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It is shown that a topological vector potential (Berry phase) is induced by the act of measuring
angular momentum in a direction defined by a reference particle. This vector potential appears as a
consequence of the backreaction due to the quantum measurement. [S0031-9007(98)05509-4]

PACS numbers: 03.65.Bz

As is well known, many of the most common observ- To begin with, let us consider a measurement of a half-
ables (position, velocity, angular momentum, etc.), bothinteger spir¥ in the direction defined by a quantum particle
in classical mechanics as well as in quantum mechanicef massM. In other words, we consider the measurement
arerelative observables—they always are defined relativeof the observablé; = # - s wheres is the spin andi =
to a system of reference [1,2]. Indeed, we never mear/|#| is the direction of the reference particle as seen in
sure the absolute position of a particle, but the distancéhe laboratory frame of reference. Choosing the reference
in between the particle and some other object; similarlyparticle to be free (except for the coupling with the spin
we never measure the angular momentum of a particlduring the measurement), and the measuring interaction to
along an absolute axis, but along a direction defined bye von Neumann-like, the total Hamiltonian is
some other physical objects. Anything can constitute a p2
“reference system,” from macroscopic bodies to micro- H=—+H,+ glt)gn - 5. (1)
scopic particles, but they are always there, even if, for M
simplicity, we don’t always refer to them explicitly. Ob- Here H, stands for the Hamiltonian of the spin system.
viously, measuring a system relative to a frame of ref-The measurement is described by the last tegms a
erence implies an interaction in between the system anganonical variable of the measuring device and its conju-
the reference system (via the measuring apparatus), agéteP, plays the role of the “pointer’z(¢) is a time de-
thus affects both. It is here that the quantum mechanipendent coupling constant, which we shall take to satisfy
cal case differs considerably from the classical case. Th¢ g(t)dt = 1. For the special case of a constant coupling,
uncertainty principle implies that unlike classical mechan(z) = 1/T for0 < r < T and zero otherwise, the shift of
ics, the quantum mechanical backreaction can never b&e position of the pointer yields the average relative spin:
negligible. P,(T) — P,(0) = %fgﬁ - 5dt. In the limiting case of

In this Letter we show that, the “strong” nature of T — 0, we obtaing(z) — (), which corresponds to the
the quantum mechanical backreaction on the referencerdinary von Neumann measurement.
system, can in particular cases give rise to an effective Notice that in the limit of a continuous measurement,
topological vector potential. This induced topological for which g(z) = const in a finite time interval, the von
effect can be interpreted as a Berry phase, thus leadingeumann interaction term in Eq. (1) has the same form as
to a fundamental relation between quantum measurementse well known monopolelike example of a Berry phase
and the Berry effect. [3]. Thus a Berry phase is expected upon rotation of the
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reference system. Butwhile in Berry’s case the interactiorthe wave function in the! representation evolve indepen-
is put in “by hand” just to study its consequences, in ourdently. The vector potent|al corresponding to the= m;,
case the interaction naturally arises whenever the spin isomponent |3&<2D) (ms — 1/2)¢/r,i.e.,itcorresponds
measured. to an integer number of quantized fluxons. Since for all
As we shall see, the appearance of the Berry phasge components the vector potential is equivalent to a pure
and the associated vector potential, can be easily obtaingghuge transformation, it causes no observable effect on the
by transforming to a quantum reference frame. Thergeference particle. On the other hand, during the measure-
the spin observable becomes directly measurable and tigent, the interaction with the measuring device causes a
backreaction felt by the reference particle is precisely givemotation of s, which in turn leads to observable effects.
by the requisite Berry vector potential. The rotatlon ofs! and the exact character of the associ-
Let us consider first the two-dimensional (2D) case.ated effects depends on the relative strength of the different
The reference axis is given in terms of the unit vectorterms in (5). In the present work, we are interested in the
i = %cos¢p + ysing,andn - 5 = 5,C08¢p + s,SiNd.  limit of “ideal” (i.e., very accurate) measurements. In this
(Heret andy and ¢ denote the standard coordinate unitlimit the interaction Hamiltonian dominates all other terms.
vectors and, respectively, the polar angle in the laboratoryhdeed, in order for the measurement to be accurate, the ini-
frame of reference.) The last term in the Hamiltonian (1)tial position of the pointeP,,(0) must be precisely known,
above can be simplified by transforming to a new set of.e.,AP,(0) — 0. In turn, this implies that the uncertainty
variables. The unitary transformation: in ¢ is very big,Aqg = 1/AP,(0) — o, that is, the typical
—ip(s.—1/2) ) values ofg in the interaction Hamiltonian are infinite. As
) ) a consequence, in this limiting case the spin components
yields the relations s!, and s, which are orthogonal ta, rotate with infinite
Py =UpgU =py — (s: = 1/2);  p} = prs frequency, and can be averaged to zero. [In the original
7

Upp) = e

variables (1) the spin is a “fast” degree of freedom which
(3 follows adiabatically the slow motion of the reference
= 5,C0S¢ — 5,SiN¢; particle.]

More exactly, the typical frequency of rotation of the
spin components; and s’, associated with the interac-
The effect of this unitary transformation is to define newtion Hamiltonian isw; = g/AP 1/(TAP,). Thisis
spin variables and a new canonical momentum for theo be compared with the frequency associated viith
reference particle, while the coordinates of the referenceéhe “free” Hamiltonian of the spin, and with the frequency
particle (defined with respect to the laboratory) remainassociated to the kinetic term. The later one is the more
unchanged. The extﬂ@\factor in (2) is required in order to important as it scales at least &s7T'; indeed, to see the
preserve the single valueness of the wave function, of thBerry phase one needs to perform an interference experi-
combined spin and reference particle system, with respechent with the reference particle during the time of the
to the angular coordinai¢. (For an integer spin we drop measurement, i.e., the duration of the interference experi-

>/

=

st = $,C0S¢ + sy SiNp; s

by y

s.=s,. 4)

Z

the 2) mentTe,, = 7. When the ratio of the angular frequencies
Expressing the Hamiltonian in terms of the new vari-is w,/w, = Te, /(TAP,) > 1 (which is always reached
ables, we obtain when the precision of the measurement is increased while

1 /- sL—1/2 4\ / / keeping all other parameters constant) we are in the adia-
H = ﬁ<p/ 4+ == - ¢> + Hg + g(t)gs,. (5) batic regime.
In the adiabatic regime corresponding to an ideal
In these variables, the measuring device interacts directlsheasurement the effective vector potential seen by the
with s;.. The relative spin, is a measurable observable, reference system can therefore be obtained by taking the
Wthh commutes with the total angular momentp(n —  expectation value ofi,p, with respect to the spin wave
3, sincels’, py] = 0. We notice, however, thatin the new function:

variables the reference particle sees the effective vector - s, —1/2 1/2 4
potential (Aep)) = <7F ¢> ~-—-¢. (7)
- st — 1/2 3 ©) This corresponds to a semiquantized fluxon at the origin
(D) r ' r = 0, pointing to thez direction. The total phase accu-

ulated in a cyclic motion of the reference particle around
the semifluxon yields the topological (path independent)
phase:

The latter describes the backreaction on the referen
frame, which here takes the form of a fictitious mag-
netic fluxon at the originF = 0, with a magnetic flux
® = 5. — 1/2 in the 2 direction. In the absence of the — jéA@D) dl = ni, (8)
measurementgf(r) = 0], the s. component of the spin is

a constant of motion. Thus, thiy + 1 components of wheren is the winding number.
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Note that in the above case the exact valueg @ihd  corresponds to that of a magnetic monopole at the origin
AP, are essentially irrelevant—all that is needed is forr = 0, with a magnetic charge: = s,.
them to be such that the adiabatic regime holds. On the The topological vector potential obtained above clearly
other hand, outside the adiabatic regime, the interactiohas an observable manifestation. Upon rotation of the ref-
term does not completely dominate the other terms, the exerence particle around tHeaxis, the particle accumulates
act values ofg andAP, become essential, and the conse-an Aharonov-Bohm phase:
quences of the measurement are much more complicated;
this case is outside of our present interest. Yn = j(g(m) - d¥ = —nw(1 — cosh),  (15)
Consider now the case of a free reference particle in

three dimensions, the appropriate transformation which | . .
/ + ppA pﬁ. which equals half of the solid angle subtended by the
maps:s, = Upp)s:Usp) =71 * 5 1S

path. The latter can be observable by means of a standard
Upp) = e 1077/2% g =i9(s:71/2), (9) interference experiment. We thus conclude that during a
continuous measurement the backreaction on the reference
nparticle takes the form of a topological vector potential, of
a semifluxon in 2D and that of a monopole in 3D.
Our discussion above can also be restated in terms of

wheref and ¢ are spherical angles [4].
The corresponding three-dimensional (3D) vector pote
tial is in this case

AGpyx = — 5y cosd cosé Berry phases. Viewing the reference particle as a slowly
r changing environment, and the spin system as a fast system
) sing which is driven by a time dependent “environment,” we
+ (s;siné + sycosf — 1/2) S sing (10)  can use the Born-Oppenheimer procedure to solve for the
. spin’s eigenstates. Let us assume for simplicity ghais
AGpy = — S cosd sing sufficiently large saH, can be neglected, and thatr) is
r roughly constant. Considering for simplicity the 2D case,
~ (s,5in0 + 5, c080 — 1/2) CO-S(Z Ay the appropriate eigenstate equation therefore reads
, rsin 2qi($) - 5ly(d)) = Elp(4)), (16)
sing
AGp): = Sy P (12)  where ¢ is here viewed as the external parameter.

. _ For simplicity, let us consider the case of= % We
For the case of an integer spin or angular momentum th@btain

1 above is omitted. It can be verified thfigD) corre-

sponds to a pure gauge non-Abelian vector potential. The R +id/2

field strength vanishes locally;,, = 9,A, — 9,4, — () = ﬁ(e o 1) = e o L) @ lg). (17)
[A4.,A,] = 0. Thus the force on the reference particle

vanishes. Furthermore, since the loop integrals,) - 7  TNe eigenfunctiongy.) are double-valued in the angle
gives rise to a trivial flux2nar, the manifold is simply ~¢- Thus a cyclic motion in space, which changés
connected. (This can be seen by noticing that the mad?y 27, induces a sign change. The latter is due to the
netic field V X ;\(313), due to the terms proportional to ‘spinorial nature” of fermionic particles, which, as is well

sy, vanishes. The other terms correspond to a fluxokOWn, flips sign under @z rotation [6]. To obtain the
pointing in the? direction with total flux® = s, sind + appropriate Berry phase we need to construct single valued

5. c0s8 — 1/2 which is quantized for spin components Selutions of Eq. (17):
along the dlrectlom/z - 6.) Thus, asin the 2D case, in [W($)) = e EHUD|1y = (e7?11) = 1) ® |g).
absence of coupling with the measuring devige,) is a 18
pure gauge vector potential. (18)
In the adiabatic limit discussed above, dur_ing the meay; then follows that the Berry phase [3]:
surement we havés;) = (s,) = 0. The effective vector
potential seen by the reference particle
(.ﬁ , (13)
rsing is identical to the phase (8), which is induced by the
is identical to the (asymptotical; — «) non—Abelian effective semifluxon. Similarly, the Berry phase in the 3D

effective magnetic fieldy X (Ap)): the path of the reference particle.
R In conclusion, we have shown that the quantum me-

. chanical backreaction during a measurement induces in
(B) = s, 3 (14) 3 . .
r certain cases a topological vector potential. The Berry

Vi = i J(0@) | 2| W@))dg = 7., (19

(Aap)) = (sxcOSO — 1/2)
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