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Building Blocks of Spatiotemporal Intermittency
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For the one-dimensional complex Ginzburg-Landau equation (CGLE) we obtain, by a shooting algo-
rithm, a family of uniformly propagating hole solutions which differ from the well-known Nozaki-Bekki
holes. These holes occur in many regimes of the CGLE, most prominently in the regime known as
spatiotemporal intermittency. A stability analysis reveals that these holes have one unstable core mode,
and we discuss the consequence of this for the intermittent states. [S0031-9007(98)05485-4]

PACS numbers: 47.52.+j, 03.40.Kf, 05.45.+b, 47.54.+r

A proper understanding of spatiotemporal chaos, i.eholes [4,12]. However, many local structures have veloc-
deterministic chaos occurring in extended systems that atiges and asymptotic wave numbers that are incompatible
driven from equilibrium, is lacking. Since the number of with the Nozaki-Bekki holes [4]. For example, the holes
effective degrees of freedom diverges with the system sizeshown in Fig. 1(b) all haveg; = ¢, = 0. In the follow-
most of the tools developed for low-dimensional systemsng we shall characterize these holes and their dynami-
are inapplicable. Moreover, these tools do not providecal properties, and discuss their relevance for the chaotic
a proper framework to describe the spatial organizatiorstates of the CGLE.
of extended chaos. In many cases, the dynamical statesln Fig. 2, |A|, the complex phase [af4)] and the local
appear to be built up from local, almost particlelike objectswave numberg := 9, argA) for the left-lower part of
with well-defined dynamics and interactions [Figs. 1(b)—Fig. 1(b) are shown. The wave numbers of the laminar
1(d)]. A description of spatiotemporal chaos in terms ofpatches are quite close to zero, while the cores of the local
these structures is therefore desirable [1]. structures are characterized by a sharp phase gradient

In this Letter we will investigate local structures that (peak ing) and a dip of|A|. The holes propagate with
appear mainly in thespatiotemporal intermittentegime a speed 0f0.95 = 0.1, and either their phase-gradient
of the 1D complex Ginzburg-Landau equation (CGLE):

A=A+ (1 +ic)Ay — (1 —ic3)|APA. (1)

This amplitude equation describes pattern formation near(@)
a Hopf bifurcation and has been applied to describe pat-

terns occurring in, e.g., fluid convection, Faraday waves, 1.0
optical systems, chemical oscillations, and turbulent flow €3
past a wake [2]. As a function of the coefficiemtsand ;
c¢3, which are determined by the underlying physical prob- o.o :
lem, behavior ranging from completely regular to strongly -0% 056G 15 \<

chaotic has been found [3,4] [Fig. 1(a)]. 7 7

In the spatiotemporal intermittent regime [4,5], a plane 4 (\ (d)
wave attractor coexists with a chaotic attractor; most ini- . )
tial conditions evolve to the latter [Figs. 1(b)-1(d)]. The (( / ;
typical states consist of patches of plane waves, sepa 9 ¢{, S0 §
rated by various “holes,” i.e., local structures character- \ ( 4
ized by a depression ¢fi| [4]. Similar intermittent states b” 3 . :i\ 2N

have been reported for the damped Kuramoto-Sivashinsky
equation, Rayleigh-Bénard convection, the printers instaFIG. 1. (a) “Phase diagram” [3,4] of the CGLE. For small

bility, and film draining experiments [6—9]. It has beenci and c; all initial conditions evolve to plane waves. In
suggested that spatiotemporal intermittency should occupe intermittent regime, a plane wave attractor and a chaotic

v in the t iti te f lami to chaoti attractor coexist. Beyond the full curvgc; = 1, all plane
generally In the transiton route trom laminar 1o chaoliC,,ayes gre linearly unstable and all states are spatiotemporal

states, and the phenomenology suggests a relation to dhaotic. At a zero ofd the complex phase is undefined and
rected percolation [6,10]. phase slips occur (see Fig. 2); the chaotic state is then called
The local structures in the intermittent regime can bedefect chaos. When has no zeros we speak of phase chaos.

divided into two groups, depending on the wave numberd the bichaotic regime, a defect- and phase-chaotic attractor
. coexist [4,11]. (b)—(d) Space-time plots (over a range of
q: andg, of the asymptotic waves they connect. The qua~; '« 150) of |A| (black corresponds tdA| = 0) showing

sistationary structures in Figs. 1(c) and 1(d) have* g,  chaotic states in the spatiotemporal intermittent regime, for
and are related to the intensively studied Nozaki-Bekkicoefficients(c,, c3) = (0.6, 1.4) (b), (0,1.8) (c), and(0, 1.4) (d).
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FIG. 2. Space-timd60 X 50) plots of the left-lower part of

Fig. 1(b), showindAl, arg|A|, andg := 4. argA) in detail. FIG. 3. (a) The homoclinic orbit of the ODE’s (2) i, ¢, k
space. (b) The amplitude and wave number profile of the
corresponding coherent structures (curves). The bump tm

spreads out and the hole decays or the phase gradiehe right of the core corresponds to the spiraling motion on the

steepens and the hole evolves to a phase slip. As a firfjcoming manifold of the fixed pointa, g, x) = (1,0,0). The

tep in describing theskcal structureswhich have a circles correspond to a local structure obtained from simulations

step ’ g - ) . of the CGLE in the spatiotemporal intermittent regime.

slowly evolving velocity and spatial structure, we will

study thecoherentstructures, i.e., structures wittixed .

spatial structure and velocity. Unless noted otherwise wﬁ

takec; =06 andes = 1.4. 0Ilr(?sl':i 3(b) the homoclinic holes are compared to the
For the 1D CGLE, coherent structures have beerI]ocal s?r.uctures in the intermittent regime pThe slight

described in a simple framework [13]. By substituting gime. 9

anansat14] o  unformly propagting soluionof he. 2o ion PEVEen s partuar fca srcture and e
form A(x, 1) = e 1“'A(¢) into the CGLE (1) € 1= x — y

: : . a slowly evolving shape. The longer the lifetime of the
vt), we obtain a set of coupled first order ordinary . 2 e
differential equations (ODE's) ode dynamical holes, the better the fit is to the hochllnlc
holes. For nearby values @f andcs, one finds similar

fact there exists a one-parameter family of homoclinic

dea = Ka, (2a) correspondences between #he- 0 homoclinic holes and
1 the local structures.
¢z = -2+ - [—1 —iw + (1 = ic3)a® — vz], It is instructive to compare the homoclinic holes with
I +ic (2b) the continuous family of Nozaki-Bekki holes [12]. The

Nozaki-Bekki holes contradict naive counting arguments
wherea := |A| and where the complex quantityis de- [13]. However, under arbitrarily small perturbations
fined asd, In(A) =: k + ig. Equation (2b) is equivalent ~8§|AJ*A, only a single Nozaki-Bekki hole survives, in
to two real-valued equations, so (2) can be seen as a 3&greement with counting arguments [15]. In contrast, the
real-valued dynamical system [13]. Plane waves correhomoclinic holes satisfy the counting arguments, and their
spond to fixed points of (2), and the hole solutions we arexistence is insensitive to perturbations. One can verify
interested in correspond to orbits connecting these fixethat, for our choice of coefficients, a Nozaki-Bekki hole
points. A rather complete study of the heteroclinic or-with ¢; =0 hasg, =~ 0.837 and velocityl.673, completely
bits which describe, for instance, the Nozaki-Bekki holesdifferent from the local structures here. Furthermore, in
(¢: # q,) has been made [13]. Here we are interested irthe limit whereg; = ¢,, the width of the Nozaki-Bekki
local structures that havg = ¢q,, i.e., homoclinicorbits  holes diverges. We conclude that there are two distinct
of the ODE’s (2). types of hole solutions: heteroclinic Nozaki-Bekki holes
In general, the ODE’s (2) hawe andv as free parame- and homoclinic holes [16,19].
ters, but since the wave number in the laminar patches is So what is the interplay between the homoclinic holes
approximately zero, we demang = ¢, =0, which fixes and the Nozaki-Bekki holes? In fact, the intermittent
o = —c3. The fixed point at(a, z) = (1,0) corresponds state consists of many qualitatively different states [4].
to the ¢ =0 plane waves and has a 1D outgoing mani-For ¢; <0 we get mixed states, where both types of
fold and a 2D spiraling ingoing manifold [Fig. 3(a)]. To holes play a role [Fig. 1(c)] [4], and as the Nozaki-Bekki
create a homoclinic orbit, we have to connect these manholes are sources for waves wigh# 0, we obtain grain
folds. This amounts to satisfying a single condition andboundaries between # 0 andg = 0 waves [Figs. 1(c)
since we have one free paramdtey, we can expectadis- and 1(d)]. Moving to more negative;, “glassy” states
crete set of homoclinic orbits fay; = g, =0. Performing consisting of Nozaki-Bekki holes only were found [4].
a simple numerical integration of (2) and adjusting the fre€To get intermittency, i.e., interplay between laminar and
parametei, we obtain a homoclinic orbit for = 0.916. chaotic patches, the homoclinic holes seem to be essential.
The corresponding coherent structures [Fig. 3(b)] will beFor ¢; > 0 they are the dominant local structures, and
referred to as homoclinic holes. Faqt =g, # 0, i.e., their importance extends into the bichaotic and defect-
w # —c3, one can obtain similar homoclinic orbits, so chaotic regime [4].
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@ 1 three fora, ¢, and « describing the homoclinic hole,

and four for the real and imaginary partswfanddw.
Solving these ODE'’s by a shooting algorithm, we ascertain
o thatthere ioneunstable core mode with eigenvalue=
0.0929 [Fig. 4(f)]. The spatial decay rate of the trailing
edge of this mode results from the essentially unaffected
propagation of the holes; indeed we find here~ e**.
To checkw and A we have verified that direct simulations
of the CGLE, as shown in Figs. 4(a) and 4(b), yield similar
w and A as the ones obtained by the shooting. As an extra
check, observe that phase conservation of the CGLE yields
thatw := [ dx argw) should be zero; the numerics yield
W <1074,
The fact that the homoclinic holes have onlyeweakly
3 N unstable mode is reflected in the dynamics in the inter-
0 X 512 -5 0o 5 x mittent regime. The key point is that most sufficiently
FIG. 4. (a),(b) Evolution of the wave-number profiles of localized wave number blobs will be attracted to the 1D
perturbed (perturbatior 10~°) homoclinic holes. Consecutive unstable manifold; subsequently, they then evolve along
time slices have a time difference of 5, (c),(d) Wave-numbetrthis manifold, in either the “decay” or the “phase slip” di-
Er?ﬁ(laess) (fsoslid ggfrc‘)’és) g‘da"n"é”d;?tger“l{'gbtkr]dexqf_/rzs? (‘:]&}dssgedsl_ rection. We can loosely think of the homoclinic holes as
urvi u 1 1P. el :
(e) The Jzigzaging holes near the transition to p?ane Wavg#ns_table equ'“.b”a bet_ween_plane waves and phase slips.
(c1 = 0.6,c3 = 1.28). (f) The real (solid curve) and imaginary 10 illustrate this consider Fig. 5(a), where we follow an
(dashed curve) part of the linearly unstable mode. initial condition with|A| = 1 and a triangular wave number
profile. We are able to let this rather arbitrary initial con-
dition evolve to a homoclinic hole by adjusting oriye
The homoclinic holes are, for our choice of parametersparameter in the initial condition (the height of the triangle
clearly unstable. Similar to the local structures found inwas set to 0.437 754 while its width was 20). Increasing
the intermittent state, they either slowly decay or growthe height or width of the initial wave number blob leads
out to a phase slip [Figs. 4(a) and 4(b)]. When therdo a steepening hole [Fig. 4(b)], while a decrease leads to
are no phase slips, the total phase differeAde~ 3.24  a decaying hole [Fig. 4(a)].
across the hole is conserved. The decaying hole is The two wave number blobs formed after a phase slip
shown in Fig. 4(a); the wave number peak, amplituddFig. 4(d)] are also attracted to the unstable manifold. As
dip, and apparent velocity decrease; and for long timesa result, the local structures in the spatiotemporal inter-
the dynamics crosses over to a slow phase diffusion bwittent regime evolve essentialplong the 1D unstable
which A6 is smeared out. In Fig. 4(b), the evolution manifold of the ¢ =0 homoclinic holes. This claim is
of a homoclinic hole towards phase slips is shown. Thesubstantiated by the fact that the values of the extrema
wave number peak and amplitude dip slowly grow, andof ¢ and the corresponding local minima fef|, obtained
at + = 117 the first phase slip occurs, which nucleates arom a long run in the intermittent regime, are strongly
typical intermittent state. Before this phase slip, the wavesorrelated [Fig. 5(b)]. This indicates that a one-parameter
number acquires a negative peak in order to conserve
the total phase difference across the structure [Fig. 4(c)]-

)

t

Both of these peaks diverge at the phase-slip event anc (2) (b) q [y 1.0
just after the phase slip, the winding numbedxq/27 t : \/ 1Al
decreased by 1. Therefore, the negative phase bump thi i, 0.7

corresponds to the new left moving hole is quite steep;g

i

" (c)
) 0

[Fig. 4(d)_], and this h.ole will quickly. grow out to a new 7 i e
phase slip, from which a strong right moving hole is 3 - -1 4 1Al
generated, etc. When we quenghandc; in the direction ¥ o
of the transition to plane waves, these zigzag motions of o : @

0 x 200 0.5 amin 1.0 X

the holes become very dominant [Fig. 4(e)].
Since the asymptotig = 0 waves are linearly stable, FIG.5. (a) The wave-number profiles of a “triangular” initial
the unstable modes can be expected to be localized “corgondition evolving to a homoclinic hole. The total phase

modes. Following Aranson [22] we study an ansatz of thifference across the triangular initial condition is 8.76, so a big
f A. o ot v i$) wh . positive wave-number packet is emitted. (b) Collapse of the
ormA(¢) = e™"'[a(é) + eMw(&)]e"), wherew isan  giirema ofa andg in the intermittent regime. (c) Amplitude

infinitesimal, complex-valued perturbation. This yields profiles of |A| with minima of |A| at about the homoclinic hole
(assuming that\ is real) a set of seven coupled ODE’s; value. (d) Similar profiles for steeper minima.
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