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r-v Mixing and Direct CP Violation in Hadronic B Decays
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The extraction of Cabibbo-Kobayashi-Maskawa matrix element information from hadronicB de-
cays generally suffers from discrete ambiguities, hampering the diagnosis of physics beyond the stan-
dard model. We show that a measurement of the rate asymmetry, which isCP violating, in B6 !

r6r0svd ! r6p1p2, where the invariant mass of thep1p2 pair is in the vicinity of thev reso-
nance, can remove the modspd uncertainty ina ; argf2VtdV p

tbysVudV p
ubdg present in standard analyses.

[S0031-9007(98)05376-9]

PACS numbers: 11.30.Er, 11.30.Hv, 12.15.Hh, 13.20.He
s

hat
e

,

e

he
tio
tio
n,

ors
te
D
t
ith

e
se

ant
e

tes

th
we
its

the
Although CP violation in the neutral kaon system
has been known since 1964 [1], it is not yet know
whether the Cabibbo-Kobayashi-Maskawa (CKM) matri
and hence the standard model, provides a correct desc
tion of CP violation. The next generation ofB-meson
experiments will address both the empirical determinati
of the CKM matrix elements and the issue of whether
single CP-violating parameter, as in the standard mode
suffices to explain them. Hadronic decays ofB mesons
will play an important role in elucidating the CKM matrix
elements, and many clever methods have been devise
evade the uncertainties the strong interaction would wei
on their extraction [1]. Nevertheless, discrete ambigu
ties in the CKM matrix elements remain, for inB0 2 B̄0

mixing the weak phasef enters as sin2f [2]. It is our
purpose to demonstrate that it is also possible to det
mine the sign of sinf through the measurement of the
rate asymmetry inB6 ! r6r0svd ! r6p1p2, where
the invariant mass of thep1p2 pair is in ther0-v inter-
ference region, so that the modspd ambiguity consequent
to the sin2f measurement is removed. This is necessa
to test the so-called unitarity triangle associated with t
CKM parametersa, b, andg, for the standard model re-
quires that these angles sum top [3].

In B6 ! r6r0svd ! r6p1p2 decays, proposed by
Enomoto and Tanabashi [4],CP violation is generated by
the interference between ab ! u tree amplitude and a
b ! d penguin amplitude, or their charge conjugates. T
rate asymmetry, which isCP violating, arises exclusively
from a nonzero phase in the CKM matrix, so that theCP
violation is termed “direct.” The latter’s existence require
that at least two amplitudes contribute and that both
strong and weak phase difference exists between them
If the internal top quark dominates theb ! d penguin
amplitude, then the weak phase in the rate asymme
enters as sina, wherea ; argf2VtdV p

tbysVudV p
ubdg [3].

In B0 2 B̄0 mixing, in contrast, sin2a enters. Strategies
to determine this latter quantity include the study ofB0 !
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pp [6], B0 ! rp [7], B0 ! pp andB0 ! pK [8], or
the latter withB0

s decays as well [9]. The last two method
assume the top quark dominates theb ! d penguin,
although the non-negligible charm quark mass implies t
the Glashow-Iliopoulos-Maiani (GIM) cancellation of th
up and charm quark contributions to theb ! d penguin
is not perfect [10]. However, as thet quark penguin
contribution is numerically larger [10], the sign of sinf

suffices to determine that of sina. For our purposes, then
f is proportional toa.

Grossman and Quinn have suggested that theB !
pp and B ! rp analyses mentioned above can b
combined to determine cos2a sina and hence sina
[2]. However, their analysis requires the use of t
factorization approximation to estimate the sign of a ra
of hadronic matrix elements—the phase of this ra
is the strong phase. In the factorization approximatio
the hadronic matrix elements of the four-quark operat
are assumedto be saturated by vacuum intermedia
states. This approximation can be justified in QC
in the limit of a large number of colors [11], and i
finds phenomenological justification in a comparison w
measuredB-decay branching ratios [12]. We also use th
factorization approximation, but the channel we propo
has the important advantage that it permits a signific
test of its applicability. This, we believe, is unique to th
channel we study and is possible only becausee1e2 !
p1p2 data in ther0-v interference region provides
additional hadronic information.

The CP-violating asymmetry inB6 ! r6r0svd !
r6p1p2 in the vicinity of thev resonance is predicted
to be more than 20% that of the summed decay ra
with a branching ratiosB6 ! r6r0d of more than
1025 [4,13,14]. Interfering resonances can generally bo
constrain and enhance the strong phase [15]. Here
can also extract the nonresonant strong phase; only
quadrant need be computed. To understand why
asymmetry is significantly enhanced byr0-v mixing,
© 1998 The American Physical Society
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consider the amplitudeA for B2 ! r2p1p2 decay:

A  kp1p2r2jH TjB2l 1 kp1p2r2jH P jB2l ,

(1)

whereH T andH P correspond to the tree and pengui
diagrams, respectively. Defining the strong phased, the
weak phasef, and the magnituder via

A  kp1p2r2jH TjB2l f1 1 reideifg , (2)

one hasA  kp1p2r1jH TjB1l f1 1 reide2ifg. Here
f is 2a if the top quark dominates theb ! d penguin.
Thus, theCP-violating asymmetry,Afi, is

Afi ;
jAj2 2 jAj2

jAj2 1 jAj2


22r sind sinf

1 1 2r cosd cosf 1 r2 . (3)

If we are to calculateAfi reliably and hence deter-
mine sinf we need to know the strong phase,d. Let
tV be the tree andpV be the penguin amplitude for pro-
ducing a vector mesonV . In terms of ther and v

propagators,s21
V (with sV  s 2 m2

V 1 imV GV ands the
invariant mass of thep1p2 pair), and the effectiver-v
mixing amplitude,P̃rv , we find

kp1p2r2jH TjB2l 
gr

srsv

P̃rvtv 1
gr

sr

tr ,

kp1p2r2jH P jB2l 
gr

srsv

P̃rvpv 1
gr

sr

pr ,
(4)

wheregr is the r0 ! p1p2 coupling. Maltmanet al.
[16] have considered the direct couplingv ! p1p2,
not included in Ref. [4], as well as the “mixing” contri-
bution v ! r0 ! p1p2. Fortunately, this additional
term can be absorbed into an energy-dependent, eff
tive mixing amplitude, P̃rvssd [17]. The latter has
recently been extracted [17] from the world data fo
the reactione1e2 ! p1p2 [18], for

p
s near thev

mass. Assuming the SU(3) value of1y3 for the ratio
of the v to r photocouplings and adopting the form
P̃rvssd  P̃rvsm2

vd 1 ss 2 m2
vdP̃0

rvsm2
vd, the best fit

to the world data isP̃rvsm2
vd  23500 6 300 MeV2

and P̃0
rvsm2

vd  0.03 6 0.04 [17]. We have assumed
that P̃rvssd is real in the resonance region [19]; re
laxing this assumption yields Im̃Prvsm2

vd  2300 6

300 MeV2, with no change in the real part [17]. Note tha
if finite width corrections, of importance for ther, are in-
cluded, the ratio ofv to r photocouplings decreases b
about 10% [20] and̃Prvssd becomes more negative to the
same degree. Such corrections do not impact the sign
this quantity, which is determined by the pion form facto
in the vicinity of thev. In contrast, Enomoto and Tana
bashi adopt the model of Ref. [21] and make the abo
SU(3) assumption to find a real,s-independentP̃rv 
20.63Gvmv ø 24100 MeV2 [4,22]. Using Eqs. (3) and
(4) we find

reideif 
kp1p2r2jH P jB2l
kp1p2r2jH TjB2l


P̃rvpv 1 svpr

P̃rvtv 1 svtr

.

(5)
n

ec-

r

-

t

y

of
r

-
ve

Recalling the definitions of Ref. [4],

pv

tr

; r 0eisdq1fd,
tv

tr

; aeida ,
pr

pv

; beidb ,

(6)

one finds, to leading order in isospin violation,

reid 
r 0eidq

sv

hP̃rv 1 beidb ssv 2 P̃rvaeida dj . (7)

Note thatda, db, anddq characterize the remaining un
known strong phases. In the absence of isospin vio
tion, as characterized here byr0-v mixing, at least one
of these phases would have to be nonzero in order to g
erate a rate asymmetry and henceCP violation. In the
model of Banderet al. [5], these phases are generated b
putting the quarks in loops on their mass shell and th
are referred to as “short-distance” phases.

The resonant enhancement of theCP-violating asym-
metry is driven byP̃rvysv. We stress thatb is essen-
tially zero in B2 ! r2p1p2 because the gluon in the
strong penguin diagram couples to an isoscalar combi
tion of uu anddd. Thus it does not couple to an isovec
tor r0 in the absence of isospin violation. Hence,pr as
defined above is nonzeroonly if electroweak penguin dia-
grams, naively suppressed byaemyas, or isospin violating
effects in the hadronic matrix elements which distingui
the r6 andr0 are included. Both effects were neglecte
in Ref. [4]. As s ! m2

v, the asymmetry is maximized
if jx j  jP̃rv jymvGv , Os1d and dq 1 h , 6py2,
whereh  2 argsv. Using standard values formv and
Gv [3] yields jxj  0.53 andh  2py2. Note thatdq

as estimated in the factorization approximation is*2p

[4], so thatdq 1 h * 23py2 at thev mass. Thus, the
participation of thev resonance, with its narrow width
strongly enhances the strong phase without the penalty
a severely smalljxj.

The CP-violating asymmetry from Eqs. (3) and (7)
then, is determined byP̃rv, mv , Gv , and the short
distance parametersa, da, b, db, r 0, dq, as well as
f, the weak phase which we wish to determine. T
crucial issue is therefore how well the latter paramete
can be determined. As the sign of sinf is of unique
significance, our particular focus is on the short-distan
phase information required to extract it without ambiguit
The sign of theCP-violating asymmetry in Eq. (3) is
determined by sind and sinf. The sign of sind is
in turn determined by cosdq Im V 1 sindq ReV, where
r expsidd ; r 0V expsidqdyjsvj2, noting Eq. (7). With
x ; P̃rvysmvGvd as before, we findjxj . b, a ø 1,
and Imx ø Rex, so that fors ø m2

v,

r sind ø P̃rv

r 0

jsv j2
fss 2 m2

vd sindq 2 mvGv cosdqg .

(8)

The sign of sind at s  m2
v is thus given byP̃rv and

cosdq. The former is determined bye1e2 data, but what
1835
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of cosdq? We will use the factorization approximation to
compute cosdq and thus its sign, yet the above asymmet
can also be used to test its utility. As seen from Eq. (8
the shape of the asymmetry with the invariant mass of t
p1p2 pair is primarily of Breit-Wigner form, as dictated
by the1yjsvj2 factor, although it will be “skewed” if the
coefficient of thess 2 m2

vd term is nonzero. Thus, the
sign of the skew of the asymmetry is driven by sindq. We
show below that the empiricals dependence of̃Prvssd
abouts  m2

v and the magnitude of its imaginary part a
s  m2

v do not cloud this interpretation. Thus, we ca
extract tandq. This does not fix the sign of cosdq, so that
we use the factorization approximation to fix its sign an
hence determine that of sinf.

We have chosen to study just one of the cha
nels considered in Ref. [4], namely,B6 ! r6r0svd !

r6p1p2, as it is of special character. In this case, th
penguin amplitude to produce ar0 meson is zero but for
isospin violation, so thatb is nonzero only when elec-
troweak penguins and isospin violating effects which di
tinguish ther6 andr0 are included. As a consequence
we can associate the skew of the asymmetry with a sin
short-distance quantity, sindq, and ultimately test the fac-
torization approximation we apply.

In principle, the short-distance parameters can be co
puted by using the operator product expansion to constr
an effective Hamiltonian at theb quark scale,m ø mb . It
is usually written as a sum of tree and penguin contrib
tions, as anticipated in Eq. (1). Following Ref. [23] w
have, for example,

H eff 
4GFp

2

(
VubV p

ud

2X
i1

cismdO sud
i

2 VtbV p
td

10X
i3

cismdO sud
i

)
1 H.c., (9)

with O
sud
1  dLagmuLbuLbgmbLa and O

sud
2 

dLgmuLuLgmbL [23]. Ten four-quark operators charac
terize the effective Hamiltonian;i  3, . . . , 6 label the
strong penguin operators, whereasi  7, . . . , 10 label the
electroweak penguins. The Wilson coefficientsci are
known through next-to-leading logarithmic order [23
yet consistency to one-loop order requires that the mat
1836
ry
),
he

t
n

d

n-

e

s-
,

gle

m-
uct

u-
e

-

],
rix

elements be renormalized to one-loop order as well [1
This renormalization procedure results ineffectiveWilson
coefficients c0

i which multiply the matrix elements of
the given operators at tree level. The effective Wilson
coefficients develop an imaginary part if the quarks in
loops are set on their mass shell; to compute them, we u
the analytic expressions of Ref. [24] with a charm quark
mass ofmc  1.35 GeV. There is some sensitivity to
k2, the invariant mass of the exchanged boson, and th
we use two values ofk2, k2ym2

b  0.3, 0.5, covering the
expected “physical” range [10].

We now turn to the evaluation of the matrix elements
of this effective Hamiltonian. We use the factorization
approximation, so thatkr

0
I r2jdLgmuLuLgmbLjB2l 

kr2jdLgmuLj0l kr
0
I juLgmbLjB2l 1 s1yNcd kr

0
I juLgm 3

uLj0l kr2jdLgmbLjB2l. Nc is the number of colors,
but here it is treated as a phenomenological param
ter. Fits to measured branching ratios inB ! DpX
decays indicate that the empirical value of the ratio
sc0

1 1 c0
2yNcdysc0

2 1 c0
1yNcd is bounded byNc  2 and

Nc  3 [12]. Large Nc arguments justify the factoriza-
tion approximation [11], yetNc  ` yields a ratio of the
wrong sign. Thus, we useNc  2, 3 as an empirically
constrained gauge of the uncertainties inherent in th
factorization approximation in what follows.

In the preceding paragraph,r
0
I (andvI ) denote isospin-

pure states, forP̃rv characterizes isospin violation in
the r0 and v. Consistency requires that we compute
all other sources of isospin violation to the same orde
In particular, we need to estimate how isospin violation
distinguishesr6 from r

0
I andvI in the hadronic matrix

elements. This additional source of isospin breaking ca
be parametrized via

kr2jdLgmuLj0l kr0
I juLgmbLjB2l

kr
0
I juLgmuLj0l kr2jdLgmbLjB2l

; 1 1 ˜́ . (10)

We use the model of Ref. [25] to evaluate theB2 !
r2, r

0
I transition form factors and find thatj ˜́ j is no larger

than 0.01. The resultanta, b, etc., as per Eq. (6), are,
definingj ; 4fsc0

3 1 c0
4d s1 1 1yNcd 1 c0

5 1 c0
6yNcg 1

sc0
9 1 c0

10d s1 1 1yNcd and assumingt quark dominance,
a expsidad  1,
beidb 
3
j

sc0
9 1 c0

10d
µ

1 1
1

Nc

∂
1

2˜́
j

µ
c0

4 1
c0

3

Nc
1 c0

10 1
c0

9

Nc

∂ ∑
1 2

3
j

sc0
9 1 c0

10d
µ

1 1
1

Nc

∂∏
, (11a)

r 0eisdq1fd  2

(
j 1 2˜́ sc0

3yNc 1 c0
4 1 c0

9yNc 1 c0
10d

2sc0
1 1 c0

2d s1 1 1yNcd
2

sc0
1yNc 1 c0

2d ˜́j

2fsc0
1 1 c0

2d s1 1 1yNcdg2

)
VtbV p

td

VubV p
ud

. (11b)
,
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We use the parameters of Ref. [4] to evaluateVij. The
CP-violating asymmetry, which follows from Eqs. (3)
(6), (7), and (11), is shown in Fig. 1(a) as a function
the invariant mass of thep1p2 pair. The asymmetry
is no less than 20% at thev mass. The asymmetry re
ally is driven byr0-v interference as the same asymm
tries, now with Imsc0

id  0, are shown in Fig. 1(b). In
f

-

the absence of the short-distance phases, the asymm
is symmetric about thev mass. Figure 1(c) shows th
sensitivity of theNc  2, k2ym2

b  0.5 asymmetry to the
error in P̃rvsm2

vd, and Fig. 1(d) shows the sensitivity o
the same asymmetry to the allowed̃P0

rv and ImsP̃rvd
contributions [17]. Both of the latter generate a slig
skew to the shape of the asymmetry about thev mass, yet
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FIG. 1. The CP-violating asymmetry, Eq. (3), in percent,
plotted versus the invariant massq of the p1p2 pair in
MeV for fNc, k2ym2

bg. (a) The asymmetries withP̃rv 
23500 MeV2 and ˜́  20.005 are shown forf2, 0.5g (solid
line), f3, 0.5g (long-dashed line),f2, 0.3g (dashed line), and
f3, 0.3g (dot-dashed line). (b) The asymmetries of (a) a
shown with Imsc0

id  0. (c) The f2, 0.5g asymmetry of (a)
is shown (solid line), withP̃rv  23200 MeV2 (long-dashed
line) and with P̃rv  23800 MeV2 (dashed line). (d) The
f2, 0.5g asymmetry of (a) is shown (solid line), with̃P0

rv 
0.027 (long-dashed line) and with ImsP̃rvd  2300 MeV2

(dashed line).

these effects are sufficiently small for it to be meanin
fully associated with the short-distance parameters. O
careful computation of the effects which would generate
nonzerob allows us to conclude thatb, which ranges
from 0.12 0.18, is indeed smaller thanjx j , 0.53, so
that the skew of the asymmetry constrains sindq. Indeed,
a measurement of the shape of the asymmetry constra
whether any long-distance phase accrues in the break
of the factorization approximation—i.e., throughqq pair
creation in the full matrix elements.

We have computed theCP-violating asymmetry in
B6 ! r6r0svd ! r6p1p2 decay and have found tha
the asymmetry, which is greatly enhanced throughr0-v
interference, is significantly constrained throughe1e2 !

p1p2 data in ther0svd interference region. Indeed,
the magnitude of the asymmetry would be preserv
even if dq, the phase arising from the effective Wilso
coefficients, were zero, though itssign does depend on
cosdq. In the factorization approximation, cosdq , 0 for
any Nc . 0 and k2ym2

b , as the magnitude of̃e is set by
that of isospin violation. Thus, for the decay of interes
the factorization approximation fails to predict the sign o
cosdq only if it is badly wrong. Fortunately, moreover
the measurement itself provides a significant test of t
factorization approximation, for tandq can be extracted as
well. This is a much more germane test of its utility tha
that afforded by empirical branching ratios. Thus, we a
led to conclude that theCP-violating asymmetry in the
re
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above channel is large and robust with respect to the kno
strong phase uncertainties, admitting the extraction of t
weak phasef, or specifically2a [3], from this channel.
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