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Fractal Conductance Fluctuations in a Soft-Wall Stadium and a Sinai Billiard
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Conductance fluctuations have been studied in a soft-wall stadium and a Sinai billiard defined by
electrostatic gates on a high mobility semiconductor heterojunction. These reproducible magnetocon-
ductance fluctuations are found to be fractal, confirming recent theoretical predictions of quantum
signatures in classically mixed (regular and chaotic) systems. The fractal character of the fluctuations
provides direct evidence for a hierarchical phase space structure at the boundary between regular and
chaotic motion. [S0031-9007(98)05438-6]

PACS numbers: 73.23.Ad, 05.40.+j, 05.45.+b, 72.80.Ey

Ballistic geometries defined in two-dimensional elec-(A is the accumulated enclosed area). The larger the value
tron gases (2DEGSs) provide excellent systems for studyef A, the smaller the change in magnetic field required to
ing quantum chaotic phenomena. In magnetic fields thesmodify the phase. Therefore, in these systems, one ex-
systems yield reproducible conductance fluctuations angects to observe conductance fluctuations with much finer
weak localization effects analogous to the universal confield scales [7,8]. Semiclassical calculations similar to
ductance fluctuations and weak localization effects studiethose in Refs. [1,2,7] have demonstrated that a power law
in disordered conductors. In the ballistic case the phase
coherent phenomena reflect the device geometry; not the T T T
random positions of impurities. By studying these effects 1400
; . : : : (a)
in both chaotic and nonchaotic geometries, valuable in-
sight has been obtained on how quantum information can
be retrieved from classical chaotic dynamics. To date,
in virtually all of the systems studied both experimen-
tally and theoretically, a purely chaotic system has been
assumed in which classical trajectories probe the phase
space in a purely ergodic fashion [1-3] before they exit.
Escape from the ballistic cavity in such systems usually
occurs exponentially fast.

Real billiards, however, are typically not fully chaotic.
They have amixed phase space, i.e., they contain both
chaotic and regular regions. Naively, one might expect
that they are simply combinations of independent fully
chaotic and regular regions. But this is not the case.
Mixed systems possess an important property which has
drastic consequences for conductance fluctuations: The
chaotic part of phase space obeys a power law escape
probability [4], in contrast to the much faster exponential
decay of fully chaotic systems. The power law originates 37501}
from chaotic trajectories which are “trapped” close to an
infinite hierarchy of regular regions at the boundary be- -0.004 0.000 0.004
tween the regular and chaotic motion (see Fig. 3 below).
This trapping is believed to be a consequence of Can- B(T)
tori, which act as partial barriers for transport and whichg|g. 1. Resistance versus magnetic field (a) for the open
surround the regular regions at all levels of the hierarchytadium at a gate voltage ef1.9 V after illumination at 50 mK
[5,6]. The phase of these long trapped trajectories is exand (b) for the Sinai Billiard at 50 mK. Fluctuations on both
tremely sensitive to any externally changed parameter. 1{§r9¢ and small scales can be seen for both devices. The

e - WO insets are scanning electron micrographs of devices similar
a magnetic field, for example, they acquire a phase faCtOc{) the ones used. In the actual Sinai billiard used for these

exp(2miAB/ ¢), which depends on the numhéB/#o of  measurements an insulator bridge connection (not shown) was
magnetic flux quante, = //e enclosed by the trajectory used to make contact to the center gate of the Sinai device.
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distribution of enclosed areas larger thén dium, which was performed to study the properties of fully
P(A) ~ A7 (1) chaotic systems, gives qualitgtively d.if'ferent results [13]
’ when carried out on today’'s high mobility samples.
leads tofractal conductance fluctuations [8]. Under these The two devices are shown as insets in Fig. 1.
conditions, the line conductance versus magnetic field habhe stadium had a lithographic radius ofl um. It
the same properties as fractional Brownian motion [9]was defined using metallic gates on a high mobility
which is self-affine in a statistical sense and is describedlGaAs/GaAs wafer [with a mobility of 2.2 X 10°
by a fractal dimensio® given by and 4.3 X 10° cn?/V's and density ofl.7 X 10!' and
D=2— ) @) 3.3 X 10" cm™* before and after illumination with a
' red light-emitting diode (LED)]. The 2DEG was 95 nm
Thus, the exponeny, which describes a property of the below the surface. The device leads were made unusu-
classical phase space, is related to the fractal dimensialy wide (0.7 um). This had the effect of allowing
D of a quantum coherent measurement. Similarly, thenost trajectories to rapidly exit the stadium, with the
variance of conductance increments scale with smakxception of those trajectories which were trapped near
magnetic field increments d6AG)?) ~ (AB)?. These the hierarchical phase space structure at the boundary
results hold [8] fory = 2. Since y > 1 must hold between regular and chaotic motion. This feature and the
from more general arguments [10], this restricts thehigh mobility wafer used made this an optimal device for
fractal dimension to lie between 1ly(=2) and 1.5 the observation of fractal conductance fluctuations. The
(y = 1). While the value of the classical exponentis  very high mobility wafer was necessary to achieve the
nonuniversal and is found numerically to be sensitive taequired long phase coherence length The submT
details of the geometry and the confining potential [8], thefeatures in the conductance fluctuations and the narrow
occurrence of power law distributions is universal [4]. Itweak localization peaks<{ 150 xT) confirmed that,
is not feasible to test the existence of fractal conductanceas indeed many times the perimeter of the stadium and
fluctuations by numerical quantum calculations, since &inai billiard. Lithographic and fabrication details of the
large number of modes are needed to adequately prot&inai billard have been published elsewhere [14]. The
the hierarchical classical phase space. Indeed, because theasurements were made on a dilution refrigerator using
semiclassical calculations of Ref. [8] are based on mangtandard low power ac techniques at 50 mK.
assumptions and approximations, one may even speculateMeasurements at higher temperatured (K) revealed
if fractal fluctuations exist at all. small features in the magnetoresistance related to the clas-
The first experimental evidence for fractal behavior wassical focusing of trajectories. As the temperature was
recently found in gold nanowires [11]. The variance analydowered, both conductance fluctuations and a weak local-
sis of the fluctuations showed a power law behavior oveization peak (abouB = 0) developed. In this paper, we
one order of magnitude in magnetic field. While suggesanalyze the fluctuations which occur at magnetic fields for
tive, this experiment suffered from two limitations: (i) It which the cyclotron diameter is larger than the stadium
is well known that almost any smooth function can bediameter. Features related to noise can be eliminated by
satisfactorily fitted by a power law for just one order of comparing thexB traces. In Ref. [14] it was observed
magnitude, and (ii) for the rectangular geometry of thesdor a soft-wall Sinai billiard that, by rescaling magnetic
gold nanowires one does not expect a mixed phase spadeld and resistance, one finds quite similar sequences of
unless fortuitous fluctuations in wire width occasionally maxima and minima. Thigonstatisticalself-affinity re-
create such regions [12]. Herein, we report the first obsemains unexplained so far and does not occur for the sta-
vation of fractal conductance fluctuations oveordersof  dium, suggesting that this feature is characteristic of the
magnitude in magnetic field and in genuine mixed phas&inai billiard geometry. We observe in contrast conduc-
space geometries. The two classic models of fully chaotitance fluctuations on very different scales resembling the
systems, namely, the stadium (two half-circles connectedtatistical self-affinity of fractional Brownian motion for
by straight lines) and the Sinai billiard (a square with a cir-both geometries and for large ranges of gate voltage.
cular disk at its center) are defined by electrostatic gates on Experimental traces for both geometries are shown in
a high mobility semiconductor heterojunction. These sysFig. 1. The results of a fractal analysis on these curves,
tems are no longer fully chaotic due to soft-wall potentials,shown in Fig. 2, gives fractal dimensions &f = 1.25
but have a mixed phase space. This can be easily verifiemhdD = 1.30. The fluctuations are found to obey power
numerically (see Fig. 3 below). We find fractal conduc-law scaling for over two orders of magnitude in magnetic
tance fluctuations as a function of magnetic field for largefield. In all observable fractals this scaling behavior is
ranges of applied gate voltage (corresponding effectivelypound by upper and lower cutoffs. In our case the upper
to different billiard sizes and potential forms). The exis-cutoff, in magnetic field, is determined by the smallest
tence of this new quantum signature of classically mixedarea for which the power law distribution holds (which
systems is therefore conclusively confirmed. In additionjs close to the range of magnetic fields experimentally
by choosing the stadium geometry, we have shown thaitudied). The lower cutoff is determined by the minimum
the famous experiment by Marcet al. [3] on the sta- of two time scales: (i) The finite phase coherence time and
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106 e flat potential beyond that [15]. The mixed phase space
is revealed in a Poincaré section analysis (Fig. 3). Its
hierarchical structure gives rise to long trapped trajecto-
ries as well as a power law area distribution. The effec-
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A o g 10 . ° - (48) tive Planck’s constantic; = i/ [ pdg = (L\27rn)™!
R T S — for a trajectory along the circumference of the stadium
10° 10t 10° 10% is ferr = 8.6 X 107*. All of this confirms the appli-
AB(T) cability of the results of Ref. [8] to the present exper-
iment. Similar conclusions apply to the soft-wall Sinai
billiard.

Direct simulation is the only technique available to pre-
dict the exact value of the classical power law exponent
and the corresponding fractal dimension for a particular

device. The values of these exponents depend critically
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FIG. 2. Fractal analysis for the stadium (diamonds) and Sina | a)
device (triangles) data shown in Fig. 1 using a modified box-
counting algorithm. The number of boxeé follows power
laws (AB)~P for 2 orders of magnitude in magnetic field
scale, giving fractal dimension® = 1.25 and D = 1.30,
respectively. The inset shows the variance analysis giving
v = 1.38 and y = 1.30, respectively, in reasonable agreement
with Eq. (2).

b)

(i) the Heisenberg timey = /i/AE, when the average
level spacingAE of the closed device is resolved and
the semiclassical approximation becomes unreliable. Th
power law area distribution for trajectories staying in
the device longer than any of these times will not leac
to fractal fluctuations. The fractal dimension observec
between these cutoffs is determined by using a refine
version of the box-counting algorithm. In the standard
box-counting algorithm, one puts a grid of square boxe:
of size L X L on the data (conductance versus magnetic
field) and counts the numbat(L) of boxes through which
the curve passes. Its dependence on boxkjz€(L) ~

L~P, defines the fractal dimensioP. In this standard f) ,
analysis the relative scale of conductance and magnet 10 g
field is arbitrary so that for a finite data set the resulting

fractal dimension depends on the aspect ratio of thi P) :
plot. To overcome this limitation we applied a modified 102k

version of the algorithm: This divides the magnetic field
range in length intervald B and determinesV(AB) as
the difference of maximum and minimum conductance i

in each interval, summed over all intervals, and dividec 107 Lgpnd-ssand -l
by AB. This corresponds in the standard algorithm to A (um?)
taking rectangular boxes with infinitely small size in
the conductance direction. The inset of Fig. 2 showsIG. 3. (a) Poincaré surface of section of the stadium of

the analysis of the variance, which gives= 1.38 and  Fi9- 1 (with 0.1 um depletion length and .4 um wide
. parabolic wall). It showsv, versusx at every trajectory

4 :,1‘3_0’ for stadium and Sinai billiard, respectively, intersection with the horizontal symmetry line whenewer>
confirming the above fractal analysis. . 0 holds, for one chaotic and six regular trajectories. (b)
We now show that the stadium, a classic model forEnlargement of the small island in (a) showing higher order

fully chaotic systems, has a mixed classical phase spadglands. (c) Periodic trajectories corresponding to the center of
when achieved electrostatically due to the soft-wall po{he large island in (a) (dashed line) and the center of the island
tential experienced by the electrons. We model this po'—n (b) (solid line). (d) Quasiperiodic trajectory corresponding

. i . : fo the island in (b). (e) Chaotic trajectory being trapped in the
tential by a depletion region of 100 nm at the edge Ofstadium close to the regular trajectory of (d). (f) Integrated area

the device followed by a 400 nm parabolic region, and alistribution displaying a power law for large enclosed areas.
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1.6 1.9V A5V ERLY have shown that in real devices the classification into
£98 16 46 “chaotic” and “regular” geometries is incomplete at best.
1.5 ‘:%9-4'W‘ 51 /’N/ 2 I Our findings confirm the important role that soft-wall po-
O e e o e tentials play in nanostructures. We have also observed
1.4 B (mT) a dependence of the fractal dimension of conductance
% o fluctuations on the device parameters.
0 1.3+ %o 2O O We would like to acknowledge the assistance of P. Za-
oo e °% o wadzki with data acquisition, H. Guo and P. T. Coleridge
1.2+ O 5%, o0, for useful discussions, and R. Newbury and R. Taylor for
oo, assistance with the Sinai device measurements.
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FIG. 4. Fractal dimension of conductance fluctuations versus[1] R, Blumel and U. Smilansky, Phys. Rev. Le80, 477
gate voltage for the stadium before illumination. Error bars of (1988); E. Doron, U. Smilansky, and A. Frenkel, Physica
the fractal analysis are typically0.05. The insets show data (Amste,rdam)SOD,, 367 (1991). ' '
for three gate voltages. [2] R. A. Jalabert, H. U. Baranger, and A. D. Stone, Phys. Rev.
Lett. 65, 2442 (1990).

) ] [3] C.M. Marcuset al., Phys. Rev. Lett69, 506 (1992).
on the exact form of the potential [8]. But even if the [4] B.V. Chirikov and D. L. Shepelyanskfroceedings of the
electrostatic potential due to the gates is known, it would  9th International Conference on Nonlinear Oscillations,
be modified in a real device by the presence of disorder.  Kiev, 1981(Naukova Dumka, Kiev, 1984); C.F.F. Kar-
In high-mobility samples, however, the disorder potential ~ ney, Physica (AmsterdangD, 360 (1983); B.V. Chirikov
is weak and smooth and so does not change the quali- and D.L. Shepelyansky, Physica (Amsterdab8D, 395
tative character of the classical phase space, i.e., it re- (1984); P. Grassberger and H. Kantz, Phys. LeH3A,

mains a mixed phase space. The exponeat the power . }6[3 %98_5)- d E. Ott. Phvsica (A da@0D. 387
law area distribution of trapped chaotic trajectories on the ] (1986) eiss and E. Ott, Physica (AmsterdadD,

Othe.r han(_j, m_igh_t well be changed by the specific diSOrder[G] T. Geisel, A. Zacherl, and G. Radons, Phys. Rev. L54t.
conflguratlpn inside th_e cavity. Thus, one cannot hope for™ ~ 553 (1987); Z. Phys. B1, 117 (1988).

a quantitative comparison of the expongrdeduced from (7] y_.c. Lai, R. Blumel, E. Ott, and C. Grebogi, Phys. Rev.
classical simulations without disorder with the fractal di- Lett. 68, 3491 (1992).

mensionD of the conductance fluctuations of a real de- [8] R. Ketzmerick, Phys. Rev. B4, 10841 (1996).

vice containing disorder. Disorder outside the cavity may, [9] B.B. Mandelbrot,The Fractal Geometry of Naturg-ree-

in principle, also change the conductance fluctuations, but  man, San Francisco, 1982).

it cannot influence the trapping of chaotic trajectories in{10] J.D. Meiss, Chaos7, 139 (1997). This result makes
side the cavity and thus it will have no significance for the ~ the occurence of a cusp in the autocorrelation function
observed fractal dimension. As a function of the applie C(0) — C(AB) = (AB)” [7] impossible.

gate voltage, the exponents of the classical power law dq-ll] H. Heggeret al,, Phys. Rev. Lett77, 3885 (1996).
tribution may fluctuate for large times [16], but for times 12] B. Huckestein and R. Ketzmerick (to be published).

; ’ )Ll?,] In the case of fractal fluctuations the power spectrum of
smaller than the phase coherence time the power law ex- = w0 ¢ondyctance follows a power laffw) ~ w7+, in
ponents have been found to be much more stable [8]. This  contrast to the almost exponential decayséd) found in
feature is also reproduced in our experiment. Figure 4 re-  Ref. [3].
veals that there exists a monotonic relationship betwee[14] R.P. Tayloret al., Phys. Rev. Lett78, 1952 (1997).
the fractal dimension and the gate voltage applied to thl5] In the entrance and exit regions we add the potential
stadium device. The fractal dimension tends towards 1 as  coming from the upper and lower metallic gate. Other
the confinement is reduced. parameters for the potential give qualitatively similar

We have reported the first observation of fractal con- _ results. - ) ) )
ductance fluctuations in semiconductor billiard deviced16l Y--C. Lai, M. Ding, C. Grebogi, and R. Blimel, Phys.
[17]. The observation confirms a recent theoretical pre- Rev. A46, 4661 (1992). : . .
diction that conductance fluctuations in mixed phase spac%n In the final stages of writing this manuscript we received a
- . . preprint [A. P. Micolichet al., (to be published)] reporting
systems are Sta_t'St'CaI self—gfflne and can b_e dgscrlbed by fractal conductance fluctuations in a semiconductor bil-
afract'al Q|m_en3|on. The origin of the behawor.ls a power liard for just one order of magnitude in magnetic field
law distribution of areas enclosed by chaotic tl‘ajeCtO- scale. An obscure temperature dependence of the frac-
ries, which results from the hierarchical structure of phase  tal dimension is presented, probably originating from the
space at the boundary of regular and chaotic motion. We  analysis of a too small scaling region.
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