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Dynamics of Entangled Polymer Layers: The Effect of Fluctuations
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Dynamics of thin layers of entangled polymers is considered theoretically using a generalization of
the reptation model. It is shown that monomer-monomer excluded volume interactions suppress long-
range motion of polymer chains, giving rise to an exponential increase of the longest relaxation time
and the viscosityy as the layer thickness is decreased. Explicit dependenciesyobinconcentration,
molecular weight, and thickness are obtained. [S0031-9007(98)05294-6]

PACS numbers: 61.41.+e

Rheology of high molecular weight polymers attracts Qualitative picture—The shear viscosity of an en-
considerable scientific attention [1,2]. Recent advances itangled system i = G, 745, WwhereG, = kgT(c/N.,) is
the understanding of polymer dynamics on the moleculathe plateau elastic modulus of the entanglement network
level are connected with the idea of entanglements [3](here ¢ is the monomer concentration), ang;; is the
the tube model, and the reptation theory [4,5]. Theso-called disentanglement time. The reptation model [2]
latter was definitely successful in describing rheology ofimplies that each polymer chain is enveloped in a virtual
bulk entangled polymers, yet some basic relationshiptube due to entanglements with surrounding chains. The
like molecular weight dependence of viscosity were notmain large-scale chain motion is a reptation along the
completely understood. This is even truer for confinedube axis. The disentanglement time is then the time
polymer systems, like a concentrated polymer solutiorof reptation on a distance of order of the tube length,
or a melt in a narrow slab between parallel solid platesL: 745 = constx L?/D,, where D, is the curvilinear
In some of the previous studies [6,7] the dynamicaldiffusion constant,D, = 1/, where { is the friction
implications of confinement were attributed to the effectconstant corresponding to the reptation motighx N
of thin “glassy” layers formed near the plates due to(here kgT is the energy unit). Hence the main result
specific monomer-surface interactions. of the reptation modely « 74, « N3, which is valid if

In this Letter | show that the effect of confinement monomers do not interact.
is important (leading in some cases to an exponential Let us now switch on monomer interactions, assuming
increase of viscosity) even with no specific monomer-that N is very large. Then the reptation (curvilinear
surface interactions, i.e., for purely repulsive plates. diffusion along the tube) should be globally hindered by

It is known [6,8] that equilibrium properties of polymer high potential barrier§U) due to interactions [10—12],
layers are nearly not affected by the surfaces at distances o 14ie o N3expU) (1)
larger than the static correlation length Thus the = Tdis ‘
static surface effect is negligible if the layer thicknessin order to estimate the typical barriéf let us consider
H > ¢; this condition is assumed below (note that ina chain that is creeping out of the original tube. Suppose
a concentrated solution or a mejtis of order of the that g monomers have escaped out of the original tube,
monomer sizeb). In this case polymer chains locally and hence occur in a new less favorable environment.
obey Gaussian statistics, and their global statistics camhe typical lateral size (iny plane) of the escaped chain
be deduced from the mirror-image principle. The samesegment isk(g) ~ bg'/?, so that the total volume avail-
principle is valid also for dynamics within the Doi- able for the segment i¥(g) ~ HR*(g) ~ b>Hg [here |
Edwards reptation model [9]: Any distribution function assume thaRk(g) > H]. Let us assume for a moment
in the layer can be obtained from the bulk distributionthat only one chain is moving, while monomers of all
function by superimposing all (multiple) reflections from other chains are fixed. Thep monomers that come
the surfaces. Therefore, the reptation theory predicts thito the regionV(g) increase monomer concentration
same stress relaxation time in the layAr> ¢) asinthe there bydc ~ g/V(g). The interaction energy in this
bulk, i.e., no appreciable effect of confinement. region is thus increased by (g) = (v/2) [ 8c?d’r ~

The Doi-Edwards theory does not take into account thes§c>V(g) ~ vg/b*H. There are two ways to relax this
effect of monomer-monomer interactions on the reptatioradditional energy: (1) by deformation of the entangle-
dynamics. This effect was proved to be important [10,11jment network, which results in a partial relaxation of
for bulk reptation dynamics of very long polymers, in the energy down toU*(g) = (v*/v)U(g), and (2) by
the regimeN > N2, where N, ~ 50 is the number of reptation motion of other chains. Heng" = v/(1 +
monomers per entanglement. Below | show that this->v/K,) is the renormalized interaction constant which
effect is even more important for polymer layers. takes into account that the entanglement network is soft;
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K. = vG. = vc/N, is the longitudinal elastic modulus to a renormalization of the effective diffusion constant

of the network, and’ is a numerical factor determined by which is defined asD/D, = ff;(&(o)&(t)}dt =1+ A,

the network structure. A = [{fO)f@)ydt + [Z.(£(0)f(2))dt. ltisthe renor-
While the second channel can provide a completamalized diffusion constant that determines the macroscopic

relaxation, it works only if there are free ends of otherdynamical properties, in particular, the disentanglement

chains inside the regioki (g), i.e., if (c/N)V(g) > 1, s0  time, rg;s = constN?/D, and the viscosity.

thatg > ¢* ~ N/cb*H. Therefore the effective barrier  Let us calculateA by perturbations assuming that the

that a chain has to overcome in order to move along thinteraction parametar is small. By definition the random

tube ong > g* is noise £(0) is independent of the system historyrat< 0.
. Thereforg(&(0)f(¢)) = 0fort < 0. Let us now make use
U~ U(g") ~ vvN v 1 N ) of the time, isotropy, i.e., of the fact that the system maps

to itself under the transformation— —¢. Obviously the

transformation implies thatbeing a velocity must change

The argument described above is analogous to thats sign, whereasf(r) being a force (which is in turn

used for bulk 3D systems [11,12], where the activationproportional to a concentration fluctuation) is invariant.

energyU ~ (N/N*)*3, N* = (ch?)*N3/v? (the scaling Hence(s(r)f(1)) = —(f(11)s(t,)). Taking into account

U = N?3 was originally predicted in Ref. [13] using a that§(r) = £(r) + f(r) we get the relatioR£(0)f(z)) =

different argument). —=2(f(0)f(1))O(r), where®(r) is the Heaviside function.
Note that in the melt caseb® ~ 1, and soN* ~ N2;  Therefore

i.e., N* is extremely large. Let us consider the regime .

N, < N < N? (the last inequality is valid for most poly- _ _/

mers synthesized so far). Here the bulk activation energy A 0 (SOf W)t ®)

is small; i.e., the classical Doi-Edwards picture is valid

in the bulk. However, the effect of interactions might

be strong for dynamics in a thin molten laydy. > 1

if H< H™ = (1/¢b?) (vN/N,)/2. The effective curvi-

linear diffusion constant is exponentially small in the

regionH < H™: D ~ Dy exp(—U), and both the disen- (8c(r,1)6¢(0,0)). This function was calculated in

tanglement timerg;s and the viscosity are exponentially . . )
large; see Egs. (1) and (2). The effect of interactions is eniXefs. [10,11]; the result in the Fourier-Laplace represen-

hanced as the layer thickness decreases. This conclusidion 'S

so thatA is definitely negative.

The forcef(r) = v[8c(ro(r),1) — dc(ry(z), )], where
Sc(r,t) = c(r,t) — ¢ is the concentration fluctuation.
Hence, in order to proceed we need to know the cor-
relation function of concentration fluctuatiorf§r,¢) =

is further supported by the perturbation analysis below us- v 2evt 282+ yp 1!

ing a new simple approach which is first applied to derive S(¢,p) = 2 [ N 7 + 2)2} . (4)
the bulk diffusion constant and relaxation time [11], and P VPP ta

then to the confinement effect. where (g, p) = [5 S(r.)e 9P &rdr. Note that

Perturbation analysis—Let us consider one chain in its
tube. It is convenient to rescale the curvilinear coordinat
(along the tube), so that it measures the average num
ber of links along the tube; with this definitioh = N.
Then an instantaneous curvilinear velocity along the tub

of any monomer of a given chain is= £(t), whereg(t) ik’ is legiti : ,
) . _ o gitimate since the relevant correlation length
is the random thermal noisé(r)) = 0, {£(1)¢ () = is much smaller than the end-to-end distance, | rewrite

26(t — t'), wherel/Dy is chosen as the time unit. These P ; )
equations specify the Doi-Edwards reptation model. Witfgaéi)a”(;aﬁgnrgOgé?]eifg;u;st that the system is macro

interacting monomers the situation is different: a displace-
ment of the chain along the tube might change the total , [ 3

interaction energy;, = (v/2) [[c(r) — c¢]* d3r, where A=-2v ]0 dtf d’rS(r,0)P(r,1), (5)

c(r) is the local monomer concentratiofa,(r)) = ¢, and

v is the interaction parameter. This results in an effecwhereP(r,t) is the probability density that a chain end is
tive forcef(r) = v[c(ro(z), r) — c(ry(z), r)] which drives  at pointr at the moment under the condition that it was
the chain in the direction of lower concentration; hereat r = 0 initially (at + = 0). The functionP(r,t) can
ro(7) andry(z) are the spatial positions of the chain endsbe easily calculated using the reptation model described
corresponding tos = 0 ands = N. Thuss = &(tr) +  above. Since the aim is to calculakein the main order,
f(t). The molecular drift velocity is zero on the aver- we can neglect the molecular field while considering
age,(f(t)) = 0. Itis fluctuating in time like&(r) does; P(r,t). The result, which is valid in the relevant regime
however, the correlation time gf(r) is large: Itis deter- ¢ ~ 7 < 74is, iS [11,14]P(q, p) = 1/(¢* + ﬁ)z, where
mined by polymer dynamics. The drift force gives rise P(¢, p) = [P(r,t)e 9" P @3rdr. Thus we get after

1909

monomer sizea = b/+/6 is considered as unit length
%ere. Equation (4) is valid in the relevant regiph ~ 1
‘which provides dominant contribution th as given by
Eq. (3), wherg = N/cv*Dy.

e Neglecting correlations betweefic(rg) and Sc(ry),
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some transformations/(= dimension of space)

ddq fiw+0 p
R P —
O ) imio 2mi (q.r)S(q, —p)

A = -2

. N (4-a)/4
e G ©
where
21*3d/4
la = 72T(d/2) sin(md /4)

X f 1201 + )72t + DY+ )22 gy
0

andz = H (hereH is the layer thickness),

1

P(r,r',t) = v Z [P,(r — ' + 2Hne.,1)

n=-—o

+ P,(r — v’ + (27 + 2Hn)e_, 1)]

where e, is the unit vector along the axis, z = e.r,
7/ = e,r’. Similarly,

S(r,r', 1) = Z [Sp(r — ' + 2Hne,,1)

n=-—o0

+ Sp(r — v’ + (27 + 2Hn)e.,1)].

Equation (6) represents the main-order perturbation resuihserting the last two equations in Eq. (9) | get instead of

which is supposed to be valid jA| <« 1. In particular,
for d = 3 the result is

N4 1.1403/4 1 N \V/4
A = 7007w ( ¢ > cb3 <N§>

(7)

In the last equation an explicit dependence on the statistwhere g, = mn/H, n =

cal segmenb is inserted; als@™ was approximated as
v/cN,, (8)

*
v f=—1

which is valid ifvc? > K,.

These results coincide with those obtained in Ref. [11].

Eqg. (6)

AH) = _2v2

2’ [ dacdyy 5 f T dp.
H (2m)? T J im0 2mi
X Py(q, p)Sp(q, —p),

0,1,2,...; Sy(q, p) is defined
by Eg. (4), andP,(q, p) is defined just above Eg. (6).
After appropriate transformations

V2 1

a7\ 1/2
-2 () et M, 10)

A(H) =

The effect of molecular field gives rise to a slowing here 7(a) = 5 olat' 22t + DV4/(1 + 02111 +

down of the curvilinear diffusion, and hence to a Iongert)/(1 + 2202 + 1)1/2]dt

disentanglement timerg;, = constx [N2/Dy(1 — |Al])]

and o) = (7/4) +
(u/2) + arctaie “sinu/(1 — e *cosu)].

and higher viscosityy = G.74is = N3/(1 — |A]). The In the regime H > H*, H" = (N/cv*)l/* =
effect is strong ifN = N2. The derivation of Eq. (7) is a(NN,/v)/*, Eq. (10) agrees with Eq. (7): ie., the
based on the pure reptation model; i.e., Rouse-like chaif,k behavior is recoveredA (H) = A(e). ’ ;
motion inside the tube (tube length fluctuations) [15] aré,,mica effect of interactions becomes more pronounced
neglected. An analysis shows that these fluctuations coulgl . iinner  films: |A| = 0.834(1/cb®H) (vN/N,)'/?

give rise to a slight change (decrease) of the numericg,, ; « H*: i.e., the correction is increasing ds is
prefactor; however, they do not affect any dependence Qiacreased [the approximation, Eq. (8), is used here].

A on the parameters. _ _ The perturbation approach is valid as long |a$ <
The effect of confinementThe perturbation analysis |  This condition can be rewritten a&l < H** ~

of the previous sectio_n can al_so be performed for a(l/cb2)(1/N/Ne)1/2. Note that we get exactly the same
confined polymer layer in essentially the same way. The qssover thicknes&**) as in the second section: i.e.,

only difference stems from the fact that the system is Nofhe activated reptation sets in as soon as perturbation
homogeneous any more in thedirection normal to the xpansion fails.
layer, so that Eq. (5) should be rewritten in a more genera? It is interesting to consider now the dependence of

form, the viscosity. Let us consider the melt casé’? ~ 1,
and the regionV, < N < N2; the last inequality ensures
that H* < H*. The reduced viscosity normalized by
the bulk value,n(H)/n(®) = 74s(H)/T4is(), is nearly

A= —2v2f drf drd®r' S(r, v, 0)P(r,r', 1), (9)
0

where S(r,r’,t) = (5c(r,1)8c(r’,0)) is the correlation / ' !
function, and P(r.r',7) is the probability density that €aual o[l + A()]/[1 + A(H)] it H > H™, and is

a given chain end was at the point at r =0 and 'oughly exgU) if H < H™. Thus using Egs. (10), (2),
moved to the point during timer. For a homogeneous and (1) we get

(bulk) system these functions depend onlyrort 1/, e.g., v on 2 .
P(r,r',1) = (1/V)P,(r — r',1), whereP,(-) is the bulk 0.417 Cbzﬂ<m> . H>H,
probability density considered in the previous section, anqn<w> - Lo\ 2 .
V is the volume. 7(c) 0.834 C,,ZH<N—E> , H*> H > H"™,

In the confined geometry any distribution function can constar— 2N H* > H > ¢
be obtained as a superposition of the bulk distribution c*b*H? N, > ’
function and all its reflections at the film surfacess= 0 (12)
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where const- 1 is a numerical factor and ~ b/./cv ~  the wall slip and is predicted to scale B&rq;s. The self-
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