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Thermal and Quantal Fluctuations for Fixed Particle Number in Finite Superfluid Systems
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We investigate fluctuations and even-odd effects in small superfluid systems at finite temperature
by means of the static path approximation (SPA) plus random-phase approximation (RPA) treatment,
where exact number parity projection is introduced. The RPA correction to the SPA is evaluated
exactly. Results are given first for a schematic 20-level pairing model, where an excellent agreement
with the exact canonical results is obtained both for even and odd systems, and then for a heavy nucleus,
where the smoothing of the BCS transition and the even-odd effects in the pairing energy and specific
heat are examined. [S0031-9007(98)05372-1]
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Fluctuations play an important role in small quantum
systems like finite nuclei. Statistical fluctuations in th
order parameters smooth out the sharp phase transiti
arising at finite temperature in the mean field approx
mation [1,2], and can be microscopically described b
means of the static path approximation (SPA) [2–5]. A
the same time, the constraint of a fixed particle num
ber may imply significant deviations from normal gran
canonical (GC) statistics, leading, for instance, to eve
odd effects in small superfluid systems, well known a
zero temperature [6]. The detailed thermal behavior
even-odd effects is, however, less known. These su
jects have recently attracted renewed interest also in so
state physics due to the development of ultrasmall s
perconducting metallic grains [7], where fluctuations an
even-odd effects become also relevant [8]. These we
examined at finite temperature with number parity pro
jected BCS [8–10], which, however, still exhibits a shar
transition and is thus no longer accurate nearTc.

The aim of this Letter is to present a fully micro-
scopic and general treatment of fluctuationsand even-
odd differences in finite superfluid systems, by means
the SPA1 RPA (random-phase aproximation) approac
[11–14], to be denoted as correlated SPA (CSPA), whe
we introduce exact number parity (NP) projection [10
The CSPA incorporates small amplitude quantal fluctu
tions to the SPA and has been shown to provide a ve
accurate evaluation of the GC partition function (PF) i
correlated systems for not too low temperatures, cons
tuting a simple alternative to more complex approach
[15]. Here we evaluate the RPA correction to the SP
in closed form for general superfluid systems, in term
of the extendedquasiparticle RPA energies. Results ar
given for a 20-level pairing model, where NP projectio
is shown to be essential for the agreement with the e
act canonical results, and for the nuclei164Er and165Er,
where even-odd effects in the pairing energy and speci
heat are examined.

We consider a general two-body Hamiltonian written a
H ­ H0 2

1
2

P
n ynQ2

n [15], whereH0, Qn are Hermitian
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one-body fermion operators of the general form

Q ­
X
i,j

fQ11
ij c

y
i cj 1

1
2 sQ20

ij c
y
i c

y
j 1 Q02

ij cicjdg

­ q 1
1
2 scycdQsc

cy d, Q ­

√
Q11 Q20

Q02 2sQ11dt

!
, (1)

with q ­
1
2

P
i Q11

ii . Using the Hubbard-Stratonovich
transformation, the GC PF can be written as the auxilia
field path integral [4,15]

Z ­
Z

Dfxg Tr T̂ exp

(
2

Z b

0
Hfxstdg dt

)
, (2)

Hsxd ­ H0 2 mN 1
X
n

x2
n

2yn

2 xnQn

­ E0sxd 1
1
2 scycdH sxd sc

cyd ,

where T̂ denotes time ordering. Using now a Fourie
expansionxnstd ­

P
n xnneivnt , with vn ­ 2pnyb and

Dfxg ­
Q

n,nsby2pynd1y2dxnn, the CSPA is obtained
retaining the full integration over thestatic variables
xn0, to include large amplitude static fluctuations, an
integrating overxnnfi0 in the saddle point approximation
for everyxn0. The final result is [13,14]

ZCSPA ­
Z `

2`

dsxd Tr expf2bHsxdgCRPAsxd , (3)

CRPAsxd ­
Ỳ
n­1

DetfÃ21
nn0 sivndg ­

Y
a.0

va sinhf 1
2 blag

la sinhf 1
2 bvag

,

(4)

Ãnn0svd ­ dnn0 2
1
2 yn

X
a

Qp
na

fa

la 2 v
Qn0a , (5)

wheredsxd ­
Q

nsby2pynd1y2dxn and va are the ther-
mal quasiparticle RPA energies defined as the eigenval
of

Aaa0 ­ ladaa0 2
1
2 fa

X
n

ynQnaQp
na0 . (6)
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Here we used the diagonal quasiparticle basis whe
Hkk0sxd ­ lkdkk0, with la ; lk0 2 lk , fa ;
fk 2 fk0 , fk ­ s1 1 eblk d21 Fermi probabilities and
Qna ; sQndkk0 the elements of the extended matrice
(1) in this basis. The labela comprisesall pairsk fi k0

of the matrices (1) (including both signs oflk) and the
product in (4) runs over all pairsk , k0, i.e., all va of a
definite sign. As

DetfÃnn0 svdg ­ DetfAaa0 2 vdaa0gyDetfsla 2 vddaa0g ,

the nontrivial energiesva fi la fulfill Det fÃnn0 svdg ­ 0.
The integrand in (3) represents a thermodynamic pro

ability, with Tr e2bHsxd an independent quasiparticle PF
which is maximum at the fundamental self-consisten
mean fieldxn ­ ynkQnlx, while Eq. (4) is proportional
to the ratio of the PF of independent RPA bosons of e
ergiesva , to that of quasiparticle pairs of energiesla

considered as bosons [13]. Overcounting is thus avoide
Theva become the conventional thermal RPA energies
the self-consistent mean field. For arbitraryx, the lowest
va ’s may become imaginary (or complex) at low tem
peratures butCrpasxd remains finite and positive both for
va ­ 0 and for imaginaryva if bjvaj , 2p. This con-
dition will be violated at very low temperaturesT , T p

c ,
where the small amplitude approximation forxnnfi0 at un-
stable values ofxn0 [11] will break down. For the han-
dling of repulsive termsyn , 0, see [13].

In the case of a pairing Hamiltonian

H ­
X

k

´kscy
k ck 1 c

y

k̄ ck̄d 2 gPyP, Py ­
X

k

c
y
k c

y

k̄ ,

(7)

with k̄ the time reversed states, Eq. (3) becomes

ZCSPA ­
2b

g

Z `

0
Dd De2bD2ygZsDdCRPAsDd , (8)

ZsDd ­ Tr expf2bhsDdg ­
Y

k

4e2bgk cosh2f 1
2 blkg ,

hsDd ­
X

k

´0
kscy

k ck 1 c
y

k̄ ck̄d 2 DsPy 1 Pd 1
1
2 gV ,

CRPAsDd ­
Y

k

vk sinhfblkg
2lk sinhf 1

2 bvkg
, (9)

where lk ­ f´02
k 1 D2g1y2 are the quasiparticle ener-

gies, ´
0
k ­ ´k 2 m 2 gy2, gk ­ ´k 2 m, V ­

P
k 1,

and vksDd are the eigenvalues of the reduced RPA ma
trixµ

2lkdkk0 2
g
2 f̃ksukuk0 1 1d 2

g
2 f̃ksukuk0 2 1d

g
2 f̃ksukuk0 2 1d g

2 f̃ksukuk0 1 1d 2 2lkdkk0

∂
with uk ­ ´

0
kylk , f̃k ­ tanhf 1

2 blkg. The SPA is ob-
tained if CRPAsDd is omitted, while the BCS PF is
e2bD

2
0ygZsD0d, with D0 ­ gkPylD0 the self-consistent

gap. BCS represents the limit of infinite particle numbe
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or volume. Deviations from BCS increase as the size
the system decreases, and are appreciable ford . 0.01,
where 1yd ­ kTcy´ is the effective size parameter [2]
with ´ the average single particle level spacing at th
Fermi surface andTc the BCS critical temperature. In
heavy nuclei, typicallyd ø 0.6.

Equation (8) provides an accurate approximation to t
GC PF for T . Tp

c . However, in small systems with
fixed particle numberN, the canonical PF should be
employed. Although exact number projection is difficu
to implement in the CSPA whenfHsxd, Ng fi 0 [5], it is
easy to apply NP projection [9,10,16]exactly. The CSPA
can be directly applied in a restricted ensemble defin
by a projectorP if fP, Hsxdg ­ 0 and the eigenstates of
PHsxd are independent quasiparticle states. We sho
replace the GC trace in (3) by TrPe2bHsxd, andfk in (6)
by the projected occupation probability. The NP project
is

Ps ­
1
2 s1 1 seipN d, s ­ 61 ,

and fulfills fPs , Hsxdg ­ 0. In the diagonal basis,
Hsxd ­ E0 1

P
k lksay

k ak 2
1
2 d, with a

y
k , ak quasipar-

ticle operators, and states with even or odd quasiparti
number have definite number parity. Thus,

Zs ; Tr Pse2bHsxd ­
1
2 sZ1 1 s0Z2d ,

Z6 ­ e2bE0

Y
k

e
1

2
blk s1 6 e2blk d ,

with s0 ­ s (2s) if the quasiparticle vacuum has eve
(odd) number parity [6]. The NP projected probability i
fks ­

1
2 2 b21≠ ln Zsy≠lk . In the pairing case,

ZssDd ­
1
2 ZsDd

"
1 1 s

Y
k

tanh2s 1
2 blkd

#
, (10)

andf̃k ! f̃ks ­ b21≠ ln ZssDdy≠lk in the RPA matrix.
The canonical PF can then be obtained by performin

the number projection in the saddle point approximatio
for eachD [16,17], which yields

ZCsDd ø 2ZssDde2bmsDdN
. q

2ps
2
NsDd , (11)

with msDd obtained fromb21≠ ln ZssDdy≠m ­ N (con-
straint) and s

2
N sDd ­ b22≠2 ln ZssDdy≠m2 [CRPAsDd

should be also included in these derivatives, but RP
corrections inN are normally negligible]. The important
even-odd effects are exactly taken into account by the N
projection, while the second projection (11) removes t
remaining statistical fluctuations (s

2
N ). If msDd is nearly

constant, Eq. (11) can be applied afterD integration, with
a fixedm. In general, the present form is preferable sinc
the variation ofm with the static variablesx may be
non-negligible [17]. Application of Eq. (11) without pre-
vious NP projection fails to correctly describe even-od
differences for lowT (see below).
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We first consider a 20-level model (V ­ 10) where
the full canonical PF can be calculated exactly [16
As seen in Fig. 1 for uniform level spacing0.2´ and
g ­ 0.2´, for whichTc ­ 0.44´ (´ ø 1 MeV for nuclear
scales) NP projected CSPA leads to almostexactresults
for the canonical energyE ­ 2≠ ln ZCy≠b, and the
pairing energygkPyPl ­ sgybd≠ ln ZCy≠g, both in the
even (N ­ V) and odd (N ­ V 1 1) cases, forT .

T p
c ø 0.3Tc (CSPA breakdown; results are plotted fo

T . Tp
c 1 0.02´). The NP projection is required for the

agreement with the exact canonical results forT , Tc,
and becomesessentialfor N odd at lowT , where results
without NP projection are essentially the average of tho
for neighboring evenN (lower in energy). For lowT ,
NP projection increases slightly the pairing energy forN
even, but decreases it considerably forN odd, increasing
the odd total energy [forT ! 0, DEodd-even ø 0.91´

(exact), whilel1sD0d ø D0 ø 0.86´ in BCS]. For T .

Tc, the effects of NP projection become small, and eve
though the pairing energy is much larger than the BC
value, it is nearly equal in even and odd systems and do
not give rise to appreciable even-odd effects.

The RPA corrections increase the pairing energy
both the even and odd cases, decreasing the total ene
Part of these corrections account for the exchange term
missing in the SPA PF at lowT . These were included
in the SPA and BCS results for the pairing energ
by evaluation as expectation value [5], and reduce t

FIG. 1. Excitation energy from the even ground state (top
and pairing energy (bottom) as a function of temperature
the schematic 20-level model (see text) forN ­ 10 (left)
and N ­ 11 (right) particles. SPAspd and CSPAspd depict
the canonical number parity projected results, while SPA a
CSPA those without NP projection. Standard BCS and exa
canonical results [which overlap with those of CSPAspd for
T . Tp

c ] are also depicted.
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difference with the CSPA result (this procedure als
corrects the wrong lowT behavior of the SPA energy
derived from the PF [5]). The NP and RPA effects can b
visualized in the effective free energy potential (Fig. 2
At low T , NP projection makesFsDd slightly deeper for
N even, but shallower and with the minimum shifted t
a smallerD for N odd, while CrpasDd decreasesFsDd
almost uniformly in both cases.

The extended RPA energies fulfillv
2
k , 4l

2
k ;k, D for

g . 0 (Fig. 2), implying CRPAsDd . 1 ;D for T . Tp
c .

The lowest onev1 is the continuation of the Goldstone
mode associated with the brokenUs1d symmetry [13]
and dominatesthe RPA correction (4), vanishing at the
superfluid BCS solution and becomingimaginary for
D , D0. The minimum ofv2

1 determines the maximum
of CrpasDd and the CSPA breakdown. ForT . Tc, all
vk are real;D, but v1 still deviates considerably from
the rest for largeD, giving rise to a non-negligible RPA
correction forT , 3Tc. The effect of NP projection on
the vk is small, and visible mainly inv1, which will
now vanish at the maximum ofZssDd. At fixed b, m, D,
f̃k2 , f̃k1 in the RPA matrix, so thatv2

12 . v
2
11. The

RPA corrections are thus slightly smaller in the odd cas
We next consider the deformed nuclei164Er and165Er

with monopole pairing. We setH0 ­ Hs 2 h̄v0bdQ20,
with Hs a spherical part andQ20 a quadrupole operator,
and use the Baranger-Kumar configuration space for
valence nucleons [18] (for neutrons, then ­ 5, 6 major
shells with98 single particle states, the dimension of th
canonical many-body space being3.8 3 1023 for 164Er),
together with their parameters forHs, v0, Q20, and the
pairing strengths. For neutrons, the BCS pairing transiti
occurs atTc ø 0.45 MeV. The deformed to spherical
transition in the thermal HF approximation occurs a
T ø 1.7 MeV for a quadrupole interaction in these nucle
so that forT , 1 MeV we can approximately consider
bd fixed at theT ­ 0 self-consistent value. Quadrupole

FIG. 2. The free energyFsDd ­ 2T lnfZCsDdCRPAsDdg (left)
as a function ofD at fixed T , for the even (e) and odd (o)
cases of Fig. 1. SPA depicts2T ln ZCsDd. Right: Squared
RPA energiesv2

k (solid lines) and quasiparticle pair energie
s2lkd2 (dotted lines) as a function ofD at fixed T for the
even case. The lowest RPA energy vanishes at the BCS
D0y´ ­ 0.84. The lowest horizontal dotted line indicates th
breakdown value2s2pT d2.
1855
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FIG. 3. The neutron pairing energy (left) and the neutro
contribution to the specific heat (right), in164Er (e) and 165Er
(o), according to NP projected BCS, CSPA, and SPA (left).

shape fluctuations have a negligible influence forT ,

1 MeV on the magnitudes depicted.
CSPA and SPA results for the neutron pairing energ

(Fig. 3) are compared with NP projected BCS, wher
the self-consistent gapD0 is determined from the maxi-
mum of ZssDd (the BCS pairing energy is then evalu-
ated asgkPyPlDs). NP projection decreases the BCS
gap in the odd case (forT ! 0, D1 ­ D ø 0.8 while
D2 ø 0.54 MeV), but the sharp transition is still presen
at approximately the sameTc. The transition becomes
significantly washed out in the SPA and CSPA, particu
larly in the odd case, and deviations from BCS are co
siderable. This is also seen in the neutron contribution
the specific heat,Cy ­ dEnydT , where in the odd case
no remnant of the BCS discontinuity is left in the pro
jected CSPA result, while in the even case a smooth
kink is still visible (which is flattened in a GC treatment)
Even-odd differences become nevertheless small in t
CSPA for T . 0.6 MeV (where they are given by stan-
dard GC statistics, with vanishing effects from NP projec
tion). The CSPA breakdown occurs atT p

c ø 0.15 MeV
(at D ø 0.4 MeV) and the NP projected CSPA results ca
be considered “exact” forT . 0.25 MeV. The CSPA
corrections increase the SPA pairing energy but prac
cally do not affect the even-odd difference or the shape
the specific heat (which is slightly lower in the SPA) fo
T . 0.25 MeV. We also remark that forT , 1 MeV,
the behavior of the specific heat is completely disen
tangled from finite configuration space effects, which lea
to a Schottky-type peak atT ø 2.5 MeV, well aboveTc.

In conclusion, we have introduced NP projection in th
CSPA and shown that its effects, together with those
thermal fluctuations, are essential for an accurate descr
tion of even-odd effects in small superfluid systems. Fo
the same size parameter, the smoothing of the BCS tra
1856
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sition is more pronounced in the odd system due to th
smaller average pairing energy. Even-odd differences b
come nevertheless small forT . Tc. The high accuracy
of the present projected CSPA treatment also suggests t
it may provide a simple yet highly reliable (and elegan
alternative for describing correlated finite fermion system
at finite temperature, at least for interactions containing
few separable terms.
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