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Long-Range Spatial Correlations of Eigenfunctions in Quantum Disordered Systems
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This paper is devoted to the statistics of the quantum eigenfunctions in an ensemble of metallic
grains. We focus on moments of inverse participation ratio. In the universal limit that corresponds to
the infinite conductance of the grains, these moments are self-averaging quantities. At large but finite
conductance the moments do fluctuate due to the long-range correlations in the eigenfunctions. We
evaluate the distributions of fluctuations at given conductance and geometry of the grains and express
them through the spectrum of the diffusion operator in the grain. [S0031-9007(98)05328-9]
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Weakly disordered metallic grains make an excelle
laboratory to study the phenomenon of quantum cha
(for a general discussion, see, e.g., Ref. [1]). Provid
electrons within a grain interact weakly, one can descri
properties of this system through one particle quantu
spectrum and eigenfunctions. The problem is reduced
a Shrödinger equation for a particle subject to a potent
that consists of two components: a regular potential th
confines electrons within the grain and some rando
potential due to disorder. Given the distribution of th
random potential we get an ensemble of disordered gra
and can consider various statistics of the spectra a
eigenfunctions.

Classical motion in a random potential is diffusiv
(provided the grain sizeR exceeds the mean free path
with a diffusion constantD. Ensembles of weakly
disordered metallic grains can be characterized by t
“dimensionless conductance”g determined as a ratiog 
tHytT of Heisenberg timetH  h̄yD and Thouless time
of the diffusion through the graintT  R2yD, whereD is
the mean energy level spacing. A grain would be call
weakly disordered providedg ¿ 1.

The spectral statistics for the ensembles of grains
the limit g ! ` are proven [2,3] to coincide with those
for the corresponding ensembles of random matrices [
These statistics would be calleduniversal. The field
theoretical way of evaluating statistics in ensembles
disordered grains is based on the supersymmetrics model
[2]. Wheng ! ` the zero-dimensionals model can be
used for straightforward evaluation of universal statisti
of both spectra and eigenfunction [5].

Finite g corrections to the universal properties o
quantum systems recently attracted substantial inter
The smooth part of the spectral correlation function w
evaluated in Ref. [6]. The first order in1yg correction
to the spectral correlation function was evaluated b
Kravtsov and Mirlin [7]. Nonperturbative analysis o
the problem [8] pointed out a qualitative change of th
behavior at finiteg—washing out the oscillations in the
two-point correlation function, and, hence, smoothing
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the singularities [9] in the quantum dynamics at time
close totH . A remarkable feature of the spectral statistic
at finiteg is that both their smooth [6] and their oscillating
parts [8] can be presented through the spectral determin
of the classical diffusion operatorD=2. This paper is
devoted to the connection of this spectral determinant
the long-range correlations in the eigenfunctions.

In this paper we concentrate on the moments [10]

Iasnd  V n21
Z

jcasrdj2n dr , (1)

where casrd is an eigenfunction of the system which
corresponds to an eigenenergyea, and V is the volume
of the grain (for ad-dimensional cubeV  Ld). The
n  2 moment, known as the inverse participation ratio
is related to the level-velocity distribution [11] or to
Hubbard-like interaction of two particles on the sam
quantum state. In general, the moments (1) descri
the fluctuations of wave functions which occupy a
appreciable fraction of dot volume.

In the universal regimeg ! ` each wave function
is extended over the whole volume; however, only ver
short-range correlations persist:casr1d and casr2d are
uncorrelated providedr  jr1 2 r2j is not much bigger
than the particle wavelength [5,12–14]. As a result, th
integration in Eq. (1) provides self-averaging, andIasnd
do not fluctuate in the universal regime. They coincid
with the momentsbn of the Porter-Thomas distribution
[4] for the intensity fluctuationsjcasrdj2. For unitarysud
and orthogonalsod symmetriesIasnd  bn, where

bsud
n  Gsn 1 1d, bsod

n  2nGsn 1 1y2dyGs1y2d .
(2)

The most striking difference of finiteg case from the
universal situation is the existence of spatial correlation
of wave function density even atr comparable with
the size of the system. As a resultIasnd demonstrates
finite fluctuations from state to state and from sample
sample [11]. Iasnd are characterized by theirdistribution
© 1998 The American Physical Society
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functions. Let us consider the distributionPnsud of
relative deviations ofIasnd from bn:

uasnd  Iasndybn 2 1, Pnsud  kdsssu 2 uasnddddl ,
(3)

wherek· · ·l stands for ensemble averaging.
As we show below the Laplace transformsP̃nssd 

kexpf2suasndgl of the distributionPnsud for large but
finite g can be written as

P̃nssd 
Y
mfi0

"
1 1 sn2 2 nd

2sD

pbvm

#21y2

;

vuutZ̃

"
sn 2 n2d

2sD

pb

#
. (4)

b is different forT invariant and notT-invariant systems:
bsod  1, bsud  2. vm is the spectrum of the diffusion
equation with Neumann boundary conditions on the gra
boundaryB:

D=2fmsrd  2vmfmsrd, =fjB  0 . (5)

vm are not universal: this spectrum is determined by bo
g and the shape of the grain. (We takeg  bv1y2D

as a definition ofg, since this ratio is proportional to
the dimensionless conductance for a rectangular gra
However, the ground state of the problem is spatia
uniform, and corresponds tov0  0. All universal
statistics become applicable to disordered grains wh
vm ! ` for all m exceptm  0. In this limit, known
as zero mode approximation,Pnsud  dsud since Eq. (4)
gives P̃nssd  const. ThereforeIasnd does not fluctuate
in the universal regime.

In Eq. (4) we introduced the function

1yZ̃szd 
Y
mfi0

f1 2 zyvmg  zyZszd , (6)

where Zszd is the dynamical Ruelle zeta function [15]
associated with the diffusion operator in Eq. (5). As
shown in Ref. [16] the pair spectral correlation functio
for an ensemble of disordered grains also can be expres
throughZ̃szd function. However the spectral statistics ar
determined byjZ̃sizdj2, while for the distributionsPnsud
one has to evaluateZszd at real negativez or to determine
both modulus and phase ofZsizd. An interesting feature
of the distributionsPnsud is that, in contrast with other
statistics of the quantum eigenfunctions, they are indep
dent on the diffusion operator eigenfunctionsfm, and are
determined solely by the spectrum of Eq. (5).

Let us describe the main features of the distributio
Pnsud. It is clear that long-scale correlations increase t
mean valuekIsndl  bnf1 1 kulg of Iasnd as compared
with Eq. (2). According to Eq. (4)

Pnsud 
1

sn2 2 nd
Pswd, w  unysn2 2 nd , (7)

and forkul 
R

uPnsud du we obtain
in

th
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kul
n2 2 n

 w̄ 
21

n2 2 n
d
ds

P̃nssdjs0 
D

bp

X
mfi0

1
vm

.

In terms of theZ̃szd function w̄ can be rewritten as

kwl 
1
2

G1s0d, Gmszd ;
µ

2D

pb

∂m dm ln Z̃szd
dzm

. (8)

Behavior ofPswd at smallw can be evaluated by making
a saddle-point approximation in the inverse Laplac
transformation of Eq. (4)

Pswd  Z̃1y2szcd fpG2szcdg21y2 exp

∑
2

pb

2D
wzc

∏
, (9)

providedzcswd determined by the equationG1szcd  2w
is large,jzcj ¿ v1.

It follows from Eq. (4) that the probability forw to be
much bigger thankwl is exponentially small:

Pswd  C
q

gys4wd expf2pgwg ,

C 
Y

mfi0,1

q
1 2 v1yvm (10)

 fZ̃szd s1 2 zyv1dg21y2jz!v1 .

Consider a disordered two-dimensional grain with a
particle mean free pathl. From Eq. (5) it follows

G1szd 
1
g

ln

∑
1 1

v1

v1 2 z
R2

l2

∏
, kwl 

lnsRyld
g

.

(11)

Therefore in the weak localization regime [17] when al
quantum states are extendedw̄ ø 1. Equation (11) for
w̄ is in agreement with the perturbation theory calculatio
[11]. For 1yg ø w ø w̄ Equation (9) gives

Pswd 
g
2

exp

∑
gsw̄ 2 wd 2

p

2
e2gsw̄2wd

∏
,

wherew̄ is determined by Eq. (11). Forgw & 1

Pswd 
g3y2
p

2w
exp

∑
gw̄ 2

p

4gw
e2gw̄

∏
.

According to Eq. (10) lnC  pgw̄, and atw̄ & w ø 1

Pswd 
q

gy4w expf2pgsw 2 w̄dg . (12)

It should be mentioned that Eqs. (4)–(12) are valid
only for u ø 1. According to Eq. (7) this means that
Eqs. (4)–(12) describe the main body of the distributio
Pnsud which never takes a Gaussian form. Therefore
the first two moments (the average and variance) are n
sufficient to describe the whole distribution.

Whenu ¿ 1, the distributionsPnsud are determined by
bothvm andfm. This asymptotic ofPnsud can be found
by the method of optimal fluctuation. For a spherica
grain of arbitrary dimensiond and radiusR

Pnsu ¿ 1d ø expf2angu1ysn21dg , (13)

whereg  pbDy4R2D and

an 
d2

pnsn 2 1d
G2

µ
1

2n 2 2

∂
G22

µ
n

2n 2 2

∂
n1ysn21d.
1945
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Equation (13) is valid as long as1 ø u ø sanRyldn21.
At large u thes model approach fails [18].

In order to derive Eq. (4) we consider mutual dis
tribution of y1  V jcasr1dj2 and y2  V jcasr2dj2 —
densities of a quantum eigenfunctioncasrd. This
distribution can be reconstructed through its momen
Mpq  V p1qkjcasr1dj2pjcasr2dj2ql. The latter can be
calculated for a disordered grain by analyzing momen
of one-electron Green functions using the supersymme
s-model technique in a way similar to how one-poin
moments Mp0 were calculated by Muzykantskii and
Khmelnitskii [19], and by Fal’ko and Efetov [20].

The ratio ofMpq and its universal (g ! `) valueMsund
pq

can be written as the functional integral
Mpq

M
sund
pq


1
J

Z
D usrde2F1psu12Vd1qsu22Vd, (14)

where u1,2  usr1,2d and J 
R

D usrde2F . Note that
while Mun

pq is determined by the zero mode of th
diffusion operator, the ratio Eq. (14) does not include th
integration over this mode. As a result the function
integral in Eq. (14) is over all functionsusrd that satisfy
the condition

R
dr u  0, and

Ffug 
pbD

4D

Z
s=ud2 dr

V
, Vfug  ln

µZ
eu dr

V

∂
.

(15)

Equation (14) enables us to express the two-points mut
distribution function Psy1, y2d at finite g through the
1946
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universal onePunsy1, y2d

Psy1, y2d 
1
J

Z
D usrde2F12V2u12u2

3 Punsy1eV2u1 , y2eV2u2 d . (16)

The universal two-point distribution functions
Punsy1, y2d for unitary and orthogonal symmetrie
were determined earlier [5,14]:

Psud
un sy1, y2d 

exps2 y11y2

12f2 d
1 2 f2 I0

µ
2f

p
y1y2

1 2 f2

∂
,

Psod
un sy1, y2d 

expf2 y11y2

2s12f2d g

2p
p

s1 2 f2dy1y2
cosh

µ
f
p

y1y2

1 2 f2

∂
,

wheref is the Friedel function ofr  jr1 2 r2j

fsrd  Gsdy2d s2ykrddy221Jdy221skrde2rys2ld.

Above Jpsxd and I0sxd are Bessel and modified Besse
functions, respectively;k is the wave number.

A usual way to calculate the functional integral lik
Eq. (16) is to presentusrd as a sum

P
m umfmsrd (there

is no contribution withm  0 since
R

dr u  0) over
the eigenfunctions of the problem Eq. (5) thus reduci
the calculation of the functional integral to a sequence
definite integrals overum.

Expansion of the exponent in Eq. (16) up to the seco
order in um leads to a Gaussian integral that can b
evaluated explicitly
Psy1, y2d 
Z `

0

Z `

0

ds1 ds2

2p

Punsy1s1, y2s2dq
P11P22 2 P

2
12

exp

"
2

X
k61

s
p

P11 ln s2 1 k
p

P22 ln s1d2

P11P22 1 kP12
p

P11P22

#
, (17)

wherePij is the Green function of Eq. (5)

Pij 
2D

pb

X
mfi0

fmsridfmsrjd
vm

. (18)

For r1 ! r2 Eq. (17) reproduces the result for one-point fluctuations [20].
From Eq. (16) we can guess the probability density of a given realizationcsrd of an eigenfunction in the form of a

functional integral. Instead of the Gaussian distribution that is valid in the universal limit [13,14] we obtain

PfcgD c  D c
1
J

Z
D usrde2F sb21 detK̂d2by2 exp

∑
2

b

2

Z
dr1

Z
dr2 cpsr1dK̂21csr2d

∏
. (19)
cy
The matrix elements of the operatorK̂ in the coordinate
representationK12 ; kr1jK̂jr2l equal to

K12  fsjr1 2 r2jd exp

∑
u1 1 u2

2
2 V

∏
. (20)

Equation (19) enables us to presentP̃nssd in the form

P̃nssd 
Z D usrd

J
e2F exp

∑
2

s
V

Z
sensu2Vd 2 1d dr

∏
.

(21)

Using in Eq. (21) the harmonic approximation that
valid for small fluctuationsu ø 1, we obtain Eq. (4).

At u ¿ 1 we can apply the method of optimal fluctua
tion to Eq. (21). For a spherical dot of the radiusR the
is

-

saddle-point equations can be written as

P̃nssd ø exp

(
s 2 gd

Z 1

0

∑
Ùu2

c 1
Fsucd
n 2 1

∏
td21dt

)
, (22)

wheret  ryR, a dot stands fort derivatives, anducstd
obeys the equation

üc 1
d 2 1

t
Ùuc  2

1
2

dF

duc
,

Fsud  psenu 2 neud ,
(23)

supplied by the conditionÙucs0d  Ùucs1d  0. p in
Eq. (23) should be determined from the self-consisten
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1 2 n

µ
pg
2s

∂1yn Z 1

0
Fsucdtd21 dt .

Let us note that the potentialFsud has a minimum at
u  0. At u ¿ 1 or s ø g the essential contribution to
Eq. (22) is given by the trajectories ofucstd, which starts
with ucs0d , 2

2
n22 ln j gysj ! 2` and ends somewhere

near the minimum of potentialFsud. They correspond
to the optimal wave functions that in the center of a do
is small like jsygj2ysn22d and increases when approachin
the boundary. Such a trajectory leads to the asympto
Eq. (13) for the distribution functionPnsud.

To summarize, we have calculated the distribution
for generalized moments of inverse participation rati
Eq. (1) in an ensemble of disordered metallic grains wit
a given dimensionless conductanceg. In the universal
limit g ! ` these moments do not fluctuate due to sel
averaging and thus have definite values Eq. (2). Th
fluctuations appear only at finiteg together with long-
range correlations in densities of wave functions. Indee
in the universal limit, when only short-range correlation
persist, the fluctuations vanish when the grain volume (th
rank of random matrices) tends to infinity. Contrarily
at finite g they appear small (as1yg) but long-range
correlations [see Eq. (18)] controlled entirely by the
eigenfunctions of the diffusion operator Eq. (5). Thes
correlations give rise to the fluctuations of the moments

We have found that there is the universal tail of th
distribution in the region of large fluctuations (kul ø
u ø 1). The probability of such a fluctuation decays
exponentially with a rate equal to the conductanceg.
Analyzing the distribution in terms of diffusion modes
we concluded that this exponential decay is due to th
large spatial scale fluctuations corresponding to the fir
diffusion mode. It is in contrast to what is known for
local fluctuations of eigenfunctions where the modes
increasingly smaller scale give rise to the logarithmicall
normal distribution. In the region of very large fluctuation
(u ¿ 1) the distributionPnsud turns out to be a stretched
exponent [see Eq. (13)] with the power determined b
the order of the moment. The nonlinear equation th
describes the shape of optimal fluctuation includes no
a potential with a minimum. As a result, a new type o
instanton solution appears in the problem.

The explicit form of the central body of the distribution
depends on the conductance as well as the shape of a
It is amazing, however, that atg ¿ 1 and for n ø

p
g

the main part [Eqs. (7), (8), (10)–(12)] can be expresse
through the spectrum of the diffusion operatorvm and do
not depend on the eigenfunctionsfm. This fact suggests
generalization of these statistics of eigenfunctions fro
disordered to generic chaotic systems, by making use
the Ruelle (dynamical) zeta function [Eqs. (4) and (6)
in a way similar to what was done in Ref. [16] for
spectral statistics. Substitution of the spectral determina
of the diffusion operator by the Ruelle zeta function fo
t
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spectral statistics in the generic case was supported
the calculations in the framework of a nonlinears model
[21]. The analysis of Bogomolny and Keating [22] base
on the periodic orbit theory led to similar but different
results. We hope that further analytical developmen
of results on the eigenfunction statistics together wit
numerical evaluations will clarify the relation between
quantum statistics and classical dynamics including th
phenomenon of scarring [23].
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