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Molecular Anapole Moments
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A quantum mechanical formalism for molecular anapole moments is developed. London-m
calculations show that toroidal carbon frameworks support both permanent and induced an
moments arising fromp-electronic, through-bond currents; dipolar flow in a chiral toroid implies a
anapolar component. [S0031-9007(98)05425-8]
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The recent observation by Liuet al. of circular ropes
in scanning force micrographs of carbon nanotube ma
rials [1] heralds the isolation of perfect molecular toroids
Such molecules are expected to exhibit several unus
properties directly related to their special topology. A
toroidal network of bonds has two topological flow in
variants: a “latitudinal” circulation around the central hol
and a “longitudinal” circulation linking the inside and
outside of the toroidal ring [2,3]. This second flow ha
the symmetry of an electric dipole and gives rise to a
anapole moment. The existence of nuclear anapole m
ments, first predicted by Zel’dovich [4], has recently bee
confirmed by the measurement of parity nonconservati
in the 6S ! 7S transition of Cs [5]. These effects may
be enhanced by the anisotropy of the molecular enviro
ment [6]. The effects of parity nonconservation in atom
and molecules are discussed in the book by Khriplovic
[7] and widely reviewed [8,9]. Paramagnetic atoms an
molecules also can exhibit an anapole moment of no
parity violating electromagnetic origin in the presence o
electric fields [10,11]. However, a genuinely molecula
manifestation of the anapole moment has had to aw
molecular toroids. In the present study we develop th
necessary quantum mechanical formalism and perfo
some model calculations on carbon toroids.

The molecular anapole moment can be derived fro
the multipole expansion of the electromagnetic interactio
Hamiltonian, V̂ , for a molecule in an external magnetic
field, B. In Raab’s formalism [12] the second-orde
magnetic moment operators including both spin an
orbital contributions are obtained as

M̂ab ­ 22
≠V̂

≠B0ba

, (1)

in which B0ba ­ s=bBad0 at a given origin zero. The
antisymmetric combination of these moments with an a
propriate multiplication factor yields the anapole momen
operatorâ. Hence for the component along the axis o
the toroid one has

âz ­ 2
1
2 sM̂xy 2 M̂yxd . (2)
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The anapole moment operator defined in this way de
scribes the interaction of the system with the rotor of th
external field. Indeed definingB0 ­ = 3 B, one imme-
diately obtains

â ­ 22=B0V̂ . (3)

The expectation value of̂a is then found by applying the
Hellmann-Feynman theorem

kâl ­ 22=B0E , (4)

whereE is the electronic energy in an external magnetic
field. In principle, in order to induce an anapole momen
in a toroidal molecule, one would need a circular magneti
field that follows the loop of the torus. However, in
toroidal molecules of chiral symmetry, even a uniform
magnetic field along the principal axis of revolution may
induce an anapole response. Indeed permanent magne
moments in open-shell molecules of this type also have a
anapole component. These points will now be illustrate
by model calculations.

Two model toroidal carbon cages were investigated
Each has 120 atoms, 10 pentagonal, 60 hexagonal, a
10 heptagonal faces. The structure shown in Fig. 1(a) ha
D5d symmetry, while that in 1(b) has onlyD5 symmetry.
Both were optimized by molecular mechanics, which gav
structures with a small (#3%) spread of bond lengths; all

FIG. 1. Model 120-atom carbon toroids: (a) an achiralD5d ,
and (b) a chiralD5 structure.
© 1998 The American Physical Society 1861
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coordinates were scaled to a mean bond length of1.4 Å
for comparison with previous magnetic calculations o
fullerenes [13]. TheD5d structure has been used as
model toroidal fullerene analog in earlier mathematic
and computational studies [2,14]. TheD5 isomer is
obtained from it by five concerted Stone-Wales rotatio
[15] of pentagon pairs (see Fig. 2). In the crude Hück
approximation theD5d cage has ane2 open shell as a
neutral, but theD5 isomer has a properly closede4 shell.

Magnetic moments were calculated using the Lond
method [16] in conjunction with the Hückel theory (which
considersp electrons only). In this approach the sit
orbitals are transformed by a gauge factor incorporati
a vector potential that generates the external field. T
Hückel matrix elements are consequently approximat
as [17]

hkl ­ bkl exps2pifkld ,

with fkl ­
e

2hc
sAk 2 Ald ? sRk 1 Rld .

(5)

Herebkl is the transfer integral betweenp orbitals on sites
k andl. Ak denotes the value of the vector potential at th
positionRk of site k. The ground statep energy simply
corresponds to the sum of the eigenvalues of this (compl
matrix for occupied levels. For a uniform rotor fieldB0 the
vector potential can be expressed as

Asrd ­
1
6 r 3 sr 3 B0d . (6)

B0 was aligned here along theC5 axis. The first deriva-
tive of E with respect toB0 yields the anapole moment,
az ­ 22≠Ey≠B0, while the second derivative correspond

FIG. 2. Projections of the two toroidal polyhedral network
(a) and (b) obtained by unpeeling the toroidal surface. Top a
bottom edges of the patch represent the inner equatorial circ
of the torus, the outer equatorial circuit running horizontal
across the middle of the patch. Gluing the patch first top
bottom as a tube, then side to side, recovers the 3D tor
Bond lengths are distorted by the equal-angle projection.
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to the anapole-type susceptibility,Ak ­ 22≠2ys≠B0d2, just
as derivatives with respect to a homogeneous field yie
the dipole moment,mz ­ 2≠Ey≠B, and the magnetic sus-
ceptibility, xk ­ 2≠2Ey≠B2. In the chiral toroid there
is additionally a symmetry-allowed cross term of the typ
2s≠2Ey≠B0≠Bd that will be denoted asMk. The results of
the calculations are displayed in Table I. In the units us
here, Cartesian coordinates are in bohr, energies in unit
a single Hückel parameterjbj for all bonds,B in h̄cyea2

0,
andB0 in h̄cyea3

0. In this convention benzene with a bon
length of1.4 Å has a diamagneticp-electron susceptibil-
ity xk ­ 273.485, corresponding to the scaled value o
21.5 given by Elser and Haddon [18].

As already pointed out by Haddon [19], toroids can b
expected to have large magnetic dipole susceptibilitie
But in the present (spin-free) treatment they are also se
to have large induced anapole moments that may be
either sign. Half-filled open-shell and closed-shell cag
carry no orbital moment, in contrast toe1 ande3 configura-
tions. For theD5d e1 cation the anapole moment vanishe
because of parity, but in the chiralD5 e3 cation an anapole
moment is found at zero field (Table I). These symmet
selection rules can easily be generalized. In any syst
with a principal axis of symmetry, the antisymmetrize
square of a degenerate irreducible representation alw
transforms as the parallel component of the magne
dipole operator, whereas the anapole moment transfor
as an electric dipole operator. The anapole moment w
therefore be allowed only in the absence of improp
symmetry elements. In contrast, nonzero anapole s
ceptibilities are compatible with all point groups, but wil
require toroidal or higher topology for significant through
bond effects. Electron spin will make contribution
to permanent magnetic moments in open-shell states.

For a further analysis of these results we now turn to t
description of the current densities. For a homogeneo

TABLE I. Calculated dipole and anapole magnetic properti
for the two model carbon tori of Fig. 1.a

D5d D5

neutrale2 catione1 neutrale4 catione3

xk 22200 21890 21130 21180
Ak 5420 8000 212 600 29350
mz 0 2.74 0 4.86
az 0 0 0 13.9
Mk 0 0 2265 2380
aAll properties are defined as derivatives of thep-electronic
energy (see text) and are quoted here in units ofjbj seyh̄cdan

0

wheren ­ 2 and 3 form, a, and ofjbj seyh̄cd2an
0 wheren ­ 4,

5, and 6 forx, M, andA, andb is the Hückel bond parameter;
x andm are independent of origin. The origin forA, a, andM
is the center of mass. In Hückel theoryb is the Hamiltonian
integral between basis functions on neighboring atoms, givi
the scale of orbital energies, and thus in the purely topologic
London model used here appears as part of the unit for each
sponse property. An empirical value of 2.66 eV is often use
in converting magnetic properties such asx to SI units [22].
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magnetic field,A ­ 2
1
2 r 3 B, the phase factor of the

Hückel-London parametrization may be written

fkl ­
e

hc
B ? Skl , (7)

where Skl ­ 1
2 sRk 3 Rld is the normal to the triangle

spanned by the vectorsRk andRl . The quantityfkl thus
corresponds to the magnetic fluxB across this triangle.
The corresponding through-bond current may then
obtained as in classical magnetism by differentiating th
total energy with respect to the magnetic flux

Jkl ­ 2
e
h

≠E
≠fkl

. (8)

This expression is also valid in the case of a nonhomog
neous magnetic field, withfkl defined as in (5). By the
Hellmann-Feynman theorem this current contribution ma
be resolved into a sum over occupied molecular orbitals

Jkl ­
2ebkl

h̄

occX
m

Imfcp
mkcml exps2pifkldg . (9)

Here cmk is the coefficient of the orbital on sitek in the
mth occupied molecular orbital. This result can also b
derived from a momentum operator formalism. We sta
from a standard expression for the nondiagonal matr
element of the current density operator [20]

Ĵkl ­
ieh̄
2me

fs=fp
k dfl 2 fp

k=flg , (10)

wherefk andfl are atomicp orbitals in a given pair of
atoms andme is the electronic mass. Equation (10) doe
not contain the contribution from the vector potentia
which is in line with approximations made within the
London theory [16,17]. To obtain the total current w
integrate the current density over a surface cutting t
bond. This surface integral can be obtained by taking
volume integral divided by the length of the bond. Thu
the bond current operator in second quantization has
form

Ĵkl ­
e

me

1
jRk 2 Rl j

fay
k alkfkjpjfll 1 H.c.g .

(11)

In the tight binding approximation the matrix element fo
the momentum operator between the real atomic orbita
is given by [21]

kfkjpjfll ­
ime

h̄
bklsRk 2 Rld . (12)

Substituting (12) into (11) and taking the average ov
the ground state wave function in the external fiel
yields exactly Eq. (9). This derivation completes the bon
current formalism introduced by Pasquarelloet al. [22].
The connection between dipole and anapole moments a
the current can easily be obtained by substituting th
appropriate vector potential into the classical formula
be
e
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FIG. 3. Induced currents for the tori (a) and (b) under
uniform magnetic field, directed along the central symmetr
axis. Only a section of the full toroidal surface is shown
Arrow lengths are proportional to current moduli.

for the energy of currents in the external magnetic field
followed by differentiation with respect toB or B0

m ­
1

2c

Z
r 3 J dy ,

a ­
1

3c

Z
r 3 sr 3 Jd dy .

(13)

These volume integrals may be converted into line inte
grals along bonds, yielding

m ­
1

2c

X
kijl

JijSij ,

a ­
1

3c

X
kijl

JijsRi 1 Rjd 3 Sij ,
(14)

where the sums run over distinct bonded pairs. The
gauge-invariant current formulas yield exactly the sam

FIG. 4. Induced currents for the tori (a) and (b) under a roto
perturbation, directed along the central symmetry axis.
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FIG. 5. Current states for the open-shell toroidal cations (
and (b), provoked by application of an infinitesimal uniform
field, showing the dominance in the frontier molecular orbital o
circulation around the inner equator of the torus i.e., along t
line of fusion of the heptagonal rings, and the mixed dipola
anapolar character of the flow in the chiral torus.

result as the operator formulation. The plots of the cu
rents in Figs. 3–5 illustrate the outcome of the calcul
tions presented in Table I. The induced currents we
obtained by performing the calculations with nonzero a
ial magnetic field (Fig. 3) or rotor perturbation (Fig. 4)
Clearly the axial field induces a current that circulate
around the central hole of the torus, while the rotor fie
causes a current that whirls around in a perpendicular
rection. For the monocations in degenerate states, perm
nent moments are found as illustrated in Fig. 5. In th
achiral isomer this moment is entirely dipolar, but in th
chiral isomer the current has a spiral pattern, consisting
a dipolar flow with an anapolar “leakage.”

In conclusion, classical through-bond effects in carbo
networks of higher topology can give rise to permane
and induced anapole moments and thereby bring a conc
developed in the context of nuclear physics into the rea
of molecular physics.
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