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Maxwell-Schrédinger Equation for Polarized Light and Evolution of the Stokes Parameters
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By starting with the Maxwell theory of electromagnetism, we study the change of polarization state
of light transmitting through optically anisotropic media. The basic idea is to reduce the Maxwell
equation to the Schrddinger-like equation for two levels (or states) representing polarization. By using
the quantum mechanical technique, the density matrix, and path integral, the evolution of the Stokes
parameters results in the equation of motion for a pseudospin representing a point on the Poincaré
sphere. Two typical examples relevant to actual experiments are considered; the one gives the general-
ized Faraday effect, and the other realizes an optical analog of magnetic resonance. [S0031-9007(98)
05460-X]

PACS numbers: 42.25.Ja, 78.20.Ek

The study of propagation of light (or an electromagneticspin in external magnetic field. Specifically we are con-
wave) in optical media has long been one of the majorcerned with two cases: The first example is the pseudospin
subjects in physics. We mention, for example, the classit uniform “magnetic field” which leads to the generalized
monographs [1,2], and the works on nonlinear opticd-araday effect. The second example is the pseudospin in
[3,4]. The characteristic quantity describing the lightoscillating as well as uniform field, by which we conjec-
propagation is the concept of polarization. The study oture a possible occurrence of an optical analog of the nu-
polarization has also a long history [1,2], which formsclear magnetic resonance (NMR). These examples may
a basis of modern crystal optics. The simple way tobe accessible to actual experiments and would enable us
describe the polarization state is given by the Stokeso reveal new aspects of polarization phenomena that have
parameters (or vector). Geometrically, the Stokes vectonot been expected by previous works.
is realized as a point on the so-called Poincaré sphere. Maxwell-Schrédinger equatior-We consider the
The Stokes vector or Poincaré sphere play a powerful rolplane electromagnetic (EM) wave of the wave veétgk
for analyzing the change of the polarization state of lightmeans the wave vector in the vacuum) traveling through
transmitting through anisotropic optical media [2]. As for the dielectric medium in the direction. The medium is
the equation for evolution of the Stokes parameters, thanisotropic with respect to the propagation direction and
phenomenological description has been known in the arelat é be the dielectric tensor. We assume thaxis to be
of optics, which uses special mathematical device such ame of the principal axes of the dielectric tensor, namely,
the Jones vector or Miller matrix [5—7]. the direction along which the one of the eigenvalue of

Having given a brief overview of the developmentsé. When the medium is isotropic, the eigenvalue is
achieved so far, we address a novel formalism of the evoluysrescribed to take the valug. Thus the EM wave has
tion for the polarization state of light transmitting through the form like D(z,t) = D(z) exdiw?], and the wave
anisotropic media. Apart from the previous phenomenoequation for the displacement vec®(z) is given by [1]
logical approaches [5—7], our theory is based on the first
principle starting from the Maxwell theory of electromag- d’D Yarn 1
netism [1], where we use the more refined form than the dz? + k€D =0, ()
original Maxwell equation. Namely, the Maxwell equation
is reduced to the wave equation & la Schrédinger equationherek = 2. In the geometry under consideration, the
for two levels [8], which is of first order in time (we call dielectric tensor is taken to b2 X 2 matrix. Under
this the Maxwell-Schrodinger equation hereafter) and théhe most general condition that is governed by the
dielectric tensor plays a role of Hamiltonian. By applying external static electric and magnetic fields or mechanical
the technique used in usual guantum mechanics, such aenstraint,é can be chosen to be a Hermitian matrix [1],
density matrix as well as path integral, to the Maxwell-which means that the medium is transparent for the light
Schrédinger equation, we obtain the evolution equatioiransmission (we will consider elsewhere the case that
for the Stokes parameters as an equation for a pseudosgimere is an effect of absorption of light). Furthermore
which represents a point on the Poincaré sphere. Thige consider the general situation that the medium is
is our main consequence. As typical applications of thénhomogeneous, namely, tfeedepends orx. We now
equation of motion for pseudospin, we consider the polarset the ansatz for the wawe
ization change in specific media, for which the dielectric
tensor has the same structure as the Hamiltonian for a real D(z) = f(z) exdiknoz], 2)
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where the amplitudef(z) is given by the2 X 1 row  above Schrédinger equation. This is carried out by using
vector, the density matrix, for which we have two cases, the
f = (fi.f2) = fier + faes. (3) pure polarization and the mixed polarization (or partially

polarized) state. Here we restrict ourselves to the former

f is a slowly varying function of; compared with the .oce in order to simplify the argument [10], thus the
wave length, namelyk > |f’|, which implies that we density matrix is defined as

consider the short range approximation. Héeg, e,)

denotes the basis of linear polarization. In the short _ ot _ (W 10
wave approximation, the amplitude is shown to satisfy the iy s
equation In terms of the components of the functigngiven above,
., df N e we have the definition for the Stokes parameter [11];
iAo (&=t =0, 4) 5, = yltoiw, So = w1y, where oy(i = 1,2,3) means

the Pauli spin matrix. These variables satisfy the relation
S3 = S + S3 + 53, which is equivalent to the equa-
tion detp = 0. Furthermore, in the case that the Hamil-
tonian is Hermitian, we can adopt the conservation of
%rfobabilit_y e,//fe,lfl + Yy = 1. So if we use the spinor
parametrization

o

where A = 7 is just the wave length in the medium
of refractive indexny divided by 27. Note that the
second order differential terryi” is discarded, since this
is much smaller than the first order differentfdl In this
way, the above equation can be regarded as an analog
the Schrodinger equation for the two-level state, wher
A just plays a role of the Planck constant andlays _ 4 R :

a role of the time variable. The componerits, />) Y1 = cos—, v = sm?exr{zg{;], (11)
of the vectorf couple each other to give rise to the
change of polarization, and the “Hamiltonian” is given
by h = & — n}. This form of/ represents the deviation
from the isotropic value, that is, “degree of anisotropy,”S. = siné cos¢, S, = singsing, S, = cosf .
namely, the deviation governs the change of polarization (12)

state. From the hermiticity, the most general form of thisThiS forms the Stokes vector and is described by the

IS written as point on the Poincaré sphere. We illustrate some typical
i — @ B+ iy 5) values: (i) # = 0; the north pole that corresponds to
A\ B — iy —a ) the left handed circular polarization. (i = ; the

Now for the later use, it is convenient to transform theSOUth pole that corresponds to the right handed circular

basis of linear polarizatiof into the circular basis [9], Polarization. (iii)# = 7; the equator which represents
that is, e« = (1/+/2) (e; =+ iey), hence the Schrodinger the linear polarization. The equation of motion for the
equation_becomes density matrix is written as

we have p = %(1 + So), where the vectorS =
(Sx, Sy, S;) is given by

o dy o 24P _rh
u\d—'ﬁ = Ay, (6) o= [H,p]. (13)
wherey = Tf = (¢, ¢3), B = ThT™'. HereT isthe Here[A,p]l=Hp — pH. Using the commutation rela-
unitary transformation of th2 x 2 matrix given by tion for the Pauli spin[o, o;] = 2i€;ji oy, we can de-
L1 duce the equation of motion for the pseudospin from (13)
r (1), o
N\ i B _sxe, (14)
Thus the transformed Hamiltonian turns out to be dz
A . o+ ip where the effective “magnetic field” is defined Gs=
H=Thr'= <a _y iB —y > (8) (2a,2B,2y). If we introduce the “classical” counterpart

. . . ) . _of the Hamiltonian (8)
which is written in terms of the Pauli spin;

A =3 ho;. The formal solution of the above H =2a$, + 2BS, + 2vS;
Schrodinger equation is given hy(z) = T(z)#(0) with = 2a sinf cos¢ + 2Bsindsing + 2ycosh, (15)

T(z) being the evolution operator, . . )
@) g P we have an alternative form of the equation of motion [12]

T(z) = Pex;{—%f I:I(z)dz] 9) . 1 oH 1 oH

Here P denotes the path ordered product which is Asing 3¢ Asing a6

necessary to handle thedependence off . The equation of motion (16) can also be obtained as
Density matrix and equation of motion of the Stokesa result of the asymptotic limit o — 0 [13]. This

parameters—We now consider the reduction of the may be achieved by the fact that the set of states for

<2>=—

(16)
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pseudospinygs = |¢) forms a Bloch state that satisfies the
completeness relation] |/)du (| = 1 with measure
du =sinfdf deo (just the volume on the Poincaré

sphere). Let us consider the transition amplitude that is

given by sandwiching the evolution operator (9) with two
initial and final spin states.
of “time slicing” and inserting the completeness relation
at each time division, we get the path integral expressio
[14]

Wit @) = [ exo~ st ulfpue)  an

with the path measurB u () = [, duly*(z), ¢(z)] and
S is the “action function”

o d n
S=[MME—HWa.

In the limit of A — 0, we have the stationary phase
condition 6§ = 0 leading to the equation of motion for
the pseudospin, i.e., (16).
Typical applications—We shall consider some specia
cases that can be described by the general formalism.
(i) We first consider the model for which the dielectric
tensor depends on the external magnetic field as well
electric field. The kinematical symmetry implies thiat
o

has the form
@:(. )
—iy

Here y is proportional to the uniform magnetic field (the
strength isB) applied in thez direction; y = gB [15].
Thus according to the formula (8), it is transformed to
H = yo, + ao,. This is further transformed to the
Hamiltonian for the spin in uniform field of strength
that is applied in the’ direction by rotating about the
axis by an amount of the angig, such that

(18)

iy
—

(19)

S! = cosnS, — sinyS., S! = sinnS, + cosns,,

(20)
whereI" = \/y2 + a2 together with the angle cop =
v/T". Thus the equation of motion for the pseudospin
becomes

ds, _ar o ds,
dz A dz
for which we get the solutiof}, = sin(% z + 6p), Sy =

cos(% z + 6p), andS. = 0. In terms of the original spin,
it gives

2r

= - 21
sl @

yo

. (2T
Sy = cosny Sm(TZ + 0()),

S:

. (2T
—siny Sm(TZ + 00>. (22)
This means the following feature: if the light wave is
initially in the linear polarization, then it turns out to
be an elliptic polarization after transmitting through the
medium (see Fig. 1). As a special casexof= 0, the ini-
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By adopting the procedure

n

FIG. 1. The initial linear polarization which is marked By
changes to the final elliptic polarization are markedry

tial polarization changes t§, = sin(z%z + 6p), Sy =
005(277 z + 6y), namely, the initial polarization plane sim-
ply changes by an amount of the angle= 2771 after
traveling the distance = I. This rotation of the po-
larization plane is known to be the Faraday effect [see

Aéig. 2(a)].

(i) We consider another example for which the polar-
ized light propagates in the medium such that the dielec-
tric tensor has a periodical structure besides the effect of
the external magnetic field as in the case (i). For such a
system the tensdr is given by

0 iy

- (4 0) @

which is transformed toH(z) = G(z) - S, where the
pseudomagnetic field has the component

Yo Sinwz
—7Y0COSwz

Y0 COSwZ
voSiNwz

G(z) = (2ypcoswz,2ygSinwz,2y), (24)

namely, a static field along the axis plus an oscillating
field rotating perpendicular to it with the frequenay.
This feature is familiar in magnetic resonance. Using the
classical counterpart of the above Hamiltonian, which is

——— ————
- -
- ~,
- ~.
~
. N

a) 2y

o= =1
A
FIG. 2. (@) The change of linear polarization by an amount of

b = 277 [. (b) The change of the axis of elliptic polarization
by an amount ofv!.
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given as H(z) = G(z) - S = 2ypsindcod¢ — wz) +  given by

2v cosf, the equation of motion is derived by using the (yh)? - 1
P(l—r)= i —A 28
general formula (16) ( r) @ =) * () sim — Az, (28)
b= -6 — ws), whereyp = %, Q = X, and A% = (Q — )’ + (o).
A If the magnetic field is chosen so as to synchronize the
. 2 period of the helix, we expect an analogous effect with
¢ =~ [rocotbcod¢ — wz) = y]. (25  the magnetic resonance.

. _ . This work was inspired by the discussion at seminar
One sees that this form of equations of motion allows alass that had been instructed by one of the authors

special solution (H.K.). The authors thank the attendees of the seminar.
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