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By an extension of the Bethe ansatz method used by Gwa and Spohn, we obtain an exact expressi
for the large deviation function of the time averaged current for the fully asymmetric exclusion
process in a ring containingN sites andp particles. Using this expression we easily recover the
exact diffusion constant obtained earlier and calculate as well some higher cumulants. The distributio
of the deviationy of the average current is, in the limitN ! `, skew and decays like exp2 sAy5y2d
for y ! 1` and exp2 sA0jyj3y2d for y ! 2`. Surprisingly, the large deviation function has an
expression very similar to the pressure (as a function of the density) of an ideal Bose or Fermi gas in 3D
[S0031-9007(97)05013-8]
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In the past decade, it has become clear that quest
as different as 1D turbulence, growth of interfaces, or
rected polymers in a random medium in dimension1 1 1
were different versions of the same problem describ
by the noisy Burgers or equivalently the Kardar-Pari
Zhang (KPZ) equation [1,2]. One of the simplest latti
versions of this problem is the asymmetric exclusio
process (ASEP) which also has a long history both
the mathematical and in the physical literature [3–
It describes a driven lattice gas with hard core exclusi
and under suitable scalings the evolution of its mac
scopic density is governed by a noisy Burgers equation
1D which is equivalent to the KPZ equation.

Many properties of the ASEP have been calcula
(steady states, mass gaps, diffusion constants) by var
methods including exact solutions [6–13] and compa
[1,14] with the predictions of the replica approach [15
17] or numerical simulations [18–20] for directed poly
mers or growth problems.

Here, extending the Bethe ansatz approach of Gwa
Spohn [8], we obtain the expression for a large deviat
function which gives the exact probability for the tim
averaged current to take any, typical or untypical, val
Similar distributions have been studied numerically
the past [18–20], in particular to better understand
n ! 0 limit in the replica approach of directed polyme
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in a random medium. Other recent results include t
numerical calculation of the distribution of the density fo
a randomly driven Burgers equation [21]. The resu
presented below are, to our knowledge, the first ex
determination of a nontrivial probability distribution fo
a fluctuating quantity described by the noisy Burge
equation or equivalently the KPZ equation. Throug
the known equivalences between the different proble
mentioned above, our results could easily be used
obtain the whole distribution of the ground state ener
of a directed polymer in a random medium in dimensio
1 1 1 for a finite lateral geometry.

We consider here a totally ASEP consisting ofp
particles on a ring ofN sites. During any time intervaldt,
each particle jumps with probabilitydt to its right if the
target site is empty. The unique stationary state of th
system is one in which alls N

p d different configurations
C have equal weight [6]. We callYt the total distance
covered byall of the particlesbetween time 0 and timet
(thus Y0 ­ 0). The probability PtsCd of finding the
system in configurationC at timet satisfies

d
dt

PtsCd ­
X
C0

fM0sC, C 0d 1 M1sC, C0dgPtsC0d ,

whereM1sC, C0ddt is the probability of going fromC0 to
C during a time intervaldt, increasingY by 1, whileM0 is
© 1998 The American Physical Society 209
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a diagonal matrix,

M0sC, Cd ­ 2
X

C0fiC

M1sC0, Cd .

Let PtsC, Yd be the joint probability of being, a
time t, in the configurationC and having Yt ­ Y ,
some non-negative integer. Define alsoFtsCd asP`

Y­0 expsaY dPtsC, Y d. Then

≠FtsCd
≠t

­
X

fM0sC, C0d 1 eaM1sC, C0dgFtsC0d .

SummingFtsCd overC we obtainkeaYt l. It is easy to see
that, for larget,

keaYt l , elsadt , (1)

wherelsad is the largest eigenvalue of the matrixM0 1

eaM1 (we have omitted the dependence ofl on p and
N). By , we mean the following: take the logarithm o
both sides of (1), divide byt, and lett ! ` to obtain an
equality. While (1) holds for every initial configuration,
is sometimes convenient to think of the initial stateP0sCd
as the stationary one.

In the present paper we show that the exact expres
of lsad, for arbitraryp andN, is given by the power serie
in a obtained by eliminatingB between the following two
series:

lsad ­ 2p
X̀
q­1

Bq sNq 2 2d!
s pqd! sNq 2 pq 2 1d!

, (2)

a ­ 2
X̀
q­1

Bq sNq 2 1d!
spqd! sNq 2 pqd!

. (3)

These series have a nonzero radius of convergenceB
so lsad is analytic ina, at least neara ­ 0. Moreover,
by the Perron-Frobenius theorem there is no crossing
the largest eigenvalue of the matrixM0 1 eaM1 for real
a and fixed finiteN. Hence (2) and (3) determinelsad
on the whole real axis as the analytic continuation of t
expression in the vicinity ofa ­ 0. In the rest of this
paper, we first show how (2) and (3) can be obtained us
the Bethe ansatz. Then we investigate some conseque
of this exact expression.

The Bethe ansatz we use is very similar to that us
by Gwa and Spohn [8], except that here there is an e
parametera. Specifying a configurationCby the positions
1 # x1 , x2 , · · · , xp # N of thep particles, we write
an eigenvector of the matrixM0 1 eaM1 in the formX

Q

AQ

pY
j­1

fzQs jdgxj , (4)

where the sum is over all of the permutationsQ of
1, 2, . . . , p and thep parameterszk satisfy the following
equations:

sea 2 zkdp

zN
k

­ s2dp21
pY

j­1

sea 2 zjd , (5)
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z1z2 · · · zp ­ 1 . (6)

The derivation of (5) and (6) is almost identical to tha
given by Gwa and Spohn in [8] and we refer to their work

For any solutionhzkj of (5) and (6), expression (4) gives
an eigenvector of the matrixM0 1 eaM1 with eigenvalue
lsad given by

lsad ­ ea

∑
1
z1

1
1
z2

1 · · · 1
1
zp

∏
2 p . (7)

The difficulty is that there are, in general, many solu
tions of (5) and (6) corresponding to different eigenvalue
of the matrixM0 1 eaM1. The one we need to choose is
the largest eigenvaluelsad which, as already noted, can
be followed, whena varies, from the unique eigenvalue
which vanishes whena ! 0. Thuslsad corresponds to
the solution such that all thezk ! 1 asa ! 0.

To see why (2) and (3) are equivalent to (5)–(7), whe
one chooses the above solution, we consider a functi
hszd analytic in the circlejz 2 ea j , 2e. It is then an
easy consequence of the Cauchy theorem thatX

1#k#p

hsZkd ­
I dz

2piz
hszd

3
sz 2 eadp21f pz 2 Nsz 2 eadg

sz 2 eadp 2 AzN ,

(8)

where the contour is the circlejz 2 eaj ­ e, the parame-
ter A is such thatjAj ø epe2Na , and theZk are thep
solutions of

sz 2 eadp ­ AzN , (9)

which tend toea asA ! 0. As (9) has a form identical
to (5), one can use (8) to calculatelsad [by choosing
hszd ­ 21 1 eayz], and this gives (2) in terms ofB ­
AesN2pda . The constantB can then be determined by
requiring that (6) is also satisfied. To do that, one ca
use again the identity (8) for the functionhszd ­ ln z and
this gives (3).

From the exact expressions (2) and (3), one can expa
lsad in a power series ina. In particular, one can check
that

lsad ­
psN 2 pd

N 2 1
a

1
psp!d2sN 2 pd!2s2N 2 3d!

s2p!d sN 2 1d!2s2N 2 2p 2 1d!
a2 1 Osa3d

(10)

and using (1), this gives

lim
t!`

kYtl
t

­
dlsad

da

Ç
a­0

­
psN 2 pd

N 2 1
, (11)

which is known to be a simple consequence of the fa
that in the steady state all configurations have equ
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weight [6,7]. [Note that if P0sCd was the stationary
measure, (11) would in fact be valid for allt.] The
expansion (10) also gives the diffusion constant

lim
t!`

kY2
t l 2 kYtl2

t
­

d2lsad
da2

Ç
a­0

, (12)
e

which agrees (up to a trivial factorp2 due to a slight
change in the definition ofYt) with the expression
obtained by an extension [10] of the matrix method [9
Exact expressions of higher cumulants ofYt may be
obtained in a similar way from (1)–(3) by expandinglsad
to higher orders ina. For example, the third derivative
of l at a ­ 0 gives
lim
t!`

kY3l 2 3kY2l kYl 1 2kY l3

t
­

3psN 2 pd3

s2N 2 1d sN 2 1d

µ
2N 2 1

2p

∂2µN 2 1
p

∂24

2
4psN 2 pd3

s3N 2 1d sN 2 1d

µ
3n 2 1

3p

∂ µ
N 2 1

p

∂23

. (13)
re
on

it

a

For large positivea (i.e., a ¿ 1), the solutionszk of
(5) and (6), for1 # k # p, are given by

zk ­ es2k2p21dpiyN 1 Ose2ad

and this leads to

lsad ­ ea sins ppyNd
sinspyNd

1 Os1d . (14)

For large negativea (i.e., 2a ¿ 1), one of the zk

becomes large [say,z1 . es12pda], and the otherp 2 1
zk becomes smallszk . ea for 2 # k # pd. This leads
to

lsad .

8<: 21 1 epa for p , N 2 p
21 1 2epa for p ­ N 2 p
21 1 esN2pda for p . N 2 p

. (15)

[We can understand the limita ! 2` in (15) by noting
that the probability of not making any jump during th
time intervalt is, for a configuration in which all particles
form one cluster, just exps2td.]

In the limit of largeN andp, keeping the ratiopyN ­
r fixed, one finds, for the first four cumulants ofY [by
calculating the first four derivatives oflsad at a ­ 0],

lim
t!`

kY l
t

. Nrs1 2 rd , (16)

lim
t!`

kY2l 2 kY l2

t
. N3y2frs1 2 rdg3y2

p
p

2
, (17)

lim
t!`

kY3l 2 3kY2l kYl 1 2kY l3

t

. N3frs1 2 rdg2

µ
3
2

2
8

33y2

∂
p , (18)

lim
t!`

kY4l 2 3kY2l2 2 4kY 3l kY l 1 12kY2l kY l2 2 6kY l4

t

. N9y2frs1 2 rdg5y2

µ
15
2

1
9

21y2
2

24
31y2

∂
p3y2.

(19)
In fact, in this limit N ! ` with r ­ pyN fixed, the
expressions (2) and (3) can be rewritten ass

2pN3

rs1 2 rd

∑
lsad 2 a

psN 2 pd
N

∏
. Gsbd

;
X
q$1

s2dq11Cq

q5y2
,

(20)

where

a

q
2prs1 2 rdN3 . b ;

X
q$1

s2dq11Cq

q3y2 (21)

andC ­ 2BNN p2psN 2 pd2N1p. This shows that for
N large andb fixed, i.e., fora , N23y2, the difference
lsad 2 apsN 2 pdyN takes a scaling form

lsad 2 a
psN 2 pd

N

.

s
rs1 2 rd

2pN3 G
h
a

q
2prs1 2 rdN3

i
. (22)

The two sums which defineGsbd in the right-hand
sides of (20) and (21) are very reminiscent of the pressu
and density of an ideal Bose or Fermi gas (depending
the sign ofC) in three dimensions [22]: PositiveC and
a correspond to the Fermi gas, and negativeC and a

correspond to the Bose gas.
The rangeN23y2 ø a ø 1 (i.e., large positiveC)

corresponds to the high pressure or low temperature lim
of a Fermi gas, and this analogy leads to

lsad 2 a
psN 2 pd

N
.

s3pd2y3

5
frs1 2 rdg4y3Na5y3.

(23)

Negativea can also be analyzed: WhenC varies from 0
to 21 in (20) and (21),a decreases (this corresponds to
Bose gas in its high temperature phase) anda has a finite
211
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limit a0 asC ! 21. To further decreasea, it turns out
that one has to increaseC from 21 to 0 and to replace the
expressions (20) and (21) ofGsbd andb by their analytic
continuations [23]

Gsbd ­
4
3

p
p f2lns2Cdg3y2 1

X
q$1

s2dq11Cq

q5y2
, (24)

b ­ 24
p

p f2lns2Cdg1y2 1
X
q$1

s2dq11Cq

q5y2
. (25)

This analytic continuation is a major difference with th
usual Bose-Einstein condensation, whereC remains fixed
at the value21 in the whole low temperature phase. Her
for a , a0, one of thezk becomes much larger than
the others but, in contrast to the Bose condensate,
chemical potentialC in (24) keeps varying witha. For
the rangeN23y2 ø 2a ø 1, this leads to

lsad 2 a
psN 2 pd

N
.

21
24

frs1 2 rdg2N3a3. (26)

The knowledge of the functionlsad determines
hthrough y ­ dlyda 2 psN 2 pdyN and fs yd ­
l 2 af y 1 psN 2 pdyNgj the large deviation function
fs yd defined here as

fs yd ­ lim
t!`

1
t

ln

Ω
Prob

∑
Yt

t
2 Nrs1 2 rd ­ y

∏æ
.

(27)

From (16), (17), (22), (23), and (26), one can show th
for N large,fs yd takes the scaling form forj yj ø N

fs yd .

s
rs1 2 rd

pN3 H

∑
y

rs1 2 rd

∏
, (28)

where the functionH has the following properties:

Hs yd . 2s y 2 1d2 for j y 2 1j ø 1 , (29)

Hs yd . 2f2
p

3ys5
p

p dg y5y2 for y ! 1` , (30)

Hs yd . 2s4
p

2py3d j yj3y2 for y ! 2` . (31)

Note that the difference between kYtlyt ­
psN 2 pdysN 2 1d and Nrs1 2 rd used in (27) is
responsible for the fact that the maximum offs yd is at
y ­ 1 as in (29). The scaling form (28) was obtaine
[(20) and (21)] for a , N23y2 and this means [(27)–
(31)] that it is valid fory of order 1.

For y of order N, one expects from (14) and (15) th
following two scaling forms forfs yd:

fs yd . NH1s yN21d for y . 0 , (32)

fs yd . H2s yN21d for y , 0 . (33)

As yysNrd is the deviation (from its most probable valu
1 2 r) in the velocity of the particles, the extra factorN
212
,

the

t,

in (32) has a simple interpretation: To speed up the traffi
one needs to speed up all of the particles, whereas to s
down the traffic, it is sufficient to slow down a single
particle. Note that if one considers that the scaling form
(28), (30), and (31) remain valid for1 ø j yj ø N , it is
possible to obtain from (30) and (31) the smallz behavior
of H1szd andH2szd.

The distribution ofy is skew [(13) and (18)] and, for
large y (but still j yj ø N), it decays [(30) and (31)] as
the exponential of a power law with an exponent5y2 for
y ! ` and 3y2 for y ! 2`. Skew distributions with
similar tails have been observed in numerical simulatio
[1,18–20] and partly understood by the replica approa
[15–17]. A precise comparison with existing numerica
data cannot, however, be done because, in the pres
work, we consider a finite geometry [a ring ofN sites,
taking the long time limit first, and then the limit of an
infinite lattice sN ! `d], whereas the simulations were
usually done for directed polymers on an infinite lattic
[1] (thus taking the limits in reverse order). It would
certainly be interesting to try to extend the above Bet
ansatz calculation to this case. Other extensions could
the calculation of the diffusion constant [24], the highe
cumulants ofY, or the whole large deviation function
in more general cases such as the partially asymm
ric exclusion process [24–27], or the case of seve
species [28].

The similarity of the expressions (20) and (21) ofGsbd
as a function ofb with that of the pressure of a Fermi or a
Bose gas in 3D was a surprise to us, and it would be n
to have a more direct explanation for it. A Bose-Einste
condensation for the ASEP has already been found in
presence of quenched disorder [29]. Here, the mechan
seems to be different as, instead of observing the Bo
Einstein condensation, one finds thatGsbd is analytically
continued as in (24) and (25).
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