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Dynamics of Entangled Polymer Layers: The Effect of Fluctuations
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Dynamics of thin layers of entangled polymers is considered theoretically using a generalization
the reptation model. It is shown that monomer-monomer excluded volume interactions suppress lo
range motion of polymer chains, giving rise to an exponential increase of the longest relaxation tim
and the viscosityh as the layer thickness is decreased. Explicit dependencies of lnh on concentration,
molecular weight, and thickness are obtained. [S0031-9007(98)05294-6]
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Rheology of high molecular weight polymers attract
considerable scientific attention [1,2]. Recent advances
the understanding of polymer dynamics on the molecul
level are connected with the idea of entanglements [3
the tube model, and the reptation theory [4,5]. Th
latter was definitely successful in describing rheology o
bulk entangled polymers, yet some basic relationshi
like molecular weight dependence of viscosity were n
completely understood. This is even truer for confine
polymer systems, like a concentrated polymer solutio
or a melt in a narrow slab between parallel solid plate
In some of the previous studies [6,7] the dynamic
implications of confinement were attributed to the effec
of thin “glassy” layers formed near the plates due t
specific monomer-surface interactions.

In this Letter I show that the effect of confinemen
is important (leading in some cases to an exponent
increase of viscosity) even with no specific monome
surface interactions, i.e., for purely repulsive plates.

It is known [6,8] that equilibrium properties of polymer
layers are nearly not affected by the surfaces at distan
larger than the static correlation lengthj. Thus the
static surface effect is negligible if the layer thicknes
H ¿ j; this condition is assumed below (note that i
a concentrated solution or a meltj is of order of the
monomer sizeb). In this case polymer chains locally
obey Gaussian statistics, and their global statistics c
be deduced from the mirror-image principle. The sam
principle is valid also for dynamics within the Doi-
Edwards reptation model [9]: Any distribution function
in the layer can be obtained from the bulk distributio
function by superimposing all (multiple) reflections from
the surfaces. Therefore, the reptation theory predicts t
same stress relaxation time in the layersH ¿ jd as in the
bulk, i.e., no appreciable effect of confinement.

The Doi-Edwards theory does not take into account th
effect of monomer-monomer interactions on the reptatio
dynamics. This effect was proved to be important [10,1
for bulk reptation dynamics of very long polymers, in
the regimeN ¿ N3

e , where Ne , 50 is the number of
monomers per entanglement. Below I show that th
effect is even more important for polymer layers.
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Qualitative picture.—The shear viscosity of an en-
tangled system ish ­ Getdis, whereGe ­ kBT scyNed is
the plateau elastic modulus of the entanglement netwo
(here c is the monomer concentration), andtdis is the
so-called disentanglement time. The reptation model [2
implies that each polymer chain is enveloped in a virtua
tube due to entanglements with surrounding chains. T
main large-scale chain motion is a reptation along th
tube axis. The disentanglement time is then the tim
of reptation on a distance of order of the tube length
L: tdis ­ const3 L2yD0, where D0 is the curvilinear
diffusion constant,D0 ­ 1yz , where z is the friction
constant corresponding to the reptation motion,z ~ N
(here kBT is the energy unit). Hence the main resul
of the reptation model,h ~ tdis ~ N3, which is valid if
monomers do not interact.

Let us now switch on monomer interactions, assumin
that N is very large. Then the reptation (curvilinear
diffusion along the tube) should be globally hindered b
high potential barrierssUd due to interactions [10–12],

h ~ tdis ~ N3expsUd . (1)

In order to estimate the typical barrierU let us consider
a chain that is creeping out of the original tube. Suppos
that g monomers have escaped out of the original tub
and hence occur in a new less favorable environmen
The typical lateral size (inxy plane) of the escaped chain
segment isRsgd , bg1y2, so that the total volume avail-
able for the segment isV sgd , HR2sgd , b2Hg [here I
assume thatRsgd . H]. Let us assume for a moment
that only one chain is moving, while monomers of al
other chains are fixed. Theng monomers that come
into the region V sgd increase monomer concentration
there bydc , gyV sgd. The interaction energy in this
region is thus increased byUsgd ­ syy2d

R
dc2 d3r ,

ydc2Vsgd , ygyb2H. There are two ways to relax this
additional energy: (1) by deformation of the entangle
ment network, which results in a partial relaxation o
the energy down toUpsgd ­ sypyydUsgd, and (2) by
reptation motion of other chains. Hereyp ­ yys1 1

c2yyKed is the renormalized interaction constant which
takes into account that the entanglement network is so
© 1998 The American Physical Society
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Ke ­ nGe ­ ncyNe is the longitudinal elastic modulus
of the network, andn is a numerical factor determined by
the network structure.

While the second channel can provide a comple
relaxation, it works only if there are free ends of othe
chains inside the regionV sgd, i.e., if scyNdV sgd . 1, so
that g . gp , Nycb2H. Therefore the effective barrier
that a chain has to overcome in order to move along t
tube ong . gp is

U , Upsgpd ,
ypN

cb4H2 ,
n

c2b4

1
H2

N
Ne

. (2)

The argument described above is analogous to th
used for bulk 3D systems [11,12], where the activatio
energyU , sNyNpd2y3, Np ­ scb3d4N3

e yn3 (the scaling
U ~ N2y3 was originally predicted in Ref. [13] using a
different argument).

Note that in the melt casecb3 , 1, and soNp , N3
e ;

i.e., Np is extremely large. Let us consider the regim
Ne , N , N3

e (the last inequality is valid for most poly-
mers synthesized so far). Here the bulk activation ener
is small; i.e., the classical Doi-Edwards picture is vali
in the bulk. However, the effect of interactions migh
be strong for dynamics in a thin molten layer:U ¿ 1
if H ø Hpp ­ s1ycb2d snNyNed1y2. The effective curvi-
linear diffusion constant is exponentially small in the
regionH , Hpp: D , D0 exps2Ud, and both the disen-
tanglement timetdis and the viscosity are exponentially
large; see Eqs. (1) and (2). The effect of interactions is e
hanced as the layer thickness decreases. This conclus
is further supported by the perturbation analysis below u
ing a new simple approach which is first applied to deriv
the bulk diffusion constant and relaxation time [11], an
then to the confinement effect.

Perturbation analysis.—Let us consider one chain in its
tube. It is convenient to rescale the curvilinear coordina
(along the tube)s, so that it measures the average num
ber of links along the tube; with this definitionL ; N .
Then an instantaneous curvilinear velocity along the tub
of any monomer of a given chain isÙs ­ jstd, wherejstd
is the random thermal noise,kjstdl ­ 0, kjstdjst0dl ­
2dst 2 t0d, where1yD0 is chosen as the time unit. These
equations specify the Doi-Edwards reptation model. Wit
interacting monomers the situation is different: a displac
ment of the chain along the tube might change the tot
interaction energyFint ­ syy2d

R
fcsrd 2 cg2 d3r, where

csrd is the local monomer concentration,kcsrdl ­ c, and
y is the interaction parameter. This results in an effe
tive forcefstd ­ yfcsssr0std, tddd 2 csssrN std, tdddg which drives
the chain in the direction of lower concentration; her
r0std andrN std are the spatial positions of the chain end
corresponding tos ­ 0 and s ­ N. Thus Ùs ­ jstd 1

fstd. The molecular drift velocity is zero on the aver-
age,kfstdl ­ 0. It is fluctuating in time likejstd does;
however, the correlation time offstd is large: It is deter-
mined by polymer dynamics. The drift force gives rise
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to a renormalization of the effective diffusion constan
which is defined asDyD0 ­

R`

0 kÙss0dÙsstdl dt ­ 1 1 D,
D ­

R`
0 kfs0dfstdl dt 1

R`
2`kjs0dfstdl dt. It is the renor-

malized diffusion constant that determines the macrosco
dynamical properties, in particular, the disentangleme
time, tdis ­ constN2yD, and the viscosity.

Let us calculateD by perturbations assuming that th
interaction parametery is small. By definition the random
noisejs0d is independent of the system history att , 0.
Thereforekjs0dfstdl ­ 0 for t , 0. Let us now make use
of the time, isotropy, i.e., of the fact that the system ma
to itself under the transformationt ! 2t. Obviously the
transformation implies thatÙs being a velocity must change
its sign, whereasfstd being a force (which is in turn
proportional to a concentration fluctuation) is invarian
HencekÙsst1dfst2dl ­ 2kfst1dÙsst2dl. Taking into account
that Ùsstd ­ jstd 1 fstd we get the relationkjs0dfstdl ­
22kfs0dfstdlQstd, whereQstd is the Heaviside function.
Therefore

D ­ 2
Z `

0
kfs0dfstdl dt , (3)

so thatD is definitely negative.
The forcefstd ­ yfdcsssr0std, tddd 2 dcsssrN std, tdddg, where

dcsr, td ­ csr, td 2 c is the concentration fluctuation.
Hence, in order to proceed we need to know the co
relation function of concentration fluctuationsSsr , td ­
kdcsr, tddcs0, 0dl. This function was calculated in
Refs. [10,11]; the result in the Fourier-Laplace represe
tation is

Ssq, pd ­
yp

py2

∑
1 1

2cyp

N

2q2 1
p

p
p

p spp 1 q2d2

∏21

, (4)

where Ssq, pd ­
R`

0 Ssr, tde2iq?r2pt d3r dt. Note that
monomer sizea ; by

p
6 is considered as unit length

here. Equation (4) is valid in the relevant regionpt̃ , 1
which provides dominant contribution toD as given by
Eq. (3), wherẽt ­ NycypD0.

Neglecting correlations betweendcsr0d and dcsrNd,
which is legitimate since the relevant correlation leng
is much smaller than the end-to-end distance, I rewr
Eq. (3) (taking into account that the system is macr
scopically homogeneous) as

D ­ 22y2
Z `

0
dt

Z
d3r Ssr , tdPsr, td , (5)

wherePsr, td is the probability density that a chain end i
at pointr at the momentt under the condition that it was
at r ­ 0 initially (at t ­ 0). The functionPsr, td can
be easily calculated using the reptation model describ
above. Since the aim is to calculateD in the main order,
we can neglect the molecular field while considerin
Psr , td. The result, which is valid in the relevant regim
t , t̃ ø tdis, is [11,14]Psq, pd ­ 1ysq2 1

p
pd2, where

Psq, pd ­
R

Psr , tde2iq?r2pt d3r dt. Thus we get after
1909
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D ­ 22y2
Z ddq

s2pdd

Z i`10

2i`10

dp
2pi

Psq, pdSsq, 2pd

­ 2Idsypddy4

µ
N
c

∂s42ddy4

, (6)

where

Id ­
2123dy4

pdy2Gsdy2d sinspdy4d

3
Z `

0
tdy2s1 1 t2d22s2t 1 1ddy421s1 1 td22dy2 dt .

Equation (6) represents the main-order perturbation res
which is supposed to be valid ifjDj ø 1. In particular,
for d ­ 3 the result is

D . 20.0779sypd3y4

µ
N
c

∂1y4

. 2
1.14n3y4

cb3

µ
N
N3

e

∂1y4

.

(7)

In the last equation an explicit dependence on the statis
cal segmentb is inserted; alsoyp was approximated as

yp . nycNe , (8)

which is valid if yc2 ¿ Ke.
These results coincide with those obtained in Ref. [11

The effect of molecular field gives rise to a slowing
down of the curvilinear diffusion, and hence to a longe
disentanglement time,tdis ­ const3 fN2yD0s1 2 jDjdg
and higher viscosity,h ­ Getdis ~ N3ys1 2 jDjd. The
effect is strong ifN * N3

e . The derivation of Eq. (7) is
based on the pure reptation model; i.e., Rouse-like cha
motion inside the tube (tube length fluctuations) [15] ar
neglected. An analysis shows that these fluctuations co
give rise to a slight change (decrease) of the numeric
prefactor; however, they do not affect any dependence
D on the parameters.

The effect of confinement.—The perturbation analysis
of the previous section can also be performed for
confined polymer layer in essentially the same way. Th
only difference stems from the fact that the system is n
homogeneous any more in thez direction normal to the
layer, so that Eq. (5) should be rewritten in a more gene
form,

D ­ 22y2
Z `

0
dt

Z
d3r d3r 0 Ssr, r0, tdPsr, r0, td , (9)

where Ssr, r0, td ­ kdcsr, tddcsr0, 0dl is the correlation
function, and Psr, r0, td is the probability density that
a given chain end was at the pointr0 at t ­ 0 and
moved to the pointr during timet. For a homogeneous
(bulk) system these functions depend only onr 2 r0, e.g.,
Psr, r0, td ­ s1yV dPbsr 2 r0, td, wherePbs?d is the bulk
probability density considered in the previous section, a
V is the volume.

In the confined geometry any distribution function ca
be obtained as a superposition of the bulk distributio
function and all its reflections at the film surfaces,z ­ 0
1910
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andz ­ H (hereH is the layer thickness),

Psr, r0, td ­
1
V

X̀
n­2`

fPbsr 2 r0 1 2Hnez , td

1 Pbsssr 2 r0 1 s2z0 1 2Hndez , tdddg

where ez is the unit vector along thez axis, z ­ ezr,
z0 ­ ezr0. Similarly,

Ssr, r0, td ­
X̀

n­2`

fSbsr 2 r0 1 2Hnez , td

1 Sbsssr 2 r0 1 s2z0 1 2Hndez , tdddg .

Inserting the last two equations in Eq. (9) I get instead
Eq. (6)

DsHd ­ 2
2y2

H

Z dqx dqy

s2pd2

X
qz

Z i`10

2i`10

dp
2pi

3 Pbsq, pdSbsq, 2pd ,

where qz ­ pnyH, n ­ 0, 1, 2, . . . ; Sbsq, pd is defined
by Eq. (4), andPbsq, pd is defined just above Eq. (6).
After appropriate transformations

DsHd ­ 2

p
2

p2

1
H

µ
ypN

c

∂1y2

If23y4HscypyNd1y4g , (10)

where Isad ;
R`

0 wfat1y2s2t 1 1d1y4ys1 1 td1y2g fts1 1

tdys1 1 t2d2s2t 1 1d1y2g dt and wsud ; spy4d 1

suy2d 1 arctanfe2u sinuys1 2 e2u cosudg.
In the regime H ¿ Hp, Hp ­ sNycypd1y4 .

asNNeynd1y4, Eq. (10) agrees with Eq. (7); i.e., the
bulk behavior is recovered:DsHd . Ds`d. The dy-
namical effect of interactions becomes more pronounc
for thinner films: jDj . 0.834s1ycb2Hd snNyNed1y2

for H ø Hp; i.e., the correction is increasing asH is
decreased [the approximation, Eq. (8), is used here].

The perturbation approach is valid as long asjDj &

1. This condition can be rewritten asH , Hpp ,
s1ycb2d snNyNed1y2. Note that we get exactly the same
crossover thicknesssHppd as in the second section; i.e.
the activated reptation sets in as soon as perturbat
expansion fails.

It is interesting to consider now theH dependence of
the viscosity. Let us consider the melt case,cb3 , 1,
and the regionNe , N , N3

e ; the last inequality ensures
that Hpp , Hp. The reduced viscosity normalized by
the bulk value,hsHdyhs`d . tdissHdytdiss`d, is nearly
equal to f1 1 Ds`dgyf1 1 DsHdg if H ¿ Hpp, and is
roughly expsUd if H ø Hpp. Thus using Eqs. (10), (2),
and (1) we get

ln

µ
hsHd
hs`d

∂
­

8>>>>><>>>>>:
0.417 1

cb2H

µ
nN
Ne

∂1y2

, H ¿ Hp,

0.834 1
cb2H

µ
nN
Ne

∂1y2

, Hp ¿ H ¿ Hpp,

const 1
c2b4H2

nN
Ne

, Hpp ¿ H ¿ j,

(11)
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where const, 1 is a numerical factor andj , by
p

cy ,
b. Note a smooth crossover between the second and
third regimes.

In the most interesting regimeH ø Hpp the large-scale
motions of polymer chains (on the distance of order
chain size or larger) are virtually frozen: The relevan
time tdis is exponentially long as a result of excluded
volume interactions. However, short-scale monomer m
tions on a distance of order of the tube diameter,N

1y2
e b,

are not suppressed by interactions and are fast. In this
gard, the situation reminds one of a liquid near itsa glass
transition temperature. Note, however, that in the case
a polymer layer considered here the temperature is fix
and its role is played by the layer thicknessH: ln h ~

1
H2 .

The lowestH compatible with essentially homogeneou
(liquid) structure of the system is of order of the static co
relation lengthj , b. For H , j the system is virtually
two dimensional, and the stress relaxation time is prop
tional to the extremely large factor expsconst3 NyNed.

So far it was assumed thatNe does not depend on
H. This assumption is surely reasonable ifH is larger
than the entanglement size (tube diameter):H . N

1y2
e b.

For thinner layersNe could depend onH; however, no
dramatic variation is expected.

In summary, I predict a glasslike slowing down of long
range motions in thin confined layers of melted or di
solved polymers. The effect is attributed to exclude
volume interactions between monomers rather than
surface-monomer interaction. An experimental verific
tion of the predicted shear viscosity behavior might b
complicated by wall slip [16–18]. This complication
could be avoided either by special surface treatment [1
or by preparing a polymer layer on a liquid substrate.
the latter case the shear gradient should be applied para
rather than perpendicular to the film. Another possibili
is to measure polymer self-diffusion parallel to the film
The corresponding diffusion constant is not affected b
the
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the wall slip and is predicted to scale as1ytdis. The self-
diffusion can also be probed in computer simulations.
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