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Maxwell-Schrödinger Equation for Polarized Light and Evolution of the Stokes Parameters
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By starting with the Maxwell theory of electromagnetism, we study the change of polarization state
of light transmitting through optically anisotropic media. The basic idea is to reduce the Maxwell
equation to the Schrödinger-like equation for two levels (or states) representing polarization. By using
the quantum mechanical technique, the density matrix, and path integral, the evolution of the Stokes
parameters results in the equation of motion for a pseudospin representing a point on the Poincaré
sphere. Two typical examples relevant to actual experiments are considered; the one gives the general-
ized Faraday effect, and the other realizes an optical analog of magnetic resonance. [S0031-9007(98)
05460-X]

PACS numbers: 42.25.Ja, 78.20.Ek
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The study of propagation of light (or an electromagnet
wave) in optical media has long been one of the maj
subjects in physics. We mention, for example, the class
monographs [1,2], and the works on nonlinear optic
[3,4]. The characteristic quantity describing the ligh
propagation is the concept of polarization. The study
polarization has also a long history [1,2], which form
a basis of modern crystal optics. The simple way
describe the polarization state is given by the Stok
parameters (or vector). Geometrically, the Stokes vec
is realized as a point on the so-called Poincaré sphe
The Stokes vector or Poincaré sphere play a powerful ro
for analyzing the change of the polarization state of lig
transmitting through anisotropic optical media [2]. As fo
the equation for evolution of the Stokes parameters, t
phenomenological description has been known in the a
of optics, which uses special mathematical device such
the Jones vector or Müller matrix [5–7].

Having given a brief overview of the development
achieved so far, we address a novel formalism of the evo
tion for the polarization state of light transmitting through
anisotropic media. Apart from the previous phenomen
logical approaches [5–7], our theory is based on the fi
principle starting from the Maxwell theory of electromag
netism [1], where we use the more refined form than th
original Maxwell equation. Namely, the Maxwell equation
is reduced to the wave equation á la Schrödinger equat
for two levels [8], which is of first order in time (we call
this the Maxwell-Schrödinger equation hereafter) and th
dielectric tensor plays a role of Hamiltonian. By applyin
the technique used in usual quantum mechanics, such
density matrix as well as path integral, to the Maxwel
Schrödinger equation, we obtain the evolution equatio
for the Stokes parameters as an equation for a pseudos
which represents a point on the Poincaré sphere. T
is our main consequence. As typical applications of th
equation of motion for pseudospin, we consider the pola
ization change in specific media, for which the dielectr
tensor has the same structure as the Hamiltonian for a r
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spin in external magnetic field. Specifically we are con
cerned with two cases: The first example is the pseudosp
in uniform “magnetic field” which leads to the generalized
Faraday effect. The second example is the pseudospin
oscillating as well as uniform field, by which we conjec-
ture a possible occurrence of an optical analog of the n
clear magnetic resonance (NMR). These examples m
be accessible to actual experiments and would enable
to reveal new aspects of polarization phenomena that ha
not been expected by previous works.

Maxwell-Schrödinger equation.—We consider the
plane electromagnetic (EM) wave of the wave vectork (k
means the wave vector in the vacuum) traveling throug
the dielectric medium in thez direction. The medium is
anisotropic with respect to the propagation direction an
let ê be the dielectric tensor. We assume thez axis to be
one of the principal axes of the dielectric tensor, namel
the direction along which the one of the eigenvalue o
ê. When the medium is isotropic, the eigenvalue i
prescribed to take the valuen0. Thus the EM wave has
the form like Dsz, td ­ Dszd expfivtg, and the wave
equation for the displacement vectorDszd is given by [1]

d2D
dz2 1 k2êD ­ 0 , (1)

wherek ­
v

c . In the geometry under consideration, the
dielectric tensor is taken to be2 3 2 matrix. Under
the most general condition that is governed by th
external static electric and magnetic fields or mechanic
constraint,ê can be chosen to be a Hermitian matrix [1]
which means that the medium is transparent for the lig
transmission (we will consider elsewhere the case th
there is an effect of absorption of light). Furthermore
we consider the general situation that the medium
inhomogeneous, namely, thêe depends onz. We now
set the ansatz for the waveD

Dszd ­ fszd expfikn0zg , (2)
© 1998 The American Physical Society
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where the amplitudefszd is given by the2 3 1 row
vector,

f ­ tsf1, f2d ­ f1e1 1 f2e2 . (3)

f is a slowly varying function ofz compared with the
wave length, namely,k ¿ jf 0j, which implies that we
consider the short range approximation. Herese1, e2d
denotes the basis of linear polarization. In the sho
wave approximation, the amplitude is shown to satisfy t
equation

il
df
dz

1 sê 2 n2
0df ­ 0 , (4)

where l ; n0

k is just the wave length in the medium
of refractive indexn0 divided by 2p. Note that the
second order differential termf 00 is discarded, since this
is much smaller than the first order differentialf 0. In this
way, the above equation can be regarded as an analo
the Schrödinger equation for the two-level state, whe
l just plays a role of the Planck constant andz plays
a role of the time variable. The componentssf1, f2d
of the vector f couple each other to give rise to the
change of polarization, and the “Hamiltonian” is give
by ĥ ­ ê 2 n2

0. This form of ĥ represents the deviation
from the isotropic value, that is, “degree of anisotropy
namely, the deviation governs the change of polarizati
state. From the hermiticity, the most general form of th
is written as

ĥ ­

µ
a b 1 ig

b 2 ig 2a

∂
. (5)

Now for the later use, it is convenient to transform th
basis of linear polarizationf into the circular basis [9],
that is, e6 ­ s1y

p
2d se1 6 ie2d, hence the Schrödinger

equation becomes

il
dc

dz
­ Ĥc , (6)

wherec ­ Tf ­ tscp
1 , c

p
2 d, Ĥ ­ TĥT21. HereT is the

unitary transformation of the2 3 2 matrix given by

T ­
1

p
2

µ
1 i
1 2i

∂
. (7)

Thus the transformed Hamiltonian turns out to be

Ĥ ­ TĥT 21 ­

µ
g a 1 ib

a 2 ib 2g

∂
, (8)

which is written in terms of the Pauli spin;
Ĥ ­

P3
i­1 hisi . The formal solution of the above

Schrödinger equation is given bycszd ­ T̂ szdcs0d with
T̂ szd being the evolution operator,

T̂szd ­ P exp

∑
2

i
l

Z
Ĥszd dz

∏
. (9)

Here P denotes the path ordered product which
necessary to handle thez dependence of̂H.

Density matrix and equation of motion of the Stoke
parameters.—We now consider the reduction of the
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above Schrödinger equation. This is carried out by usin
the density matrix, for which we have two cases, the
pure polarization and the mixed polarization (or partially
polarized) state. Here we restrict ourselves to the forme
case in order to simplify the argument [10], thus the
density matrix is defined as

r ­ ccy ­

µ
c

p
1 c1 c1c

p
2

c2c
p
1 c

p
2 c2

∂
. (10)

In terms of the components of the functionc given above,
we have the definition for the Stokes parameter [11]
Si ­ cysic , S0 ­ cy1c, where sisi ­ 1, 2, 3d means
the Pauli spin matrix. These variables satisfy the relatio
S2

0 ­ S2
1 1 S2

2 1 S2
3 , which is equivalent to the equa-

tion detr ­ 0. Furthermore, in the case that the Hamil-
tonian is Hermitian, we can adopt the conservation o
probability c

p
1 c1 1 c

p
2 c2 ­ 1. So if we use the spinor

parametrization

c1 ­ cos
u

2
, c2 ­ sin

u

2
expfifg , (11)

we have r ­
1
2 s1 1 Ss d, where the vector S ­

sSx , Sy, Szd is given by

Sx ­ sinu cosf, Sy ­ sinu sinf, Sz ­ cosu .
(12)

This forms the Stokes vector and is described by th
point on the Poincaré sphere. We illustrate some typica
values: (i) u ­ 0; the north pole that corresponds to
the left handed circular polarization. (ii)u ­ p ; the
south pole that corresponds to the right handed circula
polarization. (iii) u ­

p

2 ; the equator which represents
the linear polarization. The equation of motion for the
density matrix is written as

il
dr

dz
­ fĤ, rg . (13)

HerefĤ, rg ; Ĥr 2 rĤ. Using the commutation rela-
tion for the Pauli spin,fsi , sjg ­ 2ieijksk, we can de-
duce the equation of motion for the pseudospin from (13

l
dS
dz

­ S 3 G , (14)

where the effective “magnetic field” is defined asG ­
s2a, 2b, 2gd. If we introduce the “classical” counterpart
of the Hamiltonian (8)

H ­ 2aSx 1 2bSy 1 2gSz

­ 2a sinu cosf 1 2b sinu sinf 1 2g cosu , (15)

we have an alternative form of the equation of motion [12

Ùu ­
1

l sinu

≠H
≠f

, Ùf ­ 2
1

l sinu

≠H
≠u

. (16)

The equation of motion (16) can also be obtained a
a result of the asymptotic limit ofl ! 0 [13]. This
may be achieved by the fact that the set of states fo
1889
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pseudospin,c ; jcl forms a Bloch state that satisfies th
completeness relation:

R
jcl dm kcj ­ 1 with measure

dm ­ sinu du df ( just the volume on the Poincaré
sphere). Let us consider the transition amplitude that
given by sandwiching the evolution operator (9) with tw
initial and final spin states. By adopting the procedu
of “time slicing” and inserting the completeness relatio
at each time division, we get the path integral expressi
[14]

kcf jT̂ szd jcil ­
Z

exp

Ω
i
l

Sfcp, cg
æ
Dmscd (17)

with the path measureDmscd ;
Q

z dmfcpszd, cszdg and
S is the “action function”

S ­
Z

kcjil
d
dz

2 Ĥjcl dz . (18)

In the limit of l ! 0, we have the stationary phase
condition dS ­ 0 leading to the equation of motion for
the pseudospin, i.e., (16).

Typical applications.—We shall consider some specia
cases that can be described by the general formalism.

(i) We first consider the model for which the dielectri
tensor depends on the external magnetic field as well
electric field. The kinematical symmetry implies thatĥ
has the form

ĥ ­

µ
a ig

2ig 2a

∂
. (19)

Hereg is proportional to the uniform magnetic field (the
strength isB) applied in thez direction; g ­ gB [15].
Thus according to the formula (8), it is transformed t
Ĥ ­ gsz 1 asx . This is further transformed to the
Hamiltonian for the spin in uniform field of strengthG
that is applied in thez0 direction by rotating about they
axis by an amount of the angleh, such that

S0
x ­ coshSx 2 sinhSz , S0

z ­ sinhSx 1 coshSz ,
(20)

where G ­
p

g2 1 a2 together with the angle cosh ­
gyG. Thus the equation of motion for the pseudosp
becomes

dS0
x

dz
­

2G

l
Sy ,

dSy

dz
­ 2

2G

l
S0

x (21)

for which we get the solutionS0
x ­ sins 2G

l z 1 u0d, Sy ­
coss 2G

l z 1 u0d, andS0
z ­ 0. In terms of the original spin,

it gives

Sx ­ cosh sin

µ
2G

l
z 1 u0

∂
,

Sz ­ 2 sinh sin

µ
2G

l
z 1 u0

∂
. (22)

This means the following feature: if the light wave i
initially in the linear polarization, then it turns out to
be an elliptic polarization after transmitting through th
medium (see Fig. 1). As a special case ofa ­ 0, the ini-
1890
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FIG. 1. The initial linear polarization which is marked byI;
changes to the final elliptic polarization are marked byF.

tial polarization changes toSx ­ sins 2g

l z 1 u0d, Sy ­
coss 2g

l z 1 u0d, namely, the initial polarization plane sim-
ply changes by an amount of the anglef ­ 2g

l l after
traveling the distancez ­ l. This rotation of the po-
larization plane is known to be the Faraday effect [se
Fig. 2(a)].

(ii) We consider another example for which the polar
ized light propagates in the medium such that the diele
tric tensor has a periodical structure besides the effect
the external magnetic field as in the case (i). For such
system the tensor̂h is given by

ĥ ­

µ
g0 cosvz g0 sinvz
g0 sinvz 2g0 cosvz

∂
1

µ
0 ig

2ig 0

∂
, (23)

which is transformed toĤszd ­ Gszd ? S, where the
pseudomagnetic field has the component

Gszd ­ s2g0 cosvz, 2g0 sinvz, 2gd , (24)

namely, a static field along thez axis plus an oscillating
field rotating perpendicular to it with the frequencyv.
This feature is familiar in magnetic resonance. Using th
classical counterpart of the above Hamiltonian, which i

FIG. 2. (a) The change of linear polarization by an amount o
f ­ 2g

l l. (b) The change of the axis of elliptic polarization
by an amount ofvl.
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given as Hszd ­ Gszd ? S ­ 2g0 sinu cossf 2 vzd 1

2g cosu, the equation of motion is derived by using th
general formula (16)

Ùu ­ 2
2g0

l
sinsf 2 vzd ,

Ùf ­ 2
2
l

fg0 cotu cossf 2 vzd 2 gg . (25)

One sees that this form of equations of motion allows
special solution

f ­ vz, u ­ u0s­ constd , (26)

where the following relation should hold among th
parametersu0, g, g0:

cotu0 ­

√
g

g0
2

lv

2g0

!
. (27)

Equation (26) may be called the “resonance” solutio
since it corresponds to the solution for the forced oscill
tor. The set of parameterssg, g0, vd satisfying (27) for a
fixed valueu ­ u0 belongs to a family of resonance solu
tions. Indeed, this set of parameters forms a surface in
parameter spacesg, g0, vd, which we call the “invariant
surface” and characterizes the resonance condition. T
condition (27) is crucial, since all the quantities on th
right-hand side are given in terms of constants that m
be allowed to be compared with experiment. The phys
cal meaning of the above invariant surface is as follow
If given is an initial elliptic polarized wave with the angle
u0 satisfying the resonance condition, then there is n
change in its shape during its transmission. Only its ax
rotates by an amount ofvl that is governed by the period
inherent in the dielectric tensor [see Fig. 2(b)].

Here we give a remark on possible realization of th
periodic structure of the dielectric tensor in actual sy
tems. The one realization is made by using special ma
rials, such as cholesteric liquid crystals [16]. The period
structure is naturally realized by the helix inherent in liq
uid crystal. Indeed, the dielectric tensor can be given
the form of the first term of (23) [16]. Another realiza-
tion may be given by using the mechanical one, name
let us consider the elastic body under the pressure t
is periodically modulated, then this causes the period
modulation of the dielectric tensor according to the pro
cedure known in the mechanical-optical effect [1]. Th
periodical oscillation of the pressure may be generate
for example, by the piezoelectric effect. Now having se
tled the periodic structure, we take into account the ter
coming from the uniform magnetic field that is applied
along the same direction as the axis of helix. We are r
minded of the analogy with the NMR; if the initial state is
in the left handed circular polarization, which correspond
to the state of spin-down, the probability for transition t
the state of spin-up (right handed circular polarization)
e
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given by

Psl ! rd ­
sg0

0d2

sV 2 vd2 1 sg0
0d2

sin2 1
2

Dz , (28)

where g
0
0 ; g0

l , V ­
g

l , and D2 ­ sV 2 vd2 1 sg0
0d2.

If the magnetic field is chosen so as to synchronize th
period of the helix, we expect an analogous effect wit
the magnetic resonance.

This work was inspired by the discussion at semina
class that had been instructed by one of the autho
(H. K.). The authors thank the attendees of the semina
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