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This paper is devoted to the statistics of the quantum eigenfunctions in an ensemble of metallic
grains. We focus on moments of inverse participation ratio. In the universal limit that corresponds to
the infinite conductance of the grains, these moments are self-averaging quantities. At large but finite
conductance the moments do fluctuate due to the long-range correlations in the eigenfunctions. We
evaluate the distributions of fluctuations at given conductance and geometry of the grains and express
them through the spectrum of the diffusion operator in the grain. [S0031-9007(98)05328-9]

PACS numbers: 73.23.—b, 05.45.+b, 73.20.Dx

Weakly disordered metallic grains make an excellenthe singularities [9] in the quantum dynamics at times
laboratory to study the phenomenon of quantum chaoslose tory. A remarkable feature of the spectral statistics
(for a general discussion, see, e.g., Ref. [1]). Providedt finite g is that both their smooth [6] and their oscillating
electrons within a grain interact weakly, one can describgarts [8] can be presented through the spectral determinant
properties of this system through one particle quantunof the classical diffusion operatadV?. This paper is
spectrum and eigenfunctions. The problem is reduced tdevoted to the connection of this spectral determinant to
a Shrodinger equation for a particle subject to a potentiathe long-range correlations in the eigenfunctions.
that consists of two components: a regular potential that In this paper we concentrate on the moments [10]
confines electrons within the grain and some random
potential due to disorder. Given the distribution of the I,(n) = V”_I[ o (r)|*" dr 1)
random potential we get an ensemble of disordered grains
and can consider various statistics of the spectra a
eigenfunctions.

Classical motion in a random potential is diffusive

(provided_the_grain Siz& exceeds the mean free path) n = 2 moment, known as the inverse participation ratio,
W.'th a_diffusion constantD. Ensembles Of. weakly is related to the level-velocity distribution [11] or to
d|_sorder_ed metallic grains can be pharacterlzeq by thﬁubbard-like interaction of two particles on the same
dlmensmnl_ess conduc_:tancg determined as a ratip = guantum state. In general, the moments (1) describe
/17 Of Heisenberg timey = /A an2d Thouless time b0 f ctuations of wave functions which occupy an
of the diffusion through the grair = R*/D, whereA is d’;\ppreciable fraction of dot volume

the mean energy level spacing. A grain would be calle In the universal regimes — = each wave function

weakly disordered provideg > 1. .is extended over the whole volume; however, only very

Th_e _spectral statistics for the ense_mples of grains ”%hort-range correlations persist, (r) and i, (r,) are
the limit g — o are proven [2,3] to coincide with those ncorrelated provided = |r, — 1| is not much bigger

for the corr_es_ponding ensembles OT random matri_ces [4 an the particle wavelength [5,12—14]. As a result, the
These statistics would be calleaniversal The field jntegration in Eq. (1) provides self-averaging, ahdn)
theoretlcal way OT evaluating stafistics in ensembles %Ho not fluctuate in the universal regime. They coincide
disordered grains is based on the supersymmetriwodel with the momentsh,, of the Porter-Thomas distribution

[2]. d";’he”g ._>h°; the z((j-:-ro-dilme_nsion]:':ti- mode Ican be 44] for the intensity fluctuationgy,, (r)|?>. For unitary(u)
used for straightforward evaluation of universal statistics, - 4 orthogonalo) symmetries, (n) = b,, where

of both spectra and eigenfunction [5].
Finite g corrections to the universal properties of b,(j‘) =T + 1), b,(f) =2"T(n + 1/2)/T(1/2).

n\%ilhere P (r) is an eigenfunction of the system which
corresponds to an eigenenergy, andV is the volume
of the grain (for ad-dimensional cube/ = L%). The

quantum systems recently attracted substantial interest. )
The smooth part of the spectral correlation function was
evaluated in Ref. [6]. The first order ih/g correction The most striking difference of finitg case from the

to the spectral correlation function was evaluated byuniversal situation is the existence of spatial correlations
Kravtsov and Mirlin [7]. Nonperturbative analysis of of wave function density even at comparable with
the problem [8] pointed out a qualitative change of thethe size of the system. As a resulf(n) demonstrates
behavior at finiteg—washing out the oscillations in the finite fluctuations from state to state and from sample to
two-point correlation function, and, hence, smoothing ofsample [11]. I,(n) are characterized by thaiistribution
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functions Let us consider the distributiorP,(x) of w _ . __~1 dj (5)smo — A v 1
relative deviations of , () from b,,: n?—n n2—nds " gn o ou
ta(n) = lo(n)/by = 1, Py(u) = (8(u — ”“(”))Eé) In terms of theZ(z) functionw can be rewritten as
1 _(2A\"d"InZ(z)
where(- - -y stands for ensemble averaging. w) =610,  Gulz) = <7r—,8> P C)

As we show below the Laplace transfornfs(s) = . )
(exd—sua(n)]) of the distribution P, (x) for large but Behavior of P(w) at smallw can be evaluated by making

finite g can be written as a saddle-point approximation in the inverse Laplace
bon 17! 2 transformation of Eq. (4)
~ N
Py(s) = [1 + (n? - n)i} _ 512 12 gy _ B
11 7B, P(w) = 2o [ Galzo)] 2 exg =T owae | (9)
_ s 5, 25A providedz.(w) determined by the equatio§ (z.) = 2w
=\ s | @ islarge|z] > ).

It follows from Eq. (4) that the probability fow to be
B is different forT invariant and nof -invariant systems: much bigger thadw) is exponentially small:

B =1, W =2 w, is the spectrum of the diffusion _ _
equation with Neumann boundary conditions on the grain P(w) = Cyg/(dw)exgd—mgw],

boundaryB: C = l_[ V1 — wi/o, (10)

DV*¢,(r) = —w,dur), Vélp=0. (5 n#0.1

5 _ -1/2
w,, are not universal: this spectrum is determined by both [2&) (0 = 2/0)] o,
g and the shape of the grain. (We take= Bw;/2A Consider a disordered two-dimensional grain with a
as a definition ofg, since this ratio is proportional to particle mean free path From Eg. (5) it follows

the dimensionless conductance for a rectangular grain.) 1 0, R? In(R/1)
However, the ground state of the problem is spatially G1(z) = ;In[l L 1_2} (w) = T
uniform, and corresponds taw, = 0. All universal (11)

statistics become applicable to disordered grains when
w, — « for all u exceptu = 0. In this limit, known Therefore in the weak localization regime [17] when all
as zero mode approximatioR,,(z) = 8(u) since Eq. (4) quantum states are extendéd< 1. Equation (11) for

gives P, (s) = const. Thereford,(n) does not fluctuate w is in agreement with the perturbation theory calculation

in the universal regime. [11]. Forl/g < w < w Equation (9) gives
In Eq. (4) we introduced the function g . )
P(w) = EeX;{ gw —w) — Tezg(ww)},
1/Z(z) = 1 - =z/Z(z), 6
/2@ ,DO[ tfoul =2/26) ©) wherew is determined by Eq. (11). Few < 1
3/2
where Z(z) is the dynamical Ruelle zeta function [15], Pw) = £ / exg ow — Lezw]
associated with the diffusion operator in Eq. (5). As is V2w 4gw

shown in Ref. [16] the pair spectral correlation function According to Eq. (10) I = wgw, and atv < w < 1
for an ensemble of disordered grains also can be expressed _
throughZ(z) function. However the spectral statistics are P(w) = yg/4wexd—mg(w — w)]. (12)
determined by|Z(iz)|?, while for the distributionsP,, («) It should be mentioned that Eqgs. (4)—(12) are valid
one has to evaluaté(z) at real negative or to determine only for u < 1. According to Eq. (7) this means that
both modulus and phase @fiz). An interesting feature Eqgs. (4)—(12) describe the main body of the distribution
of the distributionsP, (1) is that, in contrast with other P,(u) which never takes a Gaussian form. Therefore,
statistics of the quantum eigenfunctions, they are indeperihe first two moments (the average and variance) are not
dent on the diffusion operator eigenfunctiofig, and are  sufficient to describe the whole distribution.
determined solely by the spectrum of Eq. (5). Whenu > 1, the distributionsP,, (1) are determined by
Let us describe the main features of the distributiondothw, and¢,. This asymptotic o, («) can be found
P.(u). Itis clear that long-scale correlations increase théoy the method of optimal fluctuation. For a spherical
mean valug(I(n)) = b,[1 + (u)] of I,(n) as compared grain of arbitrary dimensiod and radiusk

with Eq. (2). According to Eq. (4) P(u>> 1) ~ exd_angul/(n*l)]’ (13)
Polu) = ﬁf’(w), w=u,/(n* = n), (7) Whereg = mBD/4R*A and
n- —n
_ a = d? 2 1 2 n /(=1
and for{u) = [uP,(u) du we obtain " ann—1) \2n -2 2n — 2 ’
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Equation (13) is valid as long ab<< u < (a,R/1)"~'.  universal onePy, (v, v2)
At large u the o model approach fails [18]. 1
In order to derive Eq. (4) we consider mutual dis- P(vi,v0) = = ] DO (r)e FH22-0-0
tribution of vy = V] (r)> and vy = V] (r)|>2— =
densities of a quantum eigenfunctiogr,(r). This X Pun(v1€?7% 10262 7%) . (16)

distribution can be reconstructed through its moments
My = VP (0)1?P [iha (r2)1?9).  The latter can be

calculated for a disordered grain by analyzing moment
of one-electron Green functions using the supersymmetri

The universal two-point distribution functions
é')un(vl»v2) for unitary and orthogonal symmetries
were determined earlier [5,14]:

o-model technique in a way similar to how one-point exp— 2ty )
moments M,, were calculated by Muzykantskii and  PW(v,,v,) = i 1‘;') 0( va”f)’
Khmelnitskii [19], and by Fal’ko and Efetov [20]. I=f 1=f

The ratio ofM,,, and its universal ¢ — o) valueM ("

+
exp— 2187;5)] fviv2 )

(0) —
can be written as the functional integral Py (v1, v2) 200 = vvy v, cos 1 — f2
M 1 . . .
oy = :[ DO(r)e FHrO-D+a0:-) = (14)  wheref is the Friedel function of = [r; — r,|
Mpq =

_ d/2—1 -r/Q21)

wheref;, = 0(r;») and ZE = [D6A(r)e ¥. Note that flr) = 1(d/2) 2/kr) Japp=1(kr)e ’
while M is determined by the zero mode of the Above J,(x) and /o(x) are Bessel and modified Bessel
diffusion operator, the ratio Eq. (14) does not include thfunctions, respectively is the wave number.
integration over this mode. As a result the functional A usual way to calculate the functional integral like
integral in Eq. (14) is over all functiong(r) that satisfy EQ. (16) is to presend(r) as a sumd_, 6, ¢ ,(r) (there
the conditionf dr § = 0, and is no contribution withu = 0 since [dr # = 0) over
7 BD ,dr ,dr the eigenfu_nctions of the proble_m Eqg. (5) thus reducing
Tf(VH) v Qo] = |n<[ e —) the calculation of the functional integral to a sequence of
definite integrals ovef,.

(15) Expansion of the exponent in Eq. (16) up to the second
Equation (14) enables us to express the two-points mutualrder in 6,, leads to a Gaussian integral that can be
distribution function P(vy,v;) at finite g through the| evaluated explicitly

F[0] =

P(vy,v)) = ]w * dsidsy Pun(vi51,v25) exnl — Z (VI Insy + K\/H22|nsl)2 17)
’ o Joo 27 M, — 2 S My, + kI /T TD,, |
wherell;; is the Green function of Eq. (5)
2A ¢u(r)d,(x))

WB n#0 Wy

Forr; — r, Eq. (17) reproduces the result for one-point fluctuations [20].
From Eq. (16) we can guess the probability density of a given realizdgtieh of an eigenfunction in the form of a

functional integral. Instead of the Gaussian distribution that is valid in the universal limit [13,14] we obtain

PIYIDY = Dy ] Do(r)e " (B~ detk) #/2 ex;{—% ] dry ] dr, w*(rl)klaﬁ(rz)] (19)

The matrix elements of the operatfrin the coordinate! saddle-point equations can be written as

representatio, = (r;|K|r,) equal to . 0,
+ P, (s) = expls — df [03 + —C}zdld; ., (22
Kip = f(lr — 1'2|)EX[{% - Q} (20) () D{S g4 ], n—1 (22)

Equation (19) enables us to preséyts) in the form wherer = r/R, a dot stands for derivatives, and.(r)
. obeys the equation
P,(s) = [ %ﬁ‘)e—F ex;{—i f(en(ﬂ—ﬂ) — l)dr] y a
= %4 i+ d — 10 _ _l &
(21) ¢ r 0 C 2 6860,
Using in Eqg. (21) the harmonic approximation that is ®(6) = ple" — ne?) (23)

valid for small fluctuations: < 1, we obtain Eq. (4). ) )
At u > 1 we can apply the method of optimal fluctua- supplied by the condition.(0) = 6.(1) =0. p in
tion to Eqg. (21). For a spherical dot of the radiRghe  Eq. (23) should be determined from the self-consistency
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condition spectral statistics in the generic case was supported by
d 1/n r1 the calculations in the framework of a nonlineamodel
P =7 <&> ] DG ) dr . [21]. The analysis of Bogomolny and Keating [22] based
—n\—s 0

on the periodic orbit theory led to similar but different
Let us note that the potentidh(#) has a minimum at results. We hope that further analytical development

6 =0. Atu > 1ors < g the essential contribution to of results on the eigenfunction statistics together with

Eq. (22) is given by the trajectories 6f(z), which starts numerical evaluations will clarify the relation between

with 0.(0) ~ —% In|g/s| — —« and ends somewhere quantum statistics and classical dynamics including the
near the minimum of potentiab(#). They correspond phenomenon of scarring [23].
to the optimal wave functions that in the center of a dot The authors are grateful to O. Agam, |. Aleiner,

is small like|s/g|*"~2 and increases when approachingA. Andreev, and K. Efetov for useful discussions and

the boundary. Such a trajectory leads to the asymptotithank A. Epstein and P. Fulde for their interest in this

Eq. (13) for the distribution functio®,, (). work. This work was supported by NSF DMR-9508723.
To summarize, we have calculated the distributions

for generalized moments of inverse participation ratio

Eq. (1) in an ensemble of disordered metallic grains with

a given dimensionless conductange In the universal o
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