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Mean Dynamical Entropy of Quantum Maps on the Sphere Diverges in the Semiclassical Limit
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We analyze quantum dynamical entropy based on the notion of coherent states. The mean value of
this quantity for quantum maps on the sphere is computed as an average over the uniform measure on
the space of unitary matrices of size Mean dynamical entropy is positive fof = 3, which supplies
a direct link between random matrices of the circular unitary ensemble and the chaotic dynamics of the
corresponding classical maps. Mean entropy tends logarithmically to infinity in the semiclassical limit
N — o and this indicates the ubiquity of chaos in classical mechanics. [S0031-9007(98)05487-8]

PACS numbers: 05.45.+b, 03.65.Sq, 05.30.—d

Quantum analogs of classically chaotic systems have Let us consider a classical area preserving map on
been an object of intensive investigations for almosthe sphere® : §* — S? and a corresponding quantum
twenty years. The study of statistical properties of themap U acting in anN-dimensional Hilbert spaceH .
spectra of quantized chaotic systems is for the purA link between classical and quantum mechanics can be
pose of trying to prove that these systems can be deestablished via a family of spin coherent statese H
scribed by suitable ensembles of random matrices [1—-3]ocalized at points: of the sphere. These $2J coherent
In this paper we follow the opposite direction: Studying astates can be defined as [12,13} = R,|«), whereR,
generic quantum system we find support of the conclusioare the rotation operators and the reference staje
that the dynamical entropy of the corresponding classicak usually taken as the maximal eigenstétgj) of the
system is positive and, actually, arbitrary large. More precomponent/, of the angular momentum operator. The
cisely, we analyze the set of aliructurelesgjuantum sys- identity resolution ready . lx){x| dx = I, wheredx is
tems [4] (without geometric or time reversal symmetries).the uniform measure on the sphere. For our purposes it is
For these systems, described by the circular ensemble abnvenient to normalize coherent statesxagx) = N =
unitary matrices, we compute the mean dynamical entrop®; + 1.
averaged over the Haar measure and show that it increasesTo work with the coherent states entropy we need to
logarithmically with the dimension of the Hilbert space. consider a partition (coarse grainingl = {E,..., Ex}

We discuss quantum analogs of the classical area presemf the phase space, where the sum of volumes of all cells
ing maps on the sphere. To link the quantum dynamic$s normalized to unit;[Zlevol(Ei) = 1]. The partition
with the classical phase space, one uses in this case thenerates the symbolic dynamics in thesymbol code
well-known SU?2) spin coherent states. space. The results of sequential approximate quantum

A classical dynamical system is callethaotic if its  measurement are represented by the strings ttters
Kolmogorov-Sinai (KS) entropy is positive. However, ¢ = {iy,...,i,—1}, where each lettei; denotes one of
this definition cannot be applied literally to quantum sys-the k cells. The probabilitiesPS of entering the cells
tems, since a widely accepted generalization of KS eng;, ..., E; , can be expressed by the integrals
tropy for quantum mechanics has not yet been found.

Several attempts to define such a quantity are known PCS = [ de...f dx,_

[5-7]. However, some of them, such as the Connes- Ejy Eipy
Narnhofer-Thirring entropy [8] or the Alicki-Fannes [9] nl

entropy, vanish for finite-dimensional quantum systems, X l_llKU(xufl’xu)’ (1)

and can be applied rather in quantum statistical mechan- o _
ics. Others do not give the correct semiclassical limit.  While the kernelKy is given in terms of coherent states

In a series of papers [6,10,11] we proposed a new 1
definition of dynamical quantum entropy based on the Ky(x,y) := N [y 1U ) (2)
notion of coherent states. Our approach relies on the
assumption that the knowledge of the time evolution offor x,y € S? [6]. The kernel Ky(x,y) may be thus
a quantum state is obtained by performing a sequendaterpreted as ay-dependentHusimi distribution (Q-
of approximate guantum measurements. The evolutiofunction) of the transformed staté|x). If U equals the
of the system between two subsequent measurementsidentity operator/, the quantity K;(x,y) is called the
governed by a unitary matrix/, but the sequence of overlapof coherent statel) and|y).
measurements introduces a nonunitary evolution of the In close analogy with the classical KS entropy we
system [10]. define thecoherent state§CS) entropy ofU with respect
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to the partition A Namely, Hy is equal to the difference of the Wherl
. | entropy of the state$/|x), averaged over all points

HU, A) = |im(Hyy = Hy) = lim —H,,  (3)  on the sphere, and M [the latter term follows from the
normalization in (2)]. Similar quantities have also been
studied by Schroeck [17] and by Mirbach and Korsch
[18]. Calculation of the continuous entropy is particularly

H, := Z —PIn PCS. (4)  easy for the identity operatd/ = I and gives the Wehrl

. entropy of a single coherent state [19]

Note that both sequences in (3) are decreasing and

where the partial entropied, are given by the sum over
all k* strings. of lengthn

the quantityH, = —Zf=1voI(E,~)In[voI(E,~)], which does H; = —InN + N-1 . (9)
not depend orU, is just theentropy of the partitionA.
We denote it by (A). We shall proceed toward an estimate of the partition-

There are two kinds of randomness in our model: Ttheper]dent CS entropy (3) for an arbitrary unitary matrix

first is connected with the underlying unitary dynamics;. Using classical methods from the information theory
of the system; the second comes from the approximatgsee [20], Sect. 2.2) we obtain

measurement process. Accordingly, we split the partition
dependent CS entropy into two compone@s measure-  INf[Hu1(U, A) = Hu(U, A) — H(A)] = Hy  (10)

ment entropyandCS dynamical entropy ¢ h naturah. wh h h ¢ stat sial
or each naturak, where the coherent states partial en-
Hyeas(A) : = H(I, A), (5) P

tropiesH,(U, AA) are defined by (4). From the definition
Han(U, A) : = HU, A) — Hpeas(A). (6) of CS dynamical entropy we get

In order to keep away from ambiguity in the choice of the n - -
partition we defineCS dynamical entropy df as Hy + H(A) = HU, A) = H(A) (11)
Hgyn(U) := SUPHayn(U, A), (7) and
A ; —
the supremum being taken over all finite partitions. 'E[f[H(U’ A) = HA)] = Hy. (12)

In [10,11] we study the properties of CS dynamical en-
tropy and present the methods of its numerical computin
based on the concept of iterated function systems. It i
conjectured that in the semiclassical limit— « the CS
dynamical entropy of a family of quantum maps tends
to the KS entropy of the corresponding classical map
if certain assumptions linking classical and quantum mapg . ulas with the analogous one obtained for= 1, we
are fulfilled [6]. Recent numerical calculation shows [14] conclude that ’
that for some quantum analogs of classically chaotic maps
on the sphere (kicked top, baker map on the sphere) the —H; + Hy = Hqyn(U) = —Hj. (13)
CS dynamical entropy is positive, grows monotonically
with the dimension of the Hilbert spaéé, and is smaller
than the KS entropy of the corresponding classical ma
Since a scheme of discrete approximate measureme
leads to a nonunitary time evolution of the system [10],
the CS dynamical entropy of such quantum maps remain&bpr
positive in the time limit (3), in contrast with the entropy
introduced in [15].

In this Letter we evaluate the mean value of CS
dynamical entropYHay. (U))u(n), taking the average over
the unitary matrice®/(N) of the circular unitary ensemble
(CUE). Computing the CS dynamical entropy require
the time limit n — o. Surprisingly, one can obtain
bounds for this quantity by analyzing theontinuous
entropy of U, which depends only on the one-step,,
evolution of the quantum system:

In fact, the infimum in (10) and (12) is achieved if
%e maximal diameter of a member of the partitich
tends to zero. Thus, for a sufficiently fine partition, the
dynamical CS entropy splits into approximately two parts:
H(A) which depends only on the partition, arfdy
depending only on the dynamics. Combining the above

The famous Lieb conjecture [19] states that the Werhl
entropy attains its minimum (9) for any coherent state (for
artial results, see [21]). This would impl§f; = Hy,
nd consequentlydy,, (U) = 0 for every unitary matrix
As we can see above, the quantil§; decreases
oximately as—InN and so, if the Lieb conjecture
is true, then the entropy (U, A) is limited from below
by H(A) — InN. This agrees with the bound obtained
by Halliwell [22] for the information of the phase space
distributions derived from the probabilities for quantum
histories. Note, however, that the bound (11) seems to
Soe much more precise, because, as we will shew,; is
typically much smaller ther-H;.
In order to estimate the mean entropy of quantum maps
e average (13) over the space of unitary matrigés’)
with respect to the Haar measuysg

Hy = _fsz fsz Ky(x,y)InKy(x,y)dxdy. (8) —H; + (Hy)uw) = (Hap(U))uw) = —Hr. (14)

This quantity is related to the “classical-like” entropy Thus, to obtain the desired bounds for the mean
introduced into quantum mechanics by Wherl [16].CS dynamical entropy, it suffices to calculaié;)uw).
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We have 3
<Hd)’n> xxxxxxxxxxx
<HU>U(N) = _] ] KU(X,y)anU(x»y)dXdy xxxxxxx ooooooooo
U(N) s2 Js2 Xxxx 0000 000
X du(U). (15) 2
Since Ky(x,y) = Ky|UIx)?/N = Kk|T, ' UT,|«)*/N,
one may interchange the order of integration and use the 60
invariance of the Haar measure. Puttiig.= T;IUTX 1 foo"
we conclude that e
Kl VI | KlV I
H = - In du(V). "o
— ]U(N) N N Y 00 10 20 30 40 50
(16) N

To calculate this quantity we make use of the formulasriG. 1. Upper(x) and lower (o) bounds for the mean CS
for the distribution of(kx|U|«k) given by Kuset al. [23]. dynamical entropy of unitary matrices representing structureless
Otherwise, we can refer to the results of Jones [24]quantum systems on the sphefeas a function of the matrix
Applying one of these methods, we get dimensionV = 2; + 1.

Hy)op = =INN + PN + 1) = ¥@). A7) 0 cions [26]. For the quantum map they form a
where W denotes the digamma function, which for naturalregular spiral-like structure (c), in contrast to the random
arguments < n satisfies¥V'(n) — ¥(k) = 7;,3 % distribution over the entire phase space for the random

Finally from (9), (14) and (17) we obtain the main matrix U (d).

result of this work:a lower and an upper bound for the  Consider a more general operatdt = eiP! iKH'

mean CS dynamical entropy where H and H' are noncommuting Hermitian opera-
1 tors constructed as polynomials of a given ordérin
TN +1)—-¥Q2) -1+ N = (Hayn)uw) » Jy,Jy,Jy. For generic values ofp and K, one may

(18)  thus expect that the/-dimensional representations f
are characterized by the CS dynamical entropy typical
to random matrices only foN = M. However, in the
emiclassical limit, one increasaskeepingM constant.
) The above results, obtained for the sph§teand the
SU(2) spin coherent states, can be generalized for classical

1
<den>U(N) =InN -1+ N

The difference between an upper bound (which is the
maximal value of the CS dynamical entropy) and a lowe
one converges to the constant- y = 0.42278 if N —

. Hence the mean value of CS dynamical entropy tends
in the semiclassical limit to the infinity exactly asih

The dependence of both bounds on the quantum numb: os
N = 2j + 1 is presented in Fig. 1. In the semiclassical
limit N — o the mean dynamical entropy diverges in o
contrast to the CS dynamical entropy of a given quantun
map, which seems to converge to the KS entropy of thi™®®
corresponding classical system. Therefore, for sufficienth
large N, a matrix Fy representing a given qguantum map
will not be generic with respect to the Haar measure or
U(N). €

To visualize this difference we present in Fig. 2 the os
Husimi function of an exemplary coherent stéie ¢) =
10.93, 3.30) transformed once by a Floguet operator=
¢'Pl:¢'K12/2] representing the kicked top [2] with= 15 % 05
in a classically chaotic regimg = 1.7, K = 7) (a), and
by a random unitary matriXy (b) [25]. The sphere is
represented in the Mercator projection with=s ¢ < 27
and 0 = 9 < 7, t = cos?. In the former case, the FIG. 2. Contour plot of the Husimi function of an exemplary
wave packet remains localized in the vicinity of the coherent state transformed by the quantum kicked top map (a)

. ; S - . and by a generic random matrix (b) of si2é = 32. The
classical trajectory, while in the latter, it is already entirely o< of Husimi function are visible in (c) and (d), respectively,

delocalized after one iteration. The same data plottEd iﬂbtained from the same data using a |Og scale for the con-
the log scale allow one to detect the zeros of Husimtour heights.

phi phi
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phase spaces associated with higher group&iBUl =
2, which are the complex projective spac€®¢~! in
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N =dim(FH) = ("1 with m = 1,2,..., while |x)
represents the SU) coherent states [13]. The Wehrl
entropy of such a coherent state equals

Hy=—InN +m[¥Y(m +d) — ¥Y(m + 1)]. (19)

Following Lieb [19] we conjecture that this value gives
theminimal Wehrl entropy for SW). Performing the
steps similar to (10)—(17), we arrive at bounds for the
mean CS dynamical entropy analogous to (18)

ly = (HanYow) = up, (20)
I, =¥(N + 1) — ¥((2)
—m[Vm + d) — ¥(m + 1)], (21)
u, = INN — m[V(m + d) — ¥(m + 1)].

In the semiclassical limithn — « we get a simple ap-
proximation for both boundsi, ~InN — d + y and
u, ~InN — d + 1, wherey is the Euler constant.

Obtained estimates (18) and (20), and (21) allow us to
conclude that a quantum system represented by a typicam

unitary matrix from CUE is characterized by positive
dynamical entropy, which is only insignificantly smaller
than the maximal one diverging with ~ 1/4. In other

words, a generic quantum system is almost as chaotic, as

possible. We proved this for SW) coherent states, but
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