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Time Evolution of a Quantum Many-Body System: Transition from Integrability
to Ergodicity in the Thermodynamic Limit
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Numerical evidence is given for nonergodic (nonmixing) behavior, exhibiting ideal transport, of a
simple nonintegrable many-body quantum system in the thermodynamic limit, namely, the kitked
model of spinless fermions on a ring. However, for sufficiently large kick parametarsl V we
recover quantum ergodicity, and normal transport, which can be described by random matrix theory.
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A simple question is addressed here: “Do intermedi-statistics smoothly interpolating from Poisson to RMT), it
ate quantum many-body systems, which are neither inis thus important to question if and when such nonergod-
tegrable nor ergodic, exist in the thermodynamic limit"?icity can survive TL.

While it is clear that integrable systems are rather excep- In this Letter we introduce a family of simple many-
tional, it is an important open question whether a finitebody systems smoothly interpolating between integrable
generic perturbation of an integrable system becomes eand ergodic regimes, namelkicked -V model (KtV)
godic or not in the thermodynamic limit (TL}jze — o«  of spinless fermions with periodically switched nearest-
andfixed density It is known that local statistical prop- neighbor interaction on a 1D lattice of siZeand peri-
erties of quantum systems with fedegrees of freedom odic boundary conditiong = 0, with a time-dependent
whose classical limit is completely chaot&fodic are  Hamiltonian,
universally described byandom matrix theoryRMT); -1
Whjle in. the other extreme case Mtegrab_le systems  H(r) = Z [—%t(c}Lcj+1 + H.c) + 8,(7)Vn;n;1],
Poissonian statistics may typically be applied [1,2] (with j=0
some notable nongeneric exceptions such as finite dimen-

. . . ! @
sional harmonic oscillator). This statement has also been ) . i .
recently verified numerically for integrable amstrongly ~@nd give numerical evidence for the existence ofraer-
nonintegrable many-body systems of interacting fermionghediate nonergodic, regirria TL by direct simulation of
[3] which do not have a classical limit. the time evolution.c; , ¢;, n; are fermionic creation, anni-

Having lost the reference to classical dynamics, we rehilation, and number operators, respectively, apr) =
sort to the definition ofjuantum ergodicityalso termed ~ 2.m=—= (7 — m). Deviations from quantum ergodicity
quantum mixin [4] as the decay of time correlations (OF mixing) are characterized by several different quanti-
(A(7)B(0)) — (A)(B) of any pair of quantum observables ti€S as described below.

A and B in TL, taking the time limit — < in the end. The KtV model (1) is a many-body analog of popular
In [4] a many-body system of interacting bosons has beehD nonintegrable kicked systems [2] such as, e.g., kicked
studied, and it has been shown that quantum ergodi¢©tor: Its evolution (Floquet) operator over one period,
ity corresponds to strongly chaotic (ergodic) dynamics ofU = Texd—i [, drH(7)] (i = 1), factorizes into the
associated nonlinear mean-field equations. As a cons@roduct of a kinetic and potential part,

quence of linear response theory, quantum ergodicity also -1

implies normal transport anfinite transport coefficients U = exp(—iv njnj+1)
(such as dc electrical conductivity). On the other hand,

integrable systems, which are solvable by Bethe ansatz o
or quantum inverse scattering, are characterized by (infin- . ~

itely many) conservation laws and are tmmnergodic It xexp i Z coslsk + ¢)nk>’ )
has been pointed out recently [5] that integrability implies ) )
nonvanishing stiffness, i.e., ideal conductance with infi—Wh_ereS = 2 /L. The flux parametqﬁ is used in order
nite transport coefficients (or ideal insulating state). Astong'ltroduce acurrent operator = (i/0)Uta4Ulg—o =
we argue below, any deviation from quantum ergodicity>.x—o Sin(sk)ix, elsewhere we pup := 0. The tilde de-
generically implies nonvanishing long-time current auto-notes the operators which refer tnomentumvariable
correlation and therefore an infinite transport coefficientk, & = L~'/? JL;OI explisjk)cj, fix = Egék. The KtV
Since generic nonintegrable systems of finite size (nummodel is integrable if either = 0, or V = 0 (mod 27),
ber of degrees of freedom) are nonergodic (obeyimixed or V — 0 and ¢/V finite (continuous timer-V model

Jj=0

k=0
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[6]), while for t ~ V ~ 1 it is expected to be noninte- phasesmn, and eigenstategn) of evolution operator
grable, eithemguantum ergodior intermediate We ex- U, Uln) = e ™|n),n = 1,..., N', one can write the
pect that unitary many-body quantum maps, such as (2Jlissipative dc conductivity of such a kicked system
also mimic the dynamics of gener@aitonomouguantum 5 = ZZ\LI (9gmn)* = C;(0) + 2 anl‘f:/lz C,;(m). Note
many-body systems on the energy shell similar to the Wavhata g, = (n|J|n).
1D quantum maps describe quantum Poincaré sections of |n Fig. 1 we present numerical computation of cor-
autonomous 2D quantum chaotic systems (e.g., [7]).  relation functionC,(m) for parameters = V =1 and
The total number of particle§ = >.; n; is conserved, ; — v = 4, for various size<, but at fixed density =
so the mapU acts over Hilbert (Fock) spac@f of di- /1 = L. Quite generallyC; (m) exhibits fast relaxation
mension N = (y). The dynamics of a given initial on a time scale™ which is typically small,M* ~ 10,
many-body staté(0)), which is an iteration of the map and roughly independent df, and afterwards it fluctuates

l¢p(m)) = Ulgp(m = 1)) = U™|(0)), can be performed around the averaged limiting value, thtffness
most efficiently by observing that the kinetic paft is di-

M
agonal in thg momentum k_)as*,is) = é,:r},..:,EZNIO),_kl < D; = |lim % Z C;(m), 4
.-+ < ky while the potential parlU/y is diagonal in the M2 m=1
position basis|j) = c;-r],...,c;-rN|0>,jl < ... < jy. The where the strength of fluctuations decreases with increas-

transformation between the tws;; = (jlk),is an anti- ing sizeL. Note again that TLL — OOMShOUId be taken
symmetrizedV-dimensional discrete Fourier transforma- Prior to the time-limit, limy_.(1/M) >, _, () which, for
tion (DFT) on L sites which has been efficiently coded Systems of finite sizé here and below, is estimated nu-
in ~\ log, /N floating point operations (FPO) by fac- merically as(1/M") >,,~,, ., (-) with sufficiently large
torizing L site DFT to the product of (L log, L) two-  but fixed averaging timeM’ > M*; we take M’ = 30.
site transformations parametrized withx 2 submatrices For sufficiently large control parameters the system is
(a, By, 6)]-]-:[, WPich are ?uccess:riverTappIiefrj to creationgquantum ezngdIC (c_asef.=.V :sf of Fl%}\}), Dj)goej

- to zero, ando remains finite ag. — o — ) an
operators,(c],.c],) — (ach N 'Bc{/’ycj " (.SC’/)’ " ?” p = N/L fixed, whereas in the other case=t V = 1
Slater determinantdl,c; |0) which contain a particle of Fig. 1), D, remains well above zero as we approach

at sites;j or j/. Our algorithm (fermionic fast Fourier TL, whereas conductivityr diverges [8]. In Fig. 2 we

transform) requires almost no extra storage apart from,ove analyzed /L scaling ofD,. Again, for large val-
a vector of ' ¢ numbers and works for lattices of o o parameters, say= V = 4, D, is already practi-

sizesL =.2p.’ 10,12, 15,20, 24,30, and40. Therefore, the cally zero forL = 20, while for smaller (but not small)
map (2) is iterated on a Vecm”’?(’f) = (klg(m), us- conirg) parameter®, ~ D7 + B/L, whereD7 > 0. In
ing the matrix compositior/ = F Uy FUr In roughly_ theclose-to-criticalcaser = V = 2, we find a larger cor-
2N log, N FPO per time step which is by f3ar SUPETION re|ation time M* ~ 102, and hence use a longer aver-
to complete (_jlagonallzauon techniqued () FPOJ, aging time M’ = 200. In Fig. 3 we illustrate arideal
B A an e JUantum . wansportfor 1~ - 1 by plting a persstent ur-
{7 — I M 7/ 7/ P
spectrum ofU. Sntjk, limps—ee(1/M) >0 —, (K'[J(m)|K") vs the initial
We now consider the current time-autocorrelation func-
tion C;(m) = (1/L){J(m)J(0)), whereJ(m) = Utmju™
and{-) = (1/N)Tr(-) is a “microcanonical average.”

0.1

is diagonal in the momentum basiéjl?) = J,;Il?), and 0.08
(J) =0. SoCy(m) can be evaluated by means of time
evolution of momentum initial statdg (0)) = |k’), £ 0.06
(&
1 / 0.04
C;(m) = TN > T D Siviw(m), 3) PN A
& k 0.02 - \k\\ '/‘\'_’.\"'\'\j/'\r\,/-"-v‘\v/' NS e

where  pii(m) = [k | ¢(m)]> = k| U™|K)?.  For L et aa— e ey ——
large sized., a smaller but uniformly random sample of 0 m(disscg“me) 40 50 60

N initial statesl/;’), 1 < N' <« N, is used in order . . . .
to save computer time. Direct computation®©f(m) for ~ FIG. 1. Current autocorrelation functio@,(m) against dis-
m = M can be performed ir-QMN N /L) log, N crete timem for the quantum ergodia (= V = 4, lower set of
FPO since, due to translational symmetry, one car(l:urves for various sizes) a.nd 'nte".ne(ﬂatle reg'mes.(: V=

imultaneously simulate the dynamics &f different , upper set of curves) with densily = 3. Averaging over
simu A y y the entire Fock space is performefly’ = N, for L < 20,
states with different values of the conserved totalyhereas random samples &' = 12000 and N’/ = 160 ini-

momentum K = >, k/, (modL). Using the eigen- tial states have been used for= 24 andL = 32, respectively.
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FIG. 2. StiffnessD, vs 1/L at constant density = 211 and FIG. 3. Pe(sistent.curremgzp against initial current/; (aver-
for different values of control parameters in the ergodies ~ aged over bins of siz&J =0.05) in the ergodic; = V = 4,
V=4andt =V =2, and intermediate; = 1,V = 2 and (nearly) ergodic = V = 2, and intermediate, = V = 1 and
t =V =1, regimes. Other parameters are the same as in= 1,V = 2, regimes L = 24 andp = %.)
Fig. 1.

while for smaller values of parametersV, R(m) satu-
currentJ;,. The normal transport in the ergodic regimerates to a smaller value indicating that there may exist

t =V = 4 is characterized byl{, = 0, while for r ~  approximate conservation laws causing nontrivial local-
V ~ 1 we find the ideal transport with the persistent cur-ization inside the Fock space. Scaling with. suggests

rent being proportional to the initial current! = o.J;,.  that, even in TLR is smaller thamRcor for the interme-

Proportionality constant can be computed from [Eq. (4)] diate regimer ~ V ~ 1 (Fig. 5).
D; = (1/L) <Jz,J]§> = (a/L)(J?), soa = 2D, /[p(1 — Finally, we discuss current fluctuations, or more gener-

)], where(J2) is given below [Eq. (5)]. ally, current distriputionP“I) = (yl6U - D) giving
Because of translational symmetry, the total momen@ Probability density of having a currentin a state]y).

tum K = 3, kiix (modL) is the only conserved quan- We let the state) Wlth a “good”lknown initial currentl,

tity (apart from N and parity), so the evolution of evolve for a Iong time from which we compute a steady-

the initial momentum statél?) takes place irl.NK ~  state current distribution (SSCD),

N/L dimensional subspacé{y, spanned bylk) with

K = |k| := Y, k,. Starting with a momentum state

|k"y, the number of “excited” statel:) after timem is

characterized by information entropy [9] (see also [7])

as exp— 2 pii.(m)In p;i.(m)]. Averaging the entropy

over a uniformly random sample oV initial states|k’),

we definerelative localization dimensioim Fock space as

a measure of quantum ergodicity,

= L e -
N N

M
PUI) = lim — 3 (8(y — JO)3( — J(m))).

M—= M m=1
Of course, delta functions should have a finite small width
providing averaging over several staté$ with J; = I.
In the quantum ergodic regime all states eventually be-
come populated, so SSCBXI; I) should be independent
of the initial currentl; and equal to themicrocanoni-
cal current distribution Pp,.(I) = (6(I — J)). It has

/ been shown by elementary calculation that in TL
R(m) > Zp;zzf(m)lnp;:;;/(m)) y y
¥k

the latter becomes a GaussiaBy (1) — Pgauss(I) =
S o _ (1//27(J2)) exp(—%[z/uz)), while at any finite sizel
Again, similar behavior is found numerically f&(m) as

for C,(m), namely, it typically saturates within the same

I I I
(short) correlation timeM™ to a roughly constant value S \/L;3§ —]
R = limy—«(1/M) ¥¥_ R(m). If there are no conser- ’ v AV
vation laws then the unitary blocks”| 47, should have no e
preferred basis other than eigenbasis, and hence they may __ COE ---
be modeled by circular orthogonal ensemble (COE) of £ e e e S e
random matrices for sufficiently large giving the max-
imal asymptotic (asN' — ) value of relative localiza-
tion dimensionRcor = 0.655. This case corresponds to A
guantum ergodicity sincm,;,(m),ﬁfor m > M*, become | | |
pseudorandom and independentaindk’, hence the cor- 30 40 50 60

m (discr.time)

relation function (3) factorizes and yield¥m) = (J)*> =
0. Indeed, as we show in Fig. 4, such behavior is obtaine@|c. 4. Relative localization dimension in Fock spakén)
only for sufficiently large parameters, say=V =4, for data of Fig. 1.
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FIG. 5. Limiting relative localization dimensioR vs 1/L for
data of Fig. 2.

the first few moments are

_NL-N) 1
<J2> - 2L — 1) = 2p(1 p)L,
Y 3L —1[2N(L — N) = L] 1
U= aNe-2@-n~  °F @<L>‘
(5)

Numerical results for. = 24 (see Fig. 6) indicate that
in the ergodic regimet = V = 4, SSCD is already in
good agreement with microcanonical distributiBp. (1),
while in the nonergodic (intermediate) regime= V =

1, SSCD islocalizedon a smaller range indicating that
the current fluctuation is smaller thag?). Note that
the meanl = [ dIIP(I;I,) is just a persistent current, so
I = al, (see Fig. 3).

16
14
12
1 o
08 [
06

P(;l0)/Pgauss(l)

0.4
0.2
0

FIG. 6. Steady-state current distribution divided by a Gauss-
ian P(1,1y)/Pcauss(I) averaged over279 initial states with
|I] < 0.08 in the ergodic,t = V = 4, and intermediate; =

V = 1, regimes, and the finite-size microcanonical current dis-
tribution P, (I). (L =24 andp = 4—11.)

our data for other densitiep, = % % % and % with a

general rule that the border of a quantum ergodic regime
moves to slightly smaller values of control parameters
t,V as the densityp approache%l. It should be noted
that statistics of eigenphases of evolution operatdrave
been computed as well, and it has been found that, in
the ergodic regime, level statistics are indeed that of COE
while, in the intermediate regime, it interpolates smoothly
between Poisson and COE.
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