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Entropy and Information in Neural Spike Trains
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The nervous system represents time dependent signals in sequences of discrete, identical action
potentials or spikes; information is carried only in the spike arrival times. We show how to quantify this
information, in bits, free from any assumptions about which features of the spike train or input signal
are most important, and we apply this approach to the analysis of experiments on a motion sensitive
neuron in the fly visual system. This neuron transmits information about the visual stimulus at rates
of up to 90 bitg's, within a factor of 2 of the physical limit set by the entropy of the spike train itself.
[S0031-9007(97)04939-9]

PACS numbers: 87.10.+e, 05.20.-y, 89.70.+c

As you read this text, optical signals reaching yoursory neurons provide a maximally efficient representation
retina are encoded into sequences of identical pulsesf the outside world has also been suggested as an op-
termed action potentials or spikes, that propagate along thénization principle from which many features of these
~10° fibers of the optic nerve from the eye to the brain.cells’ responses can be derived [10]. But, particularly in
This encoding appears universal, occurring in animalshe central nervous system [6], assumptions about what is
as diverse as worms and humans, and spanning all theeing encoded should be viewed with caution. The goal
sensory modalities [1]. The molecular mechanisms for thef this paper is, therefore, to give a completely model in-
generation and propagation of action potentials are welllependent estimate of entropy and information in neural
understood [2], as are the mathematical reasons for thepike trains as they encode dynamic signals.
selection of stereotyped pulses [3]. Less well understood We begin by discretizing the spike train into time bins
is the function of these spikes as a code [4]: How doof size A7, and examining segments of the spike train
sequences of spikes represent the sensory world, and how windows of lengthT, so that each possible neural
much information is conveyed in this representation?  response is a “word” witi' /A7 symbols. Let us call

The temporal sequence of spikes provides a large capatiie normalized count of th&h word p;. Then the “naive
ity for transmitting information [5]. One central question estimate” of the entropy is
is whether the brain takes advantage of this large capac- . . .
ity, or whether variations in spike timing represent noise Snaive (T, AT 5iz8 = — gpf log, pi; (1)

which must_be avera_lged away [4.6]. I_n response to a IOngne notation reminds us that our estimate depends on the
sample of time varying stimuli, the spike train of a smgleSize of the data set. The true entropy is

neuron varies, and we can quantify this variability by the : .
entropy per unit time of the spike trai(A ) [7], which ST, A7) = lm Snaive(T, A7:5i28), @)
depends on the time resolutidnr with which we record and we are interested in the entropy raféAr) =
the spike arrival times. If we repeat the same time depenimr_.. S(T,A7)/T. At large T, very large data sets
dent stimulus, we see a similar, but not precisely identicalare required to ensure convergenceSgfiv. to the true
sequence of spikes (Fig. 1). This variability at fixed in-entropyS. Imagine a spike train with mean spike rate-
put can also be quantified by an entropy, which we call th&t0 spikeg's, sampled with a time resolutiokr = 3 ms.
conditional or noise entropy per unittind® (A7). Thein- In a window of T = 100 ms, the maximum entropy
formation that the spike train provides about the stimulus isonsistent with this mean rate [4,5] & ~ 17.8 bits,
the difference between these entropiRgss, = S — N and the entropy of real spike trains is not far from this
[7]. BecauselN is positive (semi)definiteS sets the ca- bound. But then there are roughty ~ 2 X 10° words
pacity for transmitting information, and we can define anwith significant p;, and our naive estimation procedure
efficiencye(A7) = Rinro(A7)/S (A7) with which this ca- seems to require that we observe many samples of each
pacity is used [9]. The question of whether spike timing isword. If our samples come from nonoverlapping 100 ms
important is really the question of whether this efficiencywindows, then we need much more than 3 hours of data.
is high at smallA+ [4]. It is possible to make progress despite these pessimistic
For some neurons, we understand enough about whastimates. First, we examine explicitly the dependence of
the spike train represents that direct “decoding” of theS,.i.. On the size of the data set and find regular behaviors
spike train is possible; the information extracted by thes¢ll] that can be extrapolated to the infinite data limit.
decoding methods can be more than half of the total spik&econd, we evaluate robust bounds [7,12] on the entropy
train entropy withA7 ~ 1 ms [9]. The idea that sen- that serve as a check on our extrapolation procedure.
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sual feedback for flight control. In the experiments an-
alyzed here, the fly is immobilized and views computer
generated images on a display oscilloscope. For simplic-
ity these images consist of vertical stripes with randomly
chosen grey levels, and this pattern takes a random walk
in the horizontal direction [14].

We begin our analysis with time bins of sizer =
3 ms. For a window ofl = 30 ms—corresponding to

the behavioral response time of the fly [15]—Fig. 2

g ) shows the histogrard p,;}, and the naive entropy esti-
E ! mates. We see that there are very small finite data set
8 corrections €107%), well fit by [11]
T 0
s . Si(T, A
£ Snaive(T, A7;size) = S(T, A7) + M
= size
1- 1ms A
SH(T,
+ _ZQT__Il‘ (3)
oo sizé
§a TUNIT LT LRIt ITI L Under these conditions we feel confident that the extrapo-
lated S(T, A7) is the correct entropy. For sufficiently
largeT, finite size corrections are larger, the contribution
Eg’ [tJo]z]o]z]z]o]]o]o]x]o [o]i]o o[tz ]0] of the second correction is significant, and the extrapola-
59 tion to infinite size is unreliable.
100 = (b) Ma [12] discussed the problem of entropy estimation in
the undersampled limit. For probability distributions that
z %07 are uniform on a set aV bins (as in the microcanonical
z o4 ensemble), the entropy is lpfy and the problem is to
;3: estimateN. Ma noted that this could be done by counting
> 50
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FIG. 1. (a) Raw voltage records from a tungsten microelec- § 5x10°¢ ¢
trode near the cell H1 are filtered to isolate the action potentials. &
The expanded scale shows a superposition of several spikes ttg
illustrate their stereotyped form. (b) Angular velocity of a pat- 5107k
tern moving across the fly’s visual field produces a sequence
of spikes in H1, indicated by dots. Repeated presentations pro- 3
duce slightly different spike sequences. For experimental meth- ~ 5x107" ¢
ods, see Ref. [8].
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Third, we are interested in the extensive component of the

gntr_opy, and we find th'at a clean approaph to .eXtenSlVlt)ﬁlG. 2. The frequency of occurrence for different words in
is visible before; sampling problems set in. Flnally,. for ihe spike train, withAr =3 ms and T = 30 ms. Words
the neuron studied—the motion sensitive neuron H1 in thgre placed in order so that the histogram is monotonically
fly's visual system—we can actually collect many hoursdecreasing; at this value @f the most likely word corresponds

of data. to no spikes. Inset shows the dependence of the entropy,

H1 responds to motion across the entire visual fieldcomputed from this histogram according to Eq. (1), on the
duci ikes f ; d hori tal i fraction of data included in the analysis. Also plotted is a least
progucing more Spikes lor an inward horzontal MolioNgq, ;ares fit to the forms = S, + S, /size + S»/siz€. The

and fewer spikes for an outward motion; vertical motionsintercepts, is our extrapolation to the true value of the entropy

are coded by other neurons [13]. These cells provide viwith infinite data [11].
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the number of times that two randomly chosen observa- 200 71— T T
tions yield the same configuration, since the probability of
such a coincidence is/N. More generally, the probabil- . e W
ity of a coincidence i®. = S p?, and hence i
m estimate (total entropy rate)

S = => pilog, p; = —(log, p:,

O bound (total entropy rate)

= —log,(pi)) = —log, P., (4)

so we can compute a lower bound to the entropy
by counting coincidences. Furthermore, J& is less
sensitive to sampling errors thanSs,;... The Ma bound
is one of the Renyi entropies [16] widely used in the
analysis of dynamical systems [17]. C

The Ma bound is tightest for distributions that are close 40 f
to uniform, but distributions of neural responses cannot
be uniform because spikes are sparse. The distribution o
words with fixed spike count is more nearly uniform, so I S R R EE T
we useS = Swya, with 0 20 40 60 80 100

L A :
6 kA
B0 A‘QA a & a 7]

F f&A 4 estimate (noise entropy rate)

4 bound (noise entropy rate)

entropy rate (bits/sec)
M
4 &

1/T (sec™t)
SMa = _ZP(NSP) FIG. 3. The total and noise entropies per unit time are
Nep plotted versus the reciprocal of the window size, with the

2n.(Nsp) 5 time resolution held fixed a7 = 3 ms. Results are given
Nobs(Nsp) [Nobs(Nsp) — 11 | () both for the direct estimate and for the bounding procedure

SYeP SYSP described in the text, and for each data point we apply the
where n.(Ngp) is the number of coincidences observedextrapolation procedures of Fig. 2 (inset). Dashed lines indicate

among the words withVy, spikes,Nops(Nsp) is the total extrapolations to infinite word length, as discussed in the text,
number of occurrenceé of words Wiﬂvl;p spikes, and and arrows indicate upper bounds obtained by differentiating
P(Np) is the fraction of words withVy, spikes. S(T) [7)

In Fig. 3 we plot our entropy estimate as a function . o
of the window sizeT. For sufficiently large windows  The noise entropy per unit ime&\V (A7) measures
the naive procedure gives an answer smaller than the M€ variability of the spike train in response to repeated
bound, and hence the naive answer must be unreliabff€sentations of the same time varying input signal.
because it is more sensitive to sampling problems. FoMarking a particular timer relative to the stimulus, we
smaller windows the lower bound and the naive estimat@ccumulate the frequencies of occurrerfgér) of each
are never more than 10%-15% apart. The point at whicl{/ord i that begins at, then form the naive estimate of
the naive estimate crashes into the Ma bound is also whef@€ l0cal noise entropy in the window fromto r + T,
the second correction in Eq. (3) becomes significant and

X Iogz|:P(Nsp)

local . Qi — — 5. .
we lose control over the extrapolation to the infinite data Nuaive (1, T, AT; Siz8 = gpl(t) log, pi(¢). (8)
limit, T ~ 100 ms. Beyond this point the Ma bound . , . )
becomes steadily less powerful. The average rate of information transmission by the spike

If the correlations in the spike train have finite range,rain depends on the noise entropy averaged aver
then the leading subextensive contribution to the entropfVnaive (T, AT; 5128 = (Nyaive (1T, A7, 5i28),.  Then we

will be a constanC(A7), analyze as before the extrapolation to large data set size
S(T, A7) C(A7) and largeT, with the results shown in Fig. 3. The differ-
’T = S(A7) + — + ... (6) ence between the two entropies is the information which

. L - the cell transmitsRiyso (A7 = 3 mg) = 78 = 5 bits/s, or
This behavior is seen clearly in Fig. 3, and emerges beforg ¢ | bits/spillief (Ar ) /

the sampling disaster, providing an estimate of the entropy’ This analysis has been carried out over a range of

per unittime,S(A7 = 3 mg) = 1573 bitg/;. time resolutions 800 > A7 > 2 ms, as summarized in
The entropy approaches its extensive limit from abovq:ig. 4. Note thatA+ = 800 ms corresponds to counting

[7], so t?at spikes in bins that contain typically thirty spikes, while
A7 =2 ms corresponds to timing each spike to within

AT[S(T TAnAT = ST AN = S(An () 5% of the typical Fi)nterspike intefqval. ngr this range,

for all window sizesT. This bound becomes progres- the entropy of the spike train varies over a factor of
sively tighter at largerT, until sampling problems set roughly 40, illustrating the increasing capacity of the
in. In fact there is a broad plateatt2.7%) in the range system to convey information by making use of spike
18 < T < 60 ms, leading taS = 157 * 4 bits/s, in ex-  timing. The information that the spike train conveys about
cellent agreement with the extrapolation in Fig. 3. the visual stimulus increases in approximate proportion to
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FIG. 4.
time resolutions, from\+ = 800 ms (lower left) toAr = 2 ms

(upper right). Note the approximately constant, high efficienc
across the wide range of entropies. For comparison, the dash

line is the line of 50% efficiency.

the entropy, corresponding te50% efficiency, at least for
this ensemble of stimuli.
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Although we understand a good deal about the signals
represented in H1 [13,18], our present analysis doef4]

not hinge on this knowledge.

Similarly, although it
is possible to collect very large data sets from H1,

Figs. 2 and 3 suggest that more limited data sets would

compromise our conclusions only slightly. It is feasible,

then, to apply these same analysis techniques to cells in

the mammalian brain [19].

Like cells in the monkey
or cat primary visual cortex, H1 is four layers “back”

from the array of photodetectors and receives its input

from thousands of synapses.

For this central neuron,

half the available information capacity is used, down to
millisecond precision. Thus, the analysis developed here
allows us for the first time to demonstrate directly the[15] M.F. Land and T.S. Collett, J. Comp. Physi@9, 331
significance of spike timing in the nervous system without

any hypotheses about the structure of the neural code.
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or ~5 X 10* photongs in each photoreceptor, roughly
the light level for a fly flying at dusk. The pattern on
the screen consists of bars randomly set dark or light,
with the bar width equal to the receptor lattice spacing.
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