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Building Blocks of Spatiotemporal Intermittency
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For the one-dimensional complex Ginzburg-Landau equation (CGLE) we obtain, by a shooting algo-
rithm, a family of uniformly propagating hole solutions which differ from the well-known Nozaki-Bekki
holes. These holes occur in many regimes of the CGLE, most prominently in the regime known as
spatiotemporal intermittency. A stability analysis reveals that these holes have one unstable core mode,
and we discuss the consequence of this for the intermittent states. [S0031-9007(98)05485-4]

PACS numbers: 47.52.+ j, 03.40.Kf, 05.45.+b, 47.54.+r
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A proper understanding of spatiotemporal chaos, i.e
deterministic chaos occurring in extended systems that
driven from equilibrium, is lacking. Since the number o
effective degrees of freedom diverges with the system si
most of the tools developed for low-dimensional system
are inapplicable. Moreover, these tools do not provid
a proper framework to describe the spatial organizatio
of extended chaos. In many cases, the dynamical sta
appear to be built up from local, almost particlelike objec
with well-defined dynamics and interactions [Figs. 1(b)
1(d)]. A description of spatiotemporal chaos in terms o
these structures is therefore desirable [1].

In this Letter we will investigate local structures tha
appear mainly in thespatiotemporal intermittentregime
of the 1D complex Ginzburg-Landau equation (CGLE):

At ­ A 1 s1 1 ic1dAxx 2 s1 2 ic3d jAj2A . (1)

This amplitude equation describes pattern formation ne
a Hopf bifurcation and has been applied to describe p
terns occurring in, e.g., fluid convection, Faraday wave
optical systems, chemical oscillations, and turbulent flo
past a wake [2]. As a function of the coefficientsc1 and
c3, which are determined by the underlying physical prob
lem, behavior ranging from completely regular to strong
chaotic has been found [3,4] [Fig. 1(a)].

In the spatiotemporal intermittent regime [4,5], a plan
wave attractor coexists with a chaotic attractor; most in
tial conditions evolve to the latter [Figs. 1(b)–1(d)]. The
typical states consist of patches of plane waves, se
rated by various “holes,” i.e., local structures characte
ized by a depression ofjAj [4]. Similar intermittent states
have been reported for the damped Kuramoto-Sivashins
equation, Rayleigh-Bénard convection, the printers inst
bility, and film draining experiments [6–9]. It has been
suggested that spatiotemporal intermittency should occ
generally in the transition route from laminar to chaoti
states, and the phenomenology suggests a relation to
rected percolation [6,10].

The local structures in the intermittent regime can b
divided into two groups, depending on the wave numbe
ql andqr of the asymptotic waves they connect. The qu
sistationary structures in Figs. 1(c) and 1(d) haveql fi qr

and are related to the intensively studied Nozaki-Bek
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holes [4,12]. However, many local structures have velo
ities and asymptotic wave numbers that are incompatib
with the Nozaki-Bekki holes [4]. For example, the hole
shown in Fig. 1(b) all haveql ø qr ø 0. In the follow-
ing we shall characterize these holes and their dynam
cal properties, and discuss their relevance for the chao
states of the CGLE.

In Fig. 2, jAj, the complex phase [argsAd] and the local
wave numberq :­ ≠x argsAd for the left-lower part of
Fig. 1(b) are shown. The wave numbers of the lamin
patches are quite close to zero, while the cores of the loc
structures are characterized by a sharp phase grad
(peak inq) and a dip ofjAj. The holes propagate with
a speed of0.95 6 0.1, and either their phase-gradien

FIG. 1. (a) “Phase diagram” [3,4] of the CGLE. For smal
c1 and c3 all initial conditions evolve to plane waves. In
the intermittent regime, a plane wave attractor and a chao
attractor coexist. Beyond the full curvec1c3 ­ 1, all plane
waves are linearly unstable and all states are spatiotempo
chaotic. At a zero ofA the complex phase is undefined and
phase slips occur (see Fig. 2); the chaotic state is then cal
defect chaos. WhenA has no zeros we speak of phase chao
In the bichaotic regime, a defect- and phase-chaotic attrac
coexist [4,11]. (b)–(d) Space-time plots (over a range o
200 3 150) of jAj (black corresponds tojAj ­ 0) showing
chaotic states in the spatiotemporal intermittent regime, f
coefficientssc1, c3d ­ s0.6, 1.4d (b), s0, 1.8d (c), ands0, 1.4d (d).
© 1998 The American Physical Society
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FIG. 2. Space-times60 3 50d plots of the left-lower part of
Fig. 1(b), showingjAj, argjAj, andq :­ ≠x argsAd in detail.

spreads out and the hole decays or the phase grad
steepens and the hole evolves to a phase slip. As a fi
step in describing theselocal structureswhich have a
slowly evolving velocity and spatial structure, we will
study thecoherentstructures, i.e., structures withfixed
spatial structure and velocity. Unless noted otherwise w
takec1 ­ 0.6 andc3 ­ 1.4.

For the 1D CGLE, coherent structures have bee
described in a simple framework [13]. By substituting
an ansatz[14] for a uniformly propagating solution of the
form Asx, td ­ e2ivt Âsjd into the CGLE (1) (j :­ x 2

yt), we obtain a set of coupled first order ordinary
differential equations (ODE’s) ode

≠ja ­ ka , (2a)

≠jz ­ 2z2 1
1

1 1 ic1

£
21 2 iv 1 s1 2 ic3da2 2 yz

§
,

(2b)

wherea :­ jÂj and where the complex quantityz is de-
fined as≠j lnsAd ­: k 1 iq. Equation (2b) is equivalent
to two real-valued equations, so (2) can be seen as a
real-valued dynamical system [13]. Plane waves corr
spond to fixed points of (2), and the hole solutions we a
interested in correspond to orbits connecting these fix
points. A rather complete study of the heteroclinic or
bits which describe, for instance, the Nozaki-Bekki hole
(ql fi qr ) has been made [13]. Here we are interested
local structures that haveql ­ qr , i.e., homoclinicorbits
of the ODE’s (2).

In general, the ODE’s (2) havev andy as free parame-
ters, but since the wave number in the laminar patches
approximately zero, we demandql ­ qr ­ 0, which fixes
v ­ 2c3. The fixed point atsa, zd ­ s1, 0d corresponds
to the q ­ 0 plane waves and has a 1D outgoing man
fold and a 2D spiraling ingoing manifold [Fig. 3(a)]. To
create a homoclinic orbit, we have to connect these ma
folds. This amounts to satisfying a single condition and
since we have one free parametersyd, we can expect a dis-
crete set of homoclinic orbits forql ­ qr ­ 0. Performing
a simple numerical integration of (2) and adjusting the fre
parametery, we obtain a homoclinic orbit fory ø 0.916.
The corresponding coherent structures [Fig. 3(b)] will b
referred to as homoclinic holes. Forql ­ qr fi 0, i.e.,
v fi 2c3, one can obtain similar homoclinic orbits, so
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FIG. 3. (a) The homoclinic orbit of the ODE’s (2) ina, q, k
space. (b) The amplitude and wave number profile of th
corresponding coherent structures (curves). The bump ina to
the right of the core corresponds to the spiraling motion on th
incoming manifold of the fixed pointsa, q, kd ­ s1, 0, 0d. The
circles correspond to a local structure obtained from simulatio
of the CGLE in the spatiotemporal intermittent regime.

in fact there exists a one-parameter family of homoclin
holes.

In Fig. 3(b) the homoclinic holes are compared to th
local structures in the intermittent regime. The sligh
deviation between this particular local structure and th
hole is due mainly to the fact that the local structure ha
a slowly evolving shape. The longer the lifetime of the
dynamical holes, the better the fit is to the homoclini
holes. For nearby values ofc1 andc3, one finds similar
correspondences between theq ­ 0 homoclinic holes and
the local structures.

It is instructive to compare the homoclinic holes with
the continuous family of Nozaki-Bekki holes [12]. The
Nozaki-Bekki holes contradict naive counting argumen
[13]. However, under arbitrarily small perturbations
,djAj4A, only a single Nozaki-Bekki hole survives, in
agreement with counting arguments [15]. In contrast, th
homoclinic holes satisfy the counting arguments, and the
existence is insensitive to perturbations. One can veri
that, for our choice of coefficients, a Nozaki-Bekki hole
with ql ­ 0 hasqr ø 0.837 and velocity1.673, completely
different from the local structures here. Furthermore,
the limit whereql ­ qr , the width of the Nozaki-Bekki
holes diverges. We conclude that there are two distin
types of hole solutions: heteroclinic Nozaki-Bekki hole
and homoclinic holes [16,19].

So what is the interplay between the homoclinic hole
and the Nozaki-Bekki holes? In fact, the intermitten
state consists of many qualitatively different states [4
For c1 , 0 we get mixed states, where both types o
holes play a role [Fig. 1(c)] [4], and as the Nozaki-Bekk
holes are sources for waves withq fi 0, we obtain grain
boundaries betweenq fi 0 and q ø 0 waves [Figs. 1(c)
and 1(d)]. Moving to more negativec1, “glassy” states
consisting of Nozaki-Bekki holes only were found [4].
To get intermittency, i.e., interplay between laminar an
chaotic patches, the homoclinic holes seem to be essen
For c1 . 0 they are the dominant local structures, an
their importance extends into the bichaotic and defec
chaotic regime [4].
1897
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FIG. 4. (a),(b) Evolution of the wave-number profiles o
perturbed (perturbation,1026) homoclinic holes. Consecutive
time slices have a time difference of 5, (c),(d) Wave-numb
profiles (solid curves) and winding number

R
dxqy2p (dashed

curves) just before (c) and after (d) the first phase sli
(e) The zigzaging holes near the transition to plane wav
sc1 ­ 0.6, c3 ­ 1.28d. (f) The real (solid curve) and imaginary
(dashed curve) part of the linearly unstable mode.

The homoclinic holes are, for our choice of paramete
clearly unstable. Similar to the local structures found
the intermittent state, they either slowly decay or gro
out to a phase slip [Figs. 4(a) and 4(b)]. When the
are no phase slips, the total phase differenceDu ø 3.24
across the hole is conserved. The decaying hole
shown in Fig. 4(a); the wave number peak, amplitud
dip, and apparent velocity decrease; and for long time
the dynamics crosses over to a slow phase diffusion
which Du is smeared out. In Fig. 4(b), the evolution
of a homoclinic hole towards phase slips is shown. T
wave number peak and amplitude dip slowly grow, an
at t ø 117 the first phase slip occurs, which nucleates
typical intermittent state. Before this phase slip, the wa
number acquires a negative peak in order to conse
the total phase difference across the structure [Fig. 4(c
Both of these peaks diverge at the phase-slip event a
just after the phase slip, the winding number

R
dxqy2p

decreased by 1. Therefore, the negative phase bump
corresponds to the new left moving hole is quite ste
[Fig. 4(d)], and this hole will quickly grow out to a new
phase slip, from which a strong right moving hole i
generated, etc. When we quenchc1 andc3 in the direction
of the transition to plane waves, these zigzag motions
the holes become very dominant [Fig. 4(e)].

Since the asymptoticq ­ 0 waves are linearly stable,
the unstable modes can be expected to be localized “co
modes. Following Aranson [22] we study an ansatz of t
form Asjd ­ e2ivtfasjd 1 eltwsjdgeifsjd, wherew is an
infinitesimal, complex-valued perturbation. This yield
(assuming thatl is real) a set of seven coupled ODE’s
1898
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three for a, q, and k describing the homoclinic hole,
and four for the real and imaginary parts ofw and≠jw.
Solving these ODE’s by a shooting algorithm, we ascerta
that there isoneunstable core mode with eigenvaluel ­
0.0929 [Fig. 4(f)]. The spatial decay rate of the trailing
edge of this mode results from the essentially unaffecte
propagation of the holes; indeed we find herew , elx .
To checkw andl we have verified that direct simulations
of the CGLE, as shown in Figs. 4(a) and 4(b), yield simila
w andl as the ones obtained by the shooting. As an ext
check, observe that phase conservation of the CGLE yiel
thatW :­

R
dx argswd should be zero; the numerics yield

W , 1024.
The fact that the homoclinic holes have onlyoneweakly

unstable mode is reflected in the dynamics in the inte
mittent regime. The key point is that most sufficiently
localized wave number blobs will be attracted to the 1D
unstable manifold; subsequently, they then evolve alon
this manifold, in either the “decay” or the “phase slip” di-
rection. We can loosely think of the homoclinic holes a
unstable equilibria between plane waves and phase sli
To illustrate this consider Fig. 5(a), where we follow an
initial condition withjAj ­ 1 and a triangular wave number
profile. We are able to let this rather arbitrary initial con
dition evolve to a homoclinic hole by adjusting onlyone
parameter in the initial condition (the height of the triangle
was set to 0.437 754 while its width was 20). Increasin
the height or width of the initial wave number blob leads
to a steepening hole [Fig. 4(b)], while a decrease leads
a decaying hole [Fig. 4(a)].

The two wave number blobs formed after a phase sl
[Fig. 4(d)] are also attracted to the unstable manifold. A
a result, the local structures in the spatiotemporal inte
mittent regime evolve essentiallyalong the 1D unstable
manifold of the q ­ 0 homoclinic holes. This claim is
substantiated by the fact that the values of the extrem
of q and the corresponding local minima ofjAj, obtained
from a long run in the intermittent regime, are strongly
correlated [Fig. 5(b)]. This indicates that a one-paramet

FIG. 5. (a) The wave-number profiles of a “triangular” initial
condition evolving to a homoclinic hole. The total phase
difference across the triangular initial condition is 8.76, so a bi
positive wave-number packet is emitted. (b) Collapse of th
extrema ofa and q in the intermittent regime. (c) Amplitude
profiles of jAj with minima of jAj at about the homoclinic hole
value. (d) Similar profiles for steeper minima.
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FIG. 6. (a) Space-times512 3 250d plot of jAj, showing
homoclinic holes in a background state with wave numb
0.021. Because of the high contrast, both holes (black curv
and small wave packets (grey) are visible. Note the “boun
state” to the left. (b) Similar for wave number­ 0.035

family of profiles of A is dominant. In Figs. 5(c) and
5(d) we collapsed the profiles ofjAj corresponding to cer-
tain minima. In Fig. 5(c) we require the minimum to be
about 0.78, and the profiles then correspond to the coh
ent homoclinic hole, while in Fig. 5(d) we focus on steepe
minima and obtain profiles of states evolving toward
phase slips.

All of this suggests a phenomenological model in term
of moving “homoclinic hole” particles, where each particl
possesses an internal degree of freedom that parametr
its location on the unstable manifold. However, the se
sitivity of the holes to the wave number of the lamina
patches they invade complicates particle models (Fig.
Note that the homoclinic holes are neither sources nor sin
because their propagation velocity is much larger than t
typical group velocity of the surrounding waves. Suppos
we follow a hole that moves to the right into a state wit
small wave numberqr . Whenqr . 0, this leads to the
“winding up” of the hole (increase ofDu), which pushes
the hole towards phase slips (Fig. 6). Whenqr , 0 or,
equivalently, when a left moving hole invades a state wi
positive q, this leads to the “winding down” of the hole,
which delays the phase slips [Fig. 6(a)] or pushes the ho
towards decay [Fig. 6(b)] [23]. This strong sensitivity to
the asymptotic waves has as a consequence that in the
termittent regime, small wave packets, resulting from, fo
instance, decaying holes, strongly affect the lifetime of th
propagating holes. This coupling of the background to th
holes seems to be an important mechanism for generat
chaos; when the holes invade homogeneous states (a
the case for the edge holes in Fig. 6), the dynamics a
pears rather regular.

In conclusion, we have described a new class of coher
solutions which occur in several regimes of the 1D CGL
and which are intimately connected to phase slips.
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