi
linear stochastic process. This is approximately achiev
by the amplitude adjusted Fourier transform (AAFT
algorithm [2] and the more accurate iterative metho
proposed in Ref. [5].
0031-9007y98y80(10)y2105(4)$15.00
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This paper will introduce a general method for gener
ing random time sequences subject to quite general c
straints. Any null hypothesis that leads to a complete
of observables can thus be tested for. All of the abo
cases can be dealt with (often with higher accuracy),
also multivariate, nonstationary, nonlinear, or other co
straints can be implemented. In all of the applications
this paper, the single time probability distribution will b
one of the constraints, leading to the requirement that
randomized sequence is a permutation of a fixed coll
tion of values. All other constraints, for example part
all of the lags of the autocorrelation function, will be for
mulated in terms of a cost function which is then minim
zed among all possible permutations by the method
simulated annealing.

After giving the actual randomization scheme we w
discuss some major applications. We will show that t
algorithm yields a more accurate nonlinearity test a
avoids known artifacts that are introduced by end effe
with ordinary, Fourier-based surrogates [6,7]. We w
also give examples with a more general null hypothe
than that of a rescaled stationary linear stochastic proc
For these examples, previous methods could not prov
appropriate surrogates.

The algorithm is conceptually very simple: (1) Speci
constraints Cishx̃njd  0 in terms of a cost function
Eshx̃njd, constructed to have a global minimum whe
the constraint is fulfilled. (2) MinimizeEshx̃njd among
all permutationshx̃nj of a time serieshxnj by simulated
annealing. Configurations are updated by exchang
pairs inhx̃nj. Examples of its use will be given below.

The simulated annealing method is particularly use
for combinatorial minimization with false minima. It goe
back to Metropoliset al. [8], and is thoroughly discussed
in the literature [9]. Essentially, the cost function is inte
preted as an energy in a thermodynamic system. At so
finite “temperature”T , system configurations are visite
consecutively with a probability according to the Boltz
mann distributione2EyT of the canonical ensemble. Thi
is achieved by accepting changes of the configuration w
a probabilityp  1 if the energy is decreased,sDE , 0d
© 1998 The American Physical Society 2105
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and p  e2DEyT if the energy is increasedsDE $ 0d.
The temperature is decreased slowly, thereby “annealin
the system to the ground state of minimal “energy,” th
is, the minimum of the cost function. In the limitT ! 0,
all ground state configurations can be reached with eq
probability. Although some general rigorous convergen
results are available, in practical applications of simulate
annealing some problem-specific choices have to be ma
In particular, apart from the cost function itself, one ha
to specify a method of updating the configurations an
a schedule for lowering the temperature. A way to effi
ciently reach all permutations by small individual change
is by exchanging randomly chosen (not necessarily clos
by) pairs. In many cases, an exchange of two points
reflected in a rather simple update of the cost functio
This is important for speed of computation. Many coolin
schemes have been discussed in the literature [9]. In t
work, the temperature is multiplied bya at each cooling
step. Cooling is done if either the number of successf
updates since the last cooling exceedsNsucc, or the total
number of configurations visited during this cooling ste
exceedsNtotal. It is difficult to give general rules on how
to choosea, Nsucc, andNtotal. Slow cooling is necessary
if the desired accuracy of the constraint is high. It seem
reasonable to increaseNsucc and Ntotal with the system
size, but also with the number of constraints incorporat
in the cost function. Generally, one can choose a tole
ance for the constraints, start with rather fast cooling, a
repeat the analysis with a slower cooling rate if the acc
racy has not been met. Other more sophisticated cool
schemes may be suitable depending on the specific sit
tion. The reader is referred to the standard literature [9

Let us first demonstrate that the algorithm yield
more accurate results than previous methods for t
most prominent application of surrogate data, whic
is statistical testing for nonlinearity in a time series
Consider the null hypothesis that there is a sequencehynj
that has been generated by a Gaussian linear stocha
process. As the only allowed kind of nonlinearity
the actual datahxnj consists of observations ofhynj
made through a monotone instantaneous measurem
function: xn  fsynd. As discussed, e.g., in Ref. [5], the
corresponding Monte Carlo sample has to be constrain
to have (i) the same single time probability distributio
and (ii) the same sample auto-covariance function [10]

Cstd 
1

N 2 t

N21X
nt

xnxn2t (1)

for all lags t  0, . . . , N 2 1. (Zero mean has been
imposed for simplicity of notation.)

In the actual test, a nonlinear observableg is computed
for the data and a collection of surrogate data se
(See Ref. [11] for a comparison of the performance
different statisticsg.) The null hypothesis will be rejected
if the result g0 obtained for the data is incompatible
with the probability distribution ofg estimated from the
2106
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surrogates. Note that although even different realizatio
of the same process will have the same sample au
covariance function only up to statistical fluctuations, it is
essential that the surrogates are constrained toCstdsdatad as
accurately as possible—since almost every discriminatin
statisticg will depend onCstd, we are otherwise likely to
introduce a bias and possibly spurious rejections of th
null hypothesis. See also the discussion in Ref. [3].

Previous attempts to implement the above constrain
have been only partially successful. In the scheme intr
duced here, property (i) is easily implemented by consid
ering as candidates for randomized series all permutatio
of the measured time sequencehynj. Requirement (ii)
can be achieved by finding a permutation ofhynj which,
within the desired accuracy, minimizes a cost functio
like the following [12]:

Esqd 

"
N21X
t0

jCstd 2 Csdatadstdjq
#1yq

. (2)

Provided the annealing scheme is brought to convergen
with high accuracy, the known artifacts that remain with
previous approaches can be avoided.

As discussed in [5], the original (AAFT) algorithm
[2] can show a bias towards a flat spectrum for sho
sequences. The iterative scheme proposed in [5] remov
this bias to a satisfactory approximation for practica
work. Let us, however, compare the accuracy of th
previously proposed schemes to the present algorithm. F
comparability, a cost function is chosen with respect to th
time periodic sample auto-covariance function

Cpstd 
1
N

N21X
n0

xnxsn2td mod N , (3)

which corresponds to the Fourier spectrum
through the Wiener-Khinchin theorem. Minimizing
E

s`d
p  max

Ny2
t0 jCpstd 2 C

sdatad
p stdj will reproduce the

auto-covarianceC
sdatad
p measured on the data. Time serie

of length N  1000 are generated by an autoregressiv
model, but measured using a nonlinear measurement fu
tion: xn  y3

n, yn  0.9yn21 1 hn. The residual maxi-
mal deviations of the auto-covariances of the time serie
and surrogate sets were determined for (i) random pe
mutations of the data, (ii) usual AAFT surrogates [2]
(iii) surrogates created with the iterative scheme given
Ref. [5], and (iv) outcomes of the annealing procedure fo
different cooling protocols. Note that with slower cool-
ing, arbitrarily high accuracy can be reached in principle
Averages over 20 realizations were determined for cas
(i) to (iii). The iterative scheme (iii) was repeated until
a fixed point was reached which was the case after abo
200 iterations. Table I summarizes the results. Comp
tation time on a DEC alpha workstation at 400 MHz clock
rate is given only for relative comparison. The price fo
the superior accuracy of the annealing scheme is its mu
higher computational cost.
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TABLE I. Residual deviation from the desired auto
covariance function for different methods of randomizing tim
series.

Algorithm a CPU time sNy2d21E
s`d
p

Scramble · · · 0.82 6 0.02
AAFT 0.01 s 0.08 6 0.02
Iterative 2 s 0.03 6 0.01
Annealing 0.8 2 m 0.0055

0.9 25 m 0.0009
0.98 10 h 0.0003

As mentioned earlier, all previous randomizatio
schemes [2,5] make use of the Fourier transform
order to achieve the desired linear correlation structu
Note, however, that two sequences with the same Fou
amplitudes do not quite have the same auto-covaria
function Cstd, Eq. (1). The Wiener-Khinchin theorem
says only that theperiodic sample auto-covariance func
tion Cpstd, Eq. (3), will be the same. This amounts t
assuming that the measured time series is exactly
period of an infinite periodic signal, which is, of course
not what we believe to be the case. The artifact genera
by this flaw of previous algorithms has been discusse
e.g., in Ref. [7]. The periodically extended sequen
may undergo a phase slip or even a finite jump atn  N .
The surrogate series will have the power contained in t
slip spread out over the whole observation time, leadi
to additional high frequency content. Although spuriou
results can be partially suppressed by selecting a segm
of the data that approximately returns to the initial valu
it is desirable to preserve the auto-covariance functi
Cstd in Eq. (1) rather thanCpstd in Eq. (3). With the
annealing scheme proposed in this paper, this can
easily done by choosing an appropriate cost function.

As an illustration, consider a particular autoregressi
process of order two,xn  1.3xn21 2 0.31xn22 1 hn.
Since it is almost unstable, short realizations often sh
a large difference between the first and the last poi
Periodic continuation turns this difference into a larg
step with broad frequency content. For a realization
160 points we found that for a Fourier-based surroga
[method in Ref. [5], sameperiodic auto-covariance func-
tion Cpstd], the sample autocorrelationCs1dyCs0d was re-
duced from 0.92 to 0.85. Consequently, the power in t
first differences is increased by a factor of 2 and sh
term predictability is strongly reduced. This can lea
to spurious rejections of the null hypothesis of a line
process. A sequence obtained by minimizingEs`d 
maxN21

t0 jCstd 2 Csdatadstdjyt yielded the correct value of
Cs1d within 2 3 1024.

Apart from its potential for greater accuracy, the mo
striking feature of the new scheme is its generality and fle
ibility. This point will be demonstrated in the following
examples which are by no means exhaustive. Note t
none of the examples below could be studied with pre
-
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ous surrogate data schemes. Let us first study a multiva
ate example, a simultaneous recording of the breath ra
and the instantaneous heart rate of a human subject d
ing sleep. (Data set B of the Santa Fe Institute time seri
contest in 1991 [13], samples 1800–4350.) Regarding t
heart rate recording on its own, one easily detects nonli
earity, in particular, an asymmetry under time reversal. A
interesting question, however, is how much of this struc
ture can be explained by linear dependence on the bre
rate, the breath rate also being non-time-reversible. In o
der to answer this question, one has to make surrogates t
have the same autocorrelation structure, but also the sa
cross-correlation with respect to the fixed input signal, th
breath rate. (Here the breath rate data is not randomize
which is, of course, also possible within this framework.
Accordingly, a constraint is formulated involving all lags
up to 500 of the auto-covariance and the cross-covarian
(Cxy) functions. The cost function is taken to be

max500
t0

µ
jCstd 2 Csdatadstdj

t

∂
1 max500

t2500

µ
jCxystd 2 C

sdatad
xy stdj

jtj 1 1

∂
,

other choices are possible. Further suppose that duri
one minute the equipment spuriously recorded a consta
value. In order not to interpret this artifact as structure
the same artifact is generated in the surrogates, simply
excluding these data points from the permutation schem

Figure 1 shows the measured breath rate (upper trac
and instantaneous heart rate (middle trace). The low
trace shows a surrogate conserving both, auto- and cro
correlations. The cooling rate wasa  0.95, Nsucc 
10 000, Ntotal  3 3 105. None of the auto- and cross-
covariances differed from the goal by more than5 3 1024

in units of the variance of the data after 3 h of annealing

FIG. 1. Simultaneous measurements of breath and heart ra
13, upper and middle traces. Lower trace: a surrogate heart r
series preserving the autocorrelation structure and the cro
correlation to the fixed breath rate series, as well as a gap
the data. Auto- and cross-correlation together seems to expla
some, but not all of the structure present in the heart rate seri
2107
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FIG. 2. A realization of a linear process with time depende
variance (upper), a usual AAFT surrogate (middle), and
surrogates with the same autocorrelations and the same runn
variance as the original series.

(DEC alpha workstation at 400 MHz clock rate.) The vi
sual impression from Fig. 1 is that while the linear cros
correlation with the breath rate explains the cyclic structu
of the heart rate data, other features remain unexplain
In particular, the surrogates don’t show the asymmetry u
der time seen in the data. Possible explanations of the
maining structure include artifacts due to the peculiar wa
of deriving heart rate from interbeat intervals, nonlinea
coupling to the breath activity, nonlinearity in the cardia
system, and others.

Let us finally give a nonstationary example, a
AR(2) process with periodically modulated variance
xn  1.6xn21 2 0.8xn22 1 bnhn with bn  1 1

sin2 2pny1000. In Fig. 2 a realization (N  2000) is
shown together with two surrogate series. The fir
(middle trace) has been generated by the AAFT algorith
the second (lower trace) has been generated by the ann
ing scheme to preserve the first 100 lags ofCstd, but also
the running variance in blocks of length 200, overlappin
by 100.

In this paper it has been demonstrated that randomiz
tion under a wide variety of constraints can be achieve
with a permutation scheme that minimizes a suitable co
function using simulated annealing. The approach is ve
general. Constraints are not restricted to linear corre
tions. Multivariate, nonlinear, but also time dependen
nonstationary properties can be easily implemented.

Resampling with constraints is the method of choic
for hypothesis testing, where it is preferable to paramet
bootstrap methods. Although a general, nonparamet
resampling scheme has been introduced in this paper, c
has to be taken when similar ideas are to be exploit
for the determination of error bounds. The variance
statistical estimators usually depends on the constrai
2108
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imposed. To which extent reliable error distributions ca
be obtained by selecting a minimal set of constraints a
using resampling with replacement will be a subject o
future work.
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