VOLUME 80, NUMBER 9 PHYSICAL REVIEW LETTERS 2 MRcH 1998

Thermal and Quantal Fluctuations for Fixed Particle Number in Finite Superfluid Systems
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We investigate fluctuations and even-odd effects in small superfluid systems at finite temperature
by means of the static path approximation (SPA) plus random-phase approximation (RPA) treatment,
where exact number parity projection is introduced. The RPA correction to the SPA is evaluated
exactly. Results are given first for a schematic 20-level pairing model, where an excellent agreement
with the exact canonical results is obtained both for even and odd systems, and then for a heavy nucleus,
where the smoothing of the BCS transition and the even-odd effects in the pairing energy and specific
heat are examined. [S0031-9007(98)05372-1]
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Fluctuations play an important role in small quantumone-body fermion operators of the general form
systems like finite nuclei. Statistical fluctuations in the ; | -
order parameters smooth out the sharp phase transition®) = Z[Q}jlc,- cj+3(QFcicj + QFcic))]
arising at finite temperature in the mean field approxi- ij " 20
mation [1,2], and_ can be mlcrc_)scoplcally described by =4+ %(CTC)Q(ET), QZ(SOZ _(Qu)t), (1)
means of the static path approximation (SPA) [2-5]. At
the same time, the constraint of a fixed particle num- | " ) )
ber may imply significant deviations from normal grandWith ¢ = 5>, Q;;. Using the Hubbard-Stratonovich
canonical (GC) statistics, leading, for instance, to eventransformation, the GC PF can be written as the auxiliary
odd effects in small superfluid systems, well known atfield path integral [4,15]
zero temperature [6]. The detailed thermal behavior of . B
even-odd effects is, however, less known. These sub- Z = [ DMTVTGXP[‘[ H[X(T)]d’f]» ()
jects have recently attracted renewed interest also in solid 2 0
state physics due to the development of ultrasmall su- H(x) = Hy — uN + Z > = = x,0,
perconducting metallic grains [7], where fluctuations and v U
even-odd effects become also relevant [8]. These were = Eo(x) + %(c’fc)j—[(x) ),
examined at finite temperature with number parity pro- .
jected BCS [8—10], which, however, still exhibits a sharpwhere 7' denotes time ordering. Using now a Fourier
transition and is thus no longer accurate nEar expansionx, (7) = >, x,,e'“"7, with w,, = 27n/B and
The aim of this Letter is to present a fully micro- D[x] = [1,.,(8/27v,)"?dx,,, the CSPA is obtained
scopic and general treatment of fluctuaticarsd even- retaining the full integration over thetatic variables
odd differences in finite superfluid systems, by means of,o, to include large amplitude static fluctuations, and
the SPA+ RPA (random-phase aproximation) approachintegrating overx,, o in the saddle point approximation
[11-14], to be denoted as correlated SPA (CSPA), wheréor everyx,. The final result is [13,14]
we introduce exact number parity (NP) projection [10]. o0
The CSPA incorporates small amplitude quantal fluctua- Zesen = f d(x) Trexd —BH(x)]Cip(x),  (3)
tions to the SPA and has been shown to provide a very - .
accurate evaluation of the GC patrtition function (PF) in l—[ wq SINH 3B A4 ]
correlated systems for not too low temperatures, consti- inH L ’
. . . >0 A Slnr[z,Bwa]
tuting a simple alternative to more complex approaches
[15]. Here we evaluate the RPA correction to the SPA ()]
in closed form for general superfluid systems, in terms 7
of the extendedqjuasiparticle RPA energies. Results are A, (w) = 8,,, — %vy Z Q*;aiaQwa, (5)
given for a 20-level pairing model, where NP projection a Ao — @

is shown to be essential for the agreement with the ex-
act canonical results, and for the r?ucléﬁEr and '9Er, whered(x) = [1,(8/2mv,)"*dx, and w, are the ther-

where even-odd effects in the pairing energy and specifig}al guasiparticle RPA energies defined as the eigenvalues
0

heat are examined.
We consider a general two-body Hamiltonian written as

H = H, — %Z,, v, Q2 [15], whereH,, Q, are Hermitian

Crna(x) = ﬁ DefA,, (iw,)] =
n=1

Avar = Aabaa = 5fa D 5Q0aQ00 . (6)
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Here we used the diagonal quasiparticle basis wherer volume. Deviations from BCS increase as the size of
Higo(x) = NSy, With Ay = A — Ay, fo = the system decreases, and are appreciablé for0.01,
fx — fr, fr = (1 + eB%)~1 Fermi probabilities and where1/8 = kT./¢ is the effective size parameter [2],
9.« = (9,)w the elements of the extended matriceswith ¢ the average single particle level spacing at the
(1) in this basis. The label comprisesall pairsk # k'  Fermi surface and’, the BCS critical temperature. In
of the matrices (1) (including both signs af) and the heavy nuclei, typicallyp = 0.6.
product in (4) runs over all pairk < k', i.e., all v, of a Equation (8) provides an accurate approximation to the
definite sign. As GC PF forT > T:. However, in small systems with
fixed particle numberN, the canonical PF should be
DefA,,(w)] = DefAqa — @8au]/Def(Ae — w)daa],  €mployed. Although exact number projection is difficult
to implement in the CSPA wheiH (x), N] # 0 [5], it is
the nontrivial energies,, # A, fulfill Det[A,, (w)]=0. easy to apply NP projection [9,10,16%actly The CSPA
The integrand in (3) represents a thermodynamic probean be directly applied in a restricted ensemble defined
ability, with Tre ##™) an independent quasiparticle PF by a projectorP if [P, H(x)] = 0 and the eigenstates of
which is maximum at the fundamental self-consistentPH(x) are independent quasiparticle states. We should
mean fieldx, = v,(Q, )., while Eq. (4) is proportional replace the GC trace in (3) by Pe A7) andf; in (6)
to the ratio of the PF of independent RPA bosons of enby the projected occupation probability. The NP projector
ergiesw,, to that of quasiparticle pairs of energiag is
considered as bosons [13]. Overcounting is thus avoided. P =L + geiN _ 41
The w,, become the conventional thermal RPA energies at o =31+ 0™, o==*1,
the self-consistent mean field. For arbitrarythe lowest and fulfills [P,,H(x)]= 0. In the diagonal basis,
w,'s may become imaginary (or complex) at low tem- () = g, + ¥, Melafap — %), with a,a; quasipar-
peratures buCyy, (x) remains finite and positive both for ticle operators, and states with even or odd quasiparticle

w, = 0and forimaginanw, if Blo.| < 2. Thiscon-  nymper have definite number parity. Thus,
dition will be violated at very low temperatur@s < T,

where the small amplitude approximation far, .o at un- Zy = TrPye P10 = (7, + o'Z.),
stable values ok, [11] will break down. For the han- 1
dling of repulsive termw, < 0, see [13]. Ze = e PE]JerPM(1 = e PN,

In the case of a pairing Hamiltonian k

n + o ot with ¢’ = o (—0o) if the quasiparticle vacuum has even
H =) euleier + cpep) = gPTP, PT =3 cicy, (odd) number parity [6]. The NP projected probability is
¢ k 7 fro =3 — B719INZ,/9A. In the pairing case,

with k the time reversed states, Eq. (3) becomes Z,(A) = %Z(A) {1 + o l_[tanr?(% ﬂ)\k)j|, (10)
k

Zesoa = % ] Ad Aei'BAZ/gZ(A)CRPA(A)v (8)
g Jo andfy — fire = B '9INZ,(A)/dA; in the RPA matrix.
The canonical PF can then be obtained by performing
the number projection in the saddle point approximation
for eachA [16,17], which yields

Ze(A) = 2Z,()e PHON [ \amada), (1)

with w(A) obtained fromB~19InZ,(A)/du = N (con-
where A, = [P + A%]'/2 are the quasiparticle ener- Straint) and ‘TIZV_(A) = ﬂ*faZInZ(,(A)/.a,uzl [Cern()
gies, e —er — w —8/2, Vi —er — p, O =3, 1, should.be glso included in the;e_denvaﬂveg, but RPA
and w;(A) are the eigenvalues of the reduced RPA macorrections inV are normally negllgl_ble]. The important
trix even-odd effects are exactly taken into account by the NP
_ _ projection, while the second projection (11) removes the
<2)lk5kk’~_ Shlmue +1) =5 filugug — 1) ) remaining statistical fluctuationsr§). If w(A) is nearly
S Fi(ugup — 1) S Fi(upupr + 1) = 22 840 constant, Eqg. (11) can be applied afteintegration, with
afixedu. In general, the present form is preferable since
with w; = e/, fr = tanf[%ﬁ)\k]. The SPA is ob- the variation of u with the static variablesx may be
tained if Cy.(A) is omitted, while the BCS PF is non-negligible [17]. Application of Eq. (11) without pre-
e BAN/sZ(Ag), with Ay = g(P1), the self-consistent vious NP projection fails to correctly describe even-odd
gap. BCS represents the limit of infinite particle numberdifferences for lowl" (see below).

1854

Z(A) = Trexg—Bh(A)] = [ [ 4e #7 cosR[3 8],
k
h(A) = Zsfc(cgck + cgc;;) — APt + P) + %gQ,
k

Con) =TT o sin{BA]
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We first consider a 20-level modef)(= 10) where difference with the CSPA result (this procedure also
the full canonical PF can be calculated exactly [16].corrects the wrong lowl' behavior of the SPA energy
As seen in Fig. 1 for uniform level spacin2e and derived from the PF [5]). The NP and RPA effects can be
g = 0.2¢, forwhichT, = 0.44¢ (¢ = 1 MeV for nuclear visualized in the effective free energy potential (Fig. 2).
scales) NP projected CSPA leads to almesactresults At low T, NP projection make# (A) slightly deeper for
for the canonical energ\ = —dInZc/3B, and the N even, but shallower and with the minimum shifted to
pairing energyg(PtP) = (g/B8)dInZc/dg, bothin the a smallerA for N odd, while C,,,(A) decreases (A)
even V = Q) and odd ¥ = Q + 1) cases, forT >  almost uniformly in both cases.

T: =~ 0.3T. (CSPA breakdown; results are plotted for The extended RPA energies fulfill} < 43 Vk, A for
T > T + 0.02¢). The NP projection is required for the g > 0 (Fig. 2), implying Cy\(A) > 1 VA for T > T,
agreement with the exact canonical results Toxx 7.,  The lowest onew; is the continuation of the Goldstone
and becomesssentiaffor N odd at lowT, where results mode associated with the brokdni(l) symmetry [13]
without NP projection are essentially the average of thosand dominatesthe RPA correction (4), vanishing at the
for neighboring everiv (lower in energy). For lowl’,  superfluid BCS solution and becomirighaginary for
NP projection increases slightly the pairing energyfor A < Ao. The minimum ofw? determines the maximum
even, but decreases it considerably foodd, increasing of Cy,,(A) and the CSPA breakdown. Fat > T, all
the odd total energy [forT — 0, AEoqq-even = 091 wy are realVA, but w; still deviates considerably from
(exact), whileA;(Ag) = Ay = 0.86¢ in BCS]. ForT >  the rest for larged, giving rise to a non-negligible RPA
T., the effects of NP projection become small, and evercorrection forT < 3T,. The effect of NP projection on
though the pairing energy is much larger than the BCShe w; is small, and visible mainly inw;, which will
value, it is nearly equal in even and odd systems and doagw vanish at the maximum &, (A). At fixed 8, u, A,
not give rise to appreciable even-odd effects. Fi_ < Fri in the RPA matrix, so thab?_ > wi,. The

The RPA corrections increase the pairing energy irRPA corrections are thus slightly smaller in the odd case.
both the even and odd cases, decreasing the total energy.We next consider the deformed nuclé&Er and!%Er
Part of these corrections account for the exchange termssith monopole pairing. We sy = H, — hiwoB4020,
missing in the SPA PF at low. These were included with H, a spherical part and,, a quadrupole operator,
in the SPA and BCS results for the pairing energy,and use the Baranger-Kumar configuration space for the
by evaluation as expectation value [5], and reduce thgalence nucleons [18] (for neutrons, the= 5,6 major

shells with98 single particle states, the dimension of the
canonical many-body space beiag x 10> for '%4Er),
T T T e [T ) together with their parameters féfs, wo, Oz, and the
"""" pairing strengths. For neutrons, the BCS pairing transition
occurs atT, = 0.45 MeV. The deformed to spherical
transition in the thermal HF approximation occurs at

§ [ T = 1.7 MeV for a quadrupole interaction in these nuclei,
s 7 SPA e so that forT < 1 MeV we can approximately consider
e = i B 1 Ba fixed at theT = 0 self-consistent value. Quadrupole
I csPAp) — | [ A CSPAQ) — |
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FIG. 1. Excitation energy from the even ground state (top)FIG. 2. The free energ§(A) = —T IN[Zc(A)Crpa(A)] (lft)

and pairing energy (bottom) as a function of temperature inas a function ofA at fixed 7', for the even € and odd ¢)

the schematic 20-level model (see text) fr= 10 (lefty  cases of Fig. 1. SPA depictsTInZc(A). Right: Squared
and N = 11 (right) particles. SPAp) and CSPAp) depict RPA energiesw; (solid lines) and quasiparticle pair energies
the canonical number parity projected results, while SPA and2A;)?> (dotted lines) as a function oA at fixed T for the
CSPA those without NP projection. Standard BCS and exacéven case. The lowest RPA energy vanishes at the BCS gap
canonical results [which overlap with those of CSRA for Ag/e = 0.84. The lowest horizontal dotted line indicates the
T > T:] are also depicted. breakdown value- (27 T)>.

1855



VOLUME 80, NUMBER 9 PHYSICAL REVIEW LETTERS 2 MRcH 1998

T T 13 sition is more pronounced in the odd system due to the
I F 1 smaller average pairing energy. Even-odd differences be-
come nevertheless small f@ér > T.. The high accuracy
of the present projected CSPA treatment also suggests that
it may provide a simple yet highly reliable (and elegant)
alternative for describing correlated finite fermion systems
at finite temperature, at least for interactions containing a
few separable terms.
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FIG. 3. The neutron pairing energy (left) and the neutron
contribution to the specific heat (right), f*Er (e) and 'Er
(0), according to NP projected BCS, CSPA, and SPA (left).
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