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Exact Large Deviation Function in the Asymmetric Exclusion Process
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By an extension of the Bethe ansatz method used by Gwa and Spohn, we obtain an exact expression
for the large deviation function of the time averaged current for the fully asymmetric exclusion
process in a ring containinyl sites andp particles. Using this expression we easily recover the
exact diffusion constant obtained earlier and calculate as well some higher cumulants. The distribution
of the deviationy of the average current is, in the limif — o, skew and decays like exp (Ay%/?)
for y — 4o and exp— (4'|y|*?) for y — —o. Surprisingly, the large deviation function has an
expression very similar to the pressure (as a function of the density) of an ideal Bose or Fermi gas in 3D.
[S0031-9007(97)05013-8]

PACS numbers: 05.40.+j, 02.50.-r, 82.20.—w

In the past decade, it has become clear that questionis a random medium. Other recent results include the
as different as 1D turbulence, growth of interfaces, or di-numerical calculation of the distribution of the density for
rected polymers in a random medium in dimensio#t 1 ~ a randomly driven Burgers equation [21]. The results
were different versions of the same problem describegiresented below are, to our knowledge, the first exact
by the noisy Burgers or equivalently the Kardar-Parisi-determination of a nontrivial probability distribution for
Zhang (KPZ) equation [1,2]. One of the simplest latticea fluctuating quantity described by the noisy Burgers
versions of this problem is the asymmetric exclusionequation or equivalently the KPZ equation. Through
process (ASEP) which also has a long history both irthe known equivalences between the different problems
the mathematical and in the physical literature [3—5].mentioned above, our results could easily be used to
It describes a driven lattice gas with hard core exclusionpbtain the whole distribution of the ground state energy
and under suitable scalings the evolution of its macroof a directed polymer in a random medium in dimension
scopic density is governed by a noisy Burgers equation in + 1 for a finite lateral geometry.
1D which is equivalent to the KPZ equation. We consider here a totally ASEP consisting pf

Many properties of the ASEP have been calculategarticles on a ring oN sites. During any time intervait,
(steady states, mass gaps, diffusion constants) by varioesch particle jumps with probabilitgit to its right if the
methods including exact solutions [6—13] and comparedarget site is empty. The unique stationary state of this
[1,14] with the predictions of the replica approach [15—system is one in which all’y) different configurations
17] or numerical simulations [18-20] for directed poly- C have equal weight [6]. We call, the total distance
mers or growth problems. covered byall of the particlesbetween time 0 and time

Here, extending the Bethe ansatz approach of Gwa anghus Y, = 0). The probability P,(C) of finding the
Spohn [8], we obtain the expression for a large deviatiorsystem in configuratio€ at timet satisfies
function which gives the exact probability for the time
averaged current to take any, typical or untypical, value. o P.(C) = Z[MO(C,C’) + M, (C,C"]P.(C"),

Similar distributions have been studied numerically in ! c
the past [18-20], in particular to better understand thevhereM,(C, C')d: is the probability of going fronC’ to
n — 0 limit in the replica approach of directed polymers C during a time intervadit, increasingy by 1, while M, is
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a diagonal matrix, 2122-:2p = 1. (6)
My(C,C) = — Z M (C',C). The derivation of (5) and (6) is almost identical to that
C'#C given by Gwa and Spohn in [8] and we refer to their work.

Let P,(C,Y) be the joint probability of being, at  Forany solutiofz.} of (5) and (6), expression (4) gives
time t, in the configurationC and having Y, =Y, an eigenvector of the matrid, + ¢*M; with eigenvalue
some non-negative integer. Define alsB(C) as A(a) given by
Sy oexpaY)P,(C,Y). Then

IF,(C)

o1t The difficulty is that there are, in general, many solu-
SummingF,(C) over C we obtain(e®"). Itis easy to see tions of (5) and (6) corresponding to different eigenvalues
that, for larget, of the matrixM, + ¢“M;. The one we need to choose is
(e¥V) ~ M)t (1) the largest eigenvalug(«) which, as already noted, can
] ] be followed, whena varies, from the unique eigenvalue
whereA(a) is the largest eigenvalue of the mati% +  \yhich vanishes whem — 0. ThusA(«) corresponds to
e“*M; (we have omitted the dependence ofon p and  the solution such that all thg — 1 asa — 0.
N). B)_/ ~ we mean t_he following: take the Iogar!thm of  To see why (2) and (3) are equivalent to (5)—(7), when
both sides of (1), divide by, and letr — < to obtain an  gne chooses the above solution, we consider a function
equality. While (1) holds for every initial configuration, it h(z) analytic in the circlelz — | < 2e. It is then an

as the stationary one.

In the present paper we show that the exact expression Z h(Zk)=y§ dz h(z)

/\(a)=ea[i+i+---+ii|—p. (7)

= D [Mo(C,C") + e*M(C,CHIF(C)). a2 Zp

of A(@), for arbitraryp andN, is given by the power series | 52 2mriz
in o obtained by eliminating between the following two (z — e®)? [ pz — N(z — )]
series: X Gz — e®)yr — Az ,
- Ng — 2)!
Ma)=—p > B (Ng = 2) ) (8)

< '(Ng — pg — D!’ - i
=i (pa)!Ng = pq ) where the contour is the circle — ¢“| = €, the parame-

ter A is such thatlA| < e?e V%, and theZ; are thep

- (Ng — 1)!
a=-> BI (pq)'(;lvq e (3)  solutions of
= ! !

. . . (z — ") = AZN, )
These series have a nonzero radius of convergenBe in

so A(a) is analytic ina, at least neanr = 0. Moreover, Which tend toe® asA — 0. As (9) has a form identical
by the Perron-Frobenius theorem there is no crossing df (5), one can use (8) to calculaféa) [by choosing
the largest eigenvalue of the matdig, + ¢*M, for real  h(z) = —1 + e*/z], and this gives (2) in terms o =
« and fixed finiteN. Hence (2) and (3) determing(a)  Ae™Y 7. The constanB can then be determined by
on the whole real axis as the analytic continuation of thdequiring that (6) is also satisfied. To do that, one can
expression in the vicinity ofr = 0. In the rest of this USe again the identity (8) for the functidriz) = Inz and
paper, we first show how (2) and (3) can be obtained usingis gives (3).
the Bethe ansatz. Then we investigate some consequencedrom the exact expressions (2) and (3), one can expand

of this exact expression. Ala) in a power series ime. In particular, one can check
The Bethe ansatz we use is very similar to that usedhat
by Gwa and Spohn [8], except that here there is an extra _
. ’ . € _pWN —p)
parameterr. Specifying a configuratio@ by the positions A(a) = N1 ¢
1 =x <x <---<x, = N ofthep particles, we write ) )
an eigenvector of the matridd, + ¢“M; in the form PP)"IN = pPEON = 3 2y 50
P @p)(N — DI22N — 2p — 1)!
%AQ l_ll [zo(n]17, (4) (10)
=
where the sum is over all of the permutatiogsof &nd using (1), this gives
1,2,....,p and thep parameterg; satisfy the following fim @ _ dMa) _ p(N — p) 1)
equations: bl S da |- N —1
a _— p . . .
(e = 2 _ (—)r~! l_[(ea -z, (5)  Which is known to be a simple consequence of the fact
% =1 ! that in the steady state all configurations have equal

210



VOLUME 80, NUMBER 2

PHYSICAL REVIEW LETTERS

12 ANUARY 1998

weight [6,7].
measure, (11) would in fact be valid for all] The
expansion (10) also gives the diffusion constant

(Y2 = (1) dPA@)

[Note that if Po(C) was the stationary which agrees (up to a trivial factop? due to a slight

change in the definition ofY,) with the expression
obtained by an extension [10] of the matrix method [9].
Exact expressions of higher cumulants Bf may be

tlm Tl , (12)  obtained in a similar way from (1)—(3) by expandingy)
a” la=0 to higher orders imx. For example, the third derivative
| of Aata = 0 gives
i (V%) — 3y vy + 2v)* _ 3p(N — p)? <2N - 1>2<N - 1)4
1= t 2N - 1)(N = 1) 2p p

BN - DN —1)

For large positivex (i.e., @ > 1), the solutions; of
(5) and (6), forl = k = p, are given by

% = e2k=p=Dmi/N O(e™ )
and this leads to
. SiN(pa/N)
sin(«r /N)

For large negativex (i.e., —a > 1), one of thez
becomes large [say, = e¢!!"7?], and the othepp — 1

Ma)=c¢ + 0(1). (14)

zx becomes smallz; = e¢® for2 = k = p). This leads
to
—1 + eP@ forp <N —-p
Ma) =4 —1 + 2eP? forp=N—-p. (15
—1+ VNP2 forp>N—p

[We can understand the limit — —c0 in (15) by noting

4p(N — p)? <3n -1 (13)

3p

),

In fact, in this limit N — o« with p = p/N fixed, the
expressions (2) and (3) can be rewritten as

_2aN? IRl )N IS
p(l — p) [A(a) N } G(B)
_ (—)itlce
= (gl PEEIN
(20)
where

—_)g+1
ol =i =p = ¥ E5E
q=1

andC = —BNYp (N — p)"N*P_ This shows that for
N large andg fixed, i.e., fora ~ N~%/2, the difference

that the probability of not making any jump during the A(a) — ap(N — p)/N takes a scaling form

time intervalt is, for a configuration in which all particles

form one cluster, just exXp-7).]

In the limit of largeN andp, keeping the ratigp/N =
p fixed, one finds, for the first four cumulants ¥f[by
calculating the first four derivatives ofla) ata = 0],

im L2 = w1 - ), (16)
im T2 e e ST

im () = 3(r’)(r) + vy’

t—0 t

=Nl - pF(5 - 55 ). a®)

i 00 = 3PP — 4 () + 120 — 6

t—0 t

= N0 = P

2

ap(N - p)
N

2L Glaemp - V). @2)

The two sums which defin&(8) in the right-hand
sides of (20) and (21) are very reminiscent of the pressure
and density of an ideal Bose or Fermi gas (depending on
the sign ofC) in three dimensions [22]: Positivé and
a correspond to the Fermi gas, and negatvend «
correspond to the Bose gas.

The rangeN 2 < a < 1 (i.e., large positiveC)
corresponds to the high pressure or low temperature limit
of a Fermi gas, and this analogy leads to

LN = p) _ BmP
N 5

Ma) —

[p(1 — p)I*Na®3.

(23)

Ma) —

Negativea can also be analyzed: Whé&hvaries from 0
to —1 in (20) and (21)« decreases (this corresponds to a
Bose gas in its high temperature phase) anldas a finite
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limit «g asC — —1. To further decrease, it turns out in (32) has a simple interpretation: To speed up the traffic,
that one has to increaszfrom —1 to 0 and to replace the one needs to speed up all of the particles, whereas to slow
expressions (20) and (21) 6f(B8) and B by their analytic down the traffic, it is sufficient to slow down a single

continuations [23] particle. Note that if one considers that the scaling forms
_Yatlg (28), (30), and (31) remain valid far < | y| < N, it is
G(B) = 3 Ja[-In(=OP? + > ——77 - (24)  possible to obtain from (30) and (31) the snabiehavior
=1 4 of H.(z) andH_(z).
(—)a*lca The distribution ofy is skew [(13) and (18)] and, for
B = —4/m[-In(-O)1" + Zl PP (25)  Jargey (but still | y| < N), it decays [(30) and (31)] as
q=

the exponential of a power law with an exponép2 for
This analytic continuation is a major difference with they — « and3/2 for y — —». Skew distributions with

usual Bose-Einstein condensation, wh€reemains fixed  similar tails have been observed in numerical simulations
at the value-1 in the whole low temperature phase. Here,[1,18—20] and partly understood by the replica approach
for @ < ap, one of thez; becomes much larger than [15-17]. A precise comparison with existing numerical
the others but, in contrast to the Bose condensate, thgata cannot, however, be done because, in the present
chemical potentiaC in (24) keeps varying withe. For  work, we consider a finite geometry [a ring df sites,

the rangeV /% <« —a < 1, this leads to taking the long time limit first, and then the limit of an
p(N —p) -1 s 33 infinite lattice (N — )], whereas the simulations were
Ma) —a =—F—— = -+ [p(1 = p)I'N"a’. (26)  ysually done for directed polymers on an infinite lattice

[1] (thus taking the limits in reverse order). It would
The knowledge of the function(a) determines Certainly be interesting to try to extend the above Bethe

{through y = dA\/da — p(N — p)/N and f(y)=  ansatz calculation to this case. Other extensions could be
A — a[y + p(N — p)/N]} the large deviation function the calculation of the diffusion constant [24], the higher
f(y) defined here as cumulants ofY, or the whole large deviation function
! v in more general cases such as the partially asymmet-
f(y) = lim —In{Prot{—’ — Np(l — p) = y}} ric exclusion process [24-27], or the case of several
= 1 4 species [28].

(27) The similarity of the expressions (20) and (21)&f3)

From (16), (17), (22), (23), and (26), one can show that®S a function of3 with that of the pressure of a Fermi or a
for N large, f( y) takes the scaling form fdry| < N Bose gas in 3D was a surprise to us, and it would be nice
to have a more direct explanation for it. A Bose-Einstein

p(1 = p) y condensation for the ASEP has already been found in the
f(y) = N3 H[p(l _ p)] (28) presence of quenched disorder [29]. Here, the mechanism
seems to be different as, instead of observing the Bose-
where the functiord has the following properties: Einstein condensation, one finds ti@g) is analytically
H(y)=—(y —1)? for|y — 1] <1, (29) continued asin (24)and (25). . .
We thank E. Speer for many very useful discussions.
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