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Controlling Spiral Waves in a Model of Two-Dimensional Arrays of Chua’s Circuits
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A model of two-dimensional arrays of Chua’s circuits is numerically investigated. In a certain
parameter region the spatiotemporal system has both synchronized oscillation and spiral wave attractors.
Feedback pinnings are suggested to migrate the system from the spiral wave state to the coherent
oscillation. The influences of the pinning density, forcing strength, and different pinning distributions on
the driving effect are investigated. It is shown that some properly designed control schemes may reach
very high control efficiency, i.e., killing a spiral wave consisting of a huge number of cells by injecting
only very few cells. The wide applications of the approach are addressed. [S0031-9007(98)05390-3]

PACS numbers: 05.45.+b, 47.54.+r, 82.20.Wt
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Spiral waves are observed in oscillatory and excitab
media; they belong to the most intriguing spatiotempo
ral patterns in nonequilibrium systems. Recently, the i
vestigation of spiral waves has attracted much attenti
[1–14] due to its great potential of applications. Sp
ral waves appear very commonly in nature; they are o
served in biology systems such as cardiac muscle tiss
in chemical systems like Belousov-Zhabotinsky (BZ) re
action, and in hydrodynamic systems where spiral wa
cores are responsible for the formations of defects a
defect-mediated turbulence. Thus, the interest of spi
waves covers a wide range of fields. It is fascinatin
4 0031-9007y98y80(9)y1884(4)$15.00
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if one can find some effective approach to control spir
waves; this is just the main task of the present Le
ter. Spiral waves are often considered as harmful o
jects; they may cause some fatal diseases in biologic
bodies (cardiac disease is one of the most serious on
of this kind), heavy damages in storms, unwanted di
orders in hydrodynamical systems, and so on. Thu
in this Letter we regard spiral waves as undesirab
objects and seek possible effective control methods
kill them.

We numerically investigate the following model of
coupled Chua’s circuits:
Ùxi,j ­ af yi,j 2 xi,j 2 gsxi,jdg 1 Dfxi11,j 1 xi21,j 1 xi,j11 1 xi,j21 2 4xi,jg ,

Ùyi,j ­ xi,j 2 yi,j 1 zi,j ,

Ùzi,j ­ 2 byi,j si, j ­ 1, 2, . . . , Nd ,
(1)

gsxd ­ s1y2d fss1 1 s2dx 1 ss0 2 s1d sjx 2 B1j 2 jB1jd 1 ss2 2 s0d sjx 2 B2j 2 jB2jdg ,
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where each site obeys the dynamics of single Chua
circuit, and nearest diffusive couplings are applied tox
variable. Free boundary conditionsx0,j ­ x1,j , xn11,j ­
xN ,j , xi,0 ­ xi,1, and xi,N11 ­ xi,N are used. Through-
out the paper the parameters are fixed ata ­ 10, b ­
0.334 091, s1 ­ 0.020 706, s2 ­ 15, s0 ­ 20.921, B1 ­
21, andB2 ­ 0.059 148 6, at which each individual cell
has a limit cycle attractor shown in Fig. 1(a). The diffu
sion coefficient is taken to beD ­ 5, at which the homo-
geneous oscillation synchronized to Fig. 1(a) is a stab
state of the system, which is our aim state after killin
spiral wave. Nevertheless, from an arbitrary initial stat
the system can hardly approach this aim state due to
coexistence of a huge number of attractors. In particula
for certain preparations, one can easily find a spiral wa
because of the high relaxational character of the cel
For instance, if we take the initial conditions shown i
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Figs. 1(b), 1(c), and 1(d) (for specific values of the
initial distributions, see Ref. [2]), the system evolves
a spiral wave asymptotically, Fig. 1(e) for48 3 48 and
Fig. 1(f) for 100 3 100 lattices, respectively. This spi
ral wave is stable in the sense that it is insensitive
small noise impacts and to the slight change of the i
tial condition, and it persists forever unless some ext
nal forces drive the system away. Now our central ta
is to kill the spiral waves of Figs. 1(e) and Fig. 1(
and migrate the system to the wanted homogene
oscillation.

Various global and local injections have been su
gested for controlling spiral wave [3,4]. Here we wi
develop a local control approach by injecting signals
few space units, and then propagating the control thro
coupling to free sites [15]. Now we feedback (1) wi
the aim state of Fig. 1(a) as
© 1998 The American Physical Society
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and
FIG. 1. (a) The limit cycle of a single cell of Eqs. (1), which will be used as the aim state for synchronization. (b), (c),
(d) The initial preparations ofxi,j , yi,j, and zi,j , respectively. (e) and (f ) Contour diagrams ofx variable (the same in all the
following contours) of the asymptotic spiral wave state developed from the initial conditions of (b)–(d) for48 3 48 lattice (e) and
100 3 100 lattice (f ), respectively.D ­ 5 (the same D is also used below).
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Ùxi,j ­ Mi,j 2 Qi,jlfxi,jstd 2 x̂g,

Ùyi,j ­ Ni,j , Ùzi,j ­ Oi,j ,
(2)

where M, N, and O are given in Eqs. (1), and̂xstd is
the periodic trajectory given in Fig. 1(a).l represents
the control strength. In testing the control efficiency, w
first try some regular control schemes by settingQi,j to
Qi,j ­ 1, i ­ nI; j ­ mJ; n, m ­ 1, 2, . . . , and Qi,j ­
0 otherwise, whereI and J are positive integers. In the
following we will call the control withI and J as sI , Jd
control. For asI , Jd control the density of forced cells is
roughly equal tor ­ 1ysI 3 Jd. We hope, of course,
to use lower densityr to make effective immigration.
It is interesting to investigate how the efficiency o
control depends on the arrangement ofI and J. In
Fig. 2(a) we take48 3 48 lattice and plot the regions
for successful control ins1yrd 2 l plane (controllable
regions are to the upper left of the corresponding curve
The three solid curves from lower to upper represent t
controls s1, Jd, s2, Jd, and s3, Jd, respectively, while the
dashed curve shows more uniformlysI , Id control. Some
features of Fig. 2(a) are worth noting. First, the uniform
sI , Id control is less effective. In the best case, we ca
kill the spiral wave by applyings4, 4d control, and then
the pinning density is1y16. We cannot destroy the spira
wave bys5, 5d control for the control strength as large a
l . 200. The nonuniform controlssI , Jd I , J (or J ,

I) are more effective. The reason can be heuristica
understood. Spiral waves can survive only in a movin
phase. SmallI ’s (or small J) build up strong control
e

f

s).
he

n

l
s

lly
g

walls to cut the moving road of the wave, and then wip
the object away. In the best case, we can kill the spi
wave by applyings3, 16d control, which corresponds to
the efficiency of r ­ 1y48. Both s4, 16d and s3, 17d
controls fail for arbitrary control strength (l . 200 for
our numerical tests). In the former case, there exist ho
in the walls big enough for the spiral wave passing, an
in the latter case, there is a space between two con
middle walls large enough for the core of the spira
wave to survive. Two characteristic parts in the sol
curves of Fig. 2(a) are interesting. First, we observe th
all curves have a part parallel to1yr axis at certain
critical l, and the control efficiency can be greatl
enhanced afterl passes these critical values. Secon
the horizontal part can turn to the vertical part at certa
turning points, represented by black dots in Fig. 2(a
The dots show both the minimalr and the minimal
l for the given I (I ­ 1, 2, 3 for our curves), and the
hard turnings at the dots indicate that greatly increasi
r (or l) cannot compensate a slight decreasing ofl

(or r). In Figs. 2(b), 2(c), and 2(d ) we present thre
kinds of controls in100 3 100 lattice failing in erasing
spiral waves. In Fig. 2(b) we uses5, 5d control, and the
entire spiral wave remains with certain modifications.
Fig. 2(c), s3, 35d control is applied, and the middle par
of the spiral wave survives while the side parts of th
spiral wave are wiped out. In Fig. 2(d) we put contro
on the heart of the spiral wave (i.e.,Qi,j ­ 1, 35 #

i, j # 65, and Qi,j ­ 0 otherwise), and the spiral wave
tip survives, in the counterclockwise moving fashion
although it cannot enter the central controlled part.
1885
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FIG. 2. (a) l plotted vs 1yr ­ I 3 J. 48 3 48 lattice.
Control can be successfully performed in the regions in t
upper-left part of the curves. The solid curves from lower
upper represents1, Jd, s2, Jd, and s3, Jd controls, respectively,
and the dashed line showssI , Id control. (b)100 3 100 lattice,
l ­ 200. s5, 5d control is applied. Spiral wave survives
(c) The same as (b) withl ­ 200, s3, 35d control is applied.
A part of spiral wave survives in the middle strip while
synchronized oscillations are realized in both left and rig
sides of the lattice. (d) The same as (b) with the core of t
spiral wave controlled (Qi,j ­ 1, 35 # i, j # 65, andQi,j ­ 0
otherwise). l ­ 200. The spiral wave tip survives outside o
the control region.

It is already noted in Fig. 2(a) that we can succes
fully kill the spiral wave and perform full synchroniza
tion by injecting only one equation among 144 equatio
whens3, 16d control is applied. An interesting problem is
whether we can further considerably enhance the con
efficiency by designing more effective and more inhom
geneous pinning schemes. Since the spiral wave stat
highly inhomogeneous, this possibility is obviously ope
From Figs. 2(c) and 2(d) we can get some hints for d
ing this. From Fig. 2(c) we realize that for killing a spi
ral wave it is important to control its middle part. From
Fig. 2(d) it is also clear that one can never successfu
erase a spiral wave by controlling its core only. Ther
fore, an attracting idea may be to cut the moving cha
nel of the spiral wave by injecting a middle line from
boundary to the core. For instance, we may use a con
schemeQNy2,113n ­ 1, n ­ 0, 1, 2, . . . , K, andQi,j ­ 0
otherwise.K should be large enough to spoil the tip of th
spiral wave, and the wall with holes of width 2 sites ca
effectively stop the moving of the spiral wave. In Fig.
we use a100 3 100 lattice, takel ­ 70 and K ­ 16
[i.e., only 17 sites, indicated by the dots in Fig. 3(a), a
injected], and plot the evolution of the spiral wave, sta
ing from the spiral wave state of Fig. 1(f) att ­ 0. We
find that the spiral wave moves counterclockwise. B
cause of the control [the dots in Fig. 3(a)] the spiral wa
1886
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FIG. 3. Feedback controls are applied att ­ 0 to 17 sites
of Fig. 1(f ) indicated by dots, i.e.,Q50,113n ­ 1, n ­ 0 16,
and Qi,j ­ 0 otherwise. l ­ 70. (a) t ­ 50, (b) t ­ 100,
(c) t ­ 200, and (d) t ­ 350. The spiral wave moves
counterclockwise, and leaves the lattice from the lower-le
boundary.

cannot cross the lower half line ati ­ 50, and the object
dies out on the lower-left boundary. Now by injectin
only 17 equations a system consisting of3 3 100 3 100
equations can be fully under control, and the wanted st
can be approached on purpose. After the synchroniz
state is approached, it can remain alive forever by liftin
all the pinnings because the homogeneous oscillation is
attractor in our system.

Now we give a brief discussion on the condition
of successful control. First, a sufficiently large contro
strength is necessary. For instance, asl is larger than
the minimal valuel ø 68, we can always make suc-
cessful immigration from Fig. 1(f) to the homogeneou
oscillation of Fig. 1(a) by using the control scheme o
Fig. 3(a). However, by slightly reducingl to l ­ 67
the control completely collapses, and the entire spi
wave survives. An interesting point is that the collaps
caused by slightly decreasingl cannot be compensated
by considerably increasing the number of injected site
For instance, withl ­ 67, we cannot erase the spira
wave even if we double the number of injected site
asQ50,113n ­ 1, n ­ 0, 1, 2, . . . , 33, andQi,j ­ 0 other-
wise. This situation is similar to the horizontal parts o
the solid curves in Fig. 2(a).

Second, a critical number of injected sites is als
necessary. For instance, if we takeK ­ 15, i.e., lift
control only from one site, in the same time we increa
the control strength up tol ­ 200, the spiral wave
exists in the asymptotic state. It is again striking th
such enormously increasing control intensity cannot he
to recover the controllability lost by lifting the pinning
from a single site; the situation is similar to the vertica
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parts of the solid lines in Fig. 2(a). The reason can
intuitively interpreted as follows: By lifting the control at
i ­ 50, j ­ 49, the spiral wave tip has enough space
survive, and the entire spiral wave can be developed a
maintained from this tip, no matter how largel is.

The key ingredient for erasing spiral wave is to ki
the spiral wave tip. The spiral wave tip survives only i
a rotating moving fashion, then for killing this tip it is of
key importance to break its moving channel and to confi
its rotating space. This idea leads to the above succes
half pinning wall control of Fig. 3. In Fig. 4(a) we use
l ­ 200 and have the entirei ­ 50 line controlled except
the three bottom and three top sites (i.e.,Q50,j ­ 1, j ­
4 97, and Qi,j ­ 0 otherwise). Although, comparing
with Fig. 3(a), we have three times increased the cont
strength, and six times increased the number of control
sites, the spiral wave tip still exists forever under th
control. The tip moves counterclockwise, and crosses
control line through the top and bottom open channe
(free sites). The moving tip can develop to a full spira
wave after we lift the control wall. If we shut one channe
by having any one of the six free sites controlled, th
spiral wave tip will eventually be annihilated, and th
synchronized oscillation can finally be approached.

In Fig. 4(b), we usel ­ 200 and Q47,j ­ 1, j ­
1 100, andQi,j ­ 0 otherwise. Now we control a whole
line of sites while the line is slightly shifted to the side
In the asymptotic state we find half of a spiral wave i

FIG. 4. (a) The same as Fig. 3 except changingl ­ 200
and the control scheme toQ50,j ­ 1, j ­ 4 97, andQi,j ­ 0
otherwise. The spiral wave tip survives forever, and mov
counterclockwise by crossing the two top and bottom fre
channels. (b) The same as Fig. 3 except changingl ­ 200 and
Q47,j ­ 1, j ­ 1 100, and Qi,j ­ 0 otherwise. By slightly
moving the control line to the left side, a half spiral wav
survives in the right side asymptotically. (c), (d) The tim
evolution from the pattern (b) [(b)t ­ 250, (c) t ­ 350, and
(d) t ­ 500]. All half circle waves are generated after the tip
rotates to the right direction.
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the right side, and the sites in the left side are practica
synchronized to the aim oscillation. The reason why t
half spiral wave can be maintained is clearly shown
Figs. 4(c) and 4(d) where the central tip of the spiral wa
can survive after rotating to the right direction, and
continually generates half circles and keeps the half spi
wave alive. After moving the control line to the middle
position (i.e., replacingi ­ 47 by i ­ m, m [ f48, 60g),
the spiral wave tip does not have enough space to rotat
the right direction and generate new loops, and then t
tip and the whole wave can be definitely cleaned away.

In conclusion, we have suggested an approach
controlling spiral wave by feedback pinnings. It is
emphasized that the approach in this Letter is based on
characteristic features of spiral waves, not on the spec
features of our particular systems, and thus this approa
can be applicable to general problems of spiral wa
control. We have tested this matter by considering oth
spiral wave systems, such as spiral waves in excita
media, and spiral waves in reaction diffusion system
[16], in the cases of tests our approach works perfect
and then its wide applications can be expected. In th
Letter, we consider controlling the spiral wave in a mod
system only; it would be significant to apply the presente
method to real circuits, which will be our future work.
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