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Numerical evidence is given for nonergodic (nonmixing) behavior, exhibiting ideal transport, of a
simple nonintegrable many-body quantum system in the thermodynamic limit, namely, the kickedt-V
model of spinless fermions on a ring. However, for sufficiently large kick parameterst and V we
recover quantum ergodicity, and normal transport, which can be described by random matrix theory.
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A simple question is addressed here: “Do intermed
ate quantum many-body systems, which are neither i
tegrable nor ergodic, exist in the thermodynamic limit”?
While it is clear that integrable systems are rather exce
tional, it is an important open question whether a finit
generic perturbation of an integrable system becomes
godic or not in the thermodynamic limit (TL),size ! `

and fixed density. It is known that local statistical prop-
erties of quantum systems with fewdegrees of freedom
whose classical limit is completely chaotic/ergodic, are
universally described byrandom matrix theory(RMT);
while in the other extreme case ofintegrable systems,
Poissonian statistics may typically be applied [1,2] (with
some notable nongeneric exceptions such as finite dime
sional harmonic oscillator). This statement has also be
recently verified numerically for integrable andstrongly
nonintegrable many-body systems of interacting fermion
[3] which do not have a classical limit.

Having lost the reference to classical dynamics, we re
sort to the definition ofquantum ergodicity(also termed
quantum mixing) [4] as the decay of time correlations
kAstdBs0dl 2 kAl kBl of any pair of quantum observables
A and B in TL, taking the time limitt ! ` in the end.
In [4] a many-body system of interacting bosons has bee
studied, and it has been shown that quantum ergod
ity corresponds to strongly chaotic (ergodic) dynamics o
associated nonlinear mean-field equations. As a cons
quence of linear response theory, quantum ergodicity al
implies normal transport andfinite transport coefficients
(such as dc electrical conductivity). On the other hand
integrable systems, which are solvable by Bethe ansa
or quantum inverse scattering, are characterized by (infi
itely many) conservation laws and are thusnonergodic. It
has been pointed out recently [5] that integrability implie
nonvanishing stiffness, i.e., ideal conductance with infi
nite transport coefficients (or ideal insulating state). A
we argue below, any deviation from quantum ergodicit
generically implies nonvanishing long-time current auto
correlation and therefore an infinite transport coefficien
Since generic nonintegrable systems of finite size (num
ber of degrees of freedom) are nonergodic (obeyingmixed
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statistics smoothly interpolating from Poisson to RMT),
is thus important to question if and when such nonergo
icity can survive TL.

In this Letter we introduce a family of simple many
body systems smoothly interpolating between integrab
and ergodic regimes, namely,kicked t-V model (KtV)
of spinless fermions with periodically switched neares
neighbor interaction on a 1D lattice of sizeL and peri-
odic boundary conditionsL ; 0, with a time-dependent
Hamiltonian,

Hstd ­
L21X
j­0

f2 1
2 tscy

j cj11 1 H.c.d 1 dpstdVnjnj11g ,

(1)

and give numerical evidence for the existence of aninter-
mediate nonergodic regimein TL by direct simulation of
the time evolution.c

y
j , cj , nj are fermionic creation, anni-

hilation, and number operators, respectively, anddpstd ­P`
m­2` dst 2 md. Deviations from quantum ergodicity

(or mixing) are characterized by several different quan
ties as described below.

The KtV model (1) is a many-body analog of popula
1D nonintegrable kicked systems [2] such as, e.g., kick
rotor: Its evolution (Floquet) operator over one perio
U ­ T̂ expf2i

R11

01 dtHstdg sh̄ ­ 1d, factorizes into the
product of a kinetic and potential part,

U ­ exp

√
2iV

L21X
j­0

njnj11

!

3 exp

√
it

L21X
k­0

cosssk 1 fdñk

!
, (2)

wheres ­ 2pyL. The flux parameterf is used in order
to introduce acurrent operatorJ ­ siytdUy≠fUjf­0 ­PL21

k­0 sinsskdñk , elsewhere we putf :­ 0. The tilde de-
notes the operators which refer tomomentumvariable
k, c̃k ­ L21y2

PL21
j­0 expsisjkdcj , ñk ­ c̃

y
k c̃k. The KtV

model is integrable if eithert ­ 0, or V ­ 0 smod 2pd,
or tV ! 0 and tyV finite (continuous timet-V model
© 1998 The American Physical Society
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[6]), while for t , V , 1 it is expected to be noninte-
grable, eitherquantum ergodicor intermediate. We ex-
pect that unitary many-body quantum maps, such as (
also mimic the dynamics of genericautonomousquantum
many-body systems on the energy shell similar to the w
1D quantum maps describe quantum Poincaré section
autonomous 2D quantum chaotic systems (e.g., [7]).

The total number of particlesN ­
P

j nj is conserved,
so the mapU acts over Hilbert (Fock) spaceH of di-
mension N ­ s L

N d. The dynamics of a given initial
many-body statejcs0dl, which is an iteration of the map
jcsmdl ­ Ujcsm 2 1dl ­ Umjcs0dl, can be performed
most efficiently by observing that the kinetic partUT is di-
agonal in the momentum basisjkl ­ c̃

y
k1

, . . . , c̃
y
kN

j0l, k1 ,

· · · , kN while the potential partUV is diagonal in the
position basisjjl ­ c

y
j1

, . . . , c
y
jN

j0l, j1 , · · · , jN . The
transformation between the two,F$j $k ­ k $j j $kl, is an anti-
symmetrizedN-dimensional discrete Fourier transforma
tion (DFT) on L sites which has been efficiently code
in ,N log2 N floating point operations (FPO) by fac-
torizing L site DFT to the product ofO sL log2 Ld two-
site transformations parametrized with2 3 2 submatrices
sa, b; g, ddjj0 , which are successively applied to creatio
operators,scy

j , c
y
j0 d ! sac

y
j 1 bc

y
j0 , gc

y
j 1 dc

y
j0 d, in all

Slater determinantsPnc
y
jn

j0l which contain a particle
at sitesj or j0. Our algorithm (fermionic fast Fourier
transform) requires almost no extra storage apart fro
a vector of N c numbers and works for lattices of
sizesL ­ 2p , 10, 12, 15, 20, 24, 30, and40. Therefore, the
map (2) is iterated on a vectorc $ksmd ­ kk j csmdl, us-
ing the matrix compositionU ­ FpUV FUT in roughly
2N log2 N FPO per time step which is by far superio
to complete diagonalization techniques [O sN 3d FPO],
even forlong time scalesm ­ O sN d when quantum dy-
namics becomes quasiperiodic due to discreteness of
spectrum ofU.

We now consider the current time-autocorrelation fun
tion CJ smd ­ s1yLd kJsmdJs0dl, whereJsmd ­ UymJUm

and k?l ­ s1yN dTrs?d is a “microcanonical average.”J
is diagonal in the momentum basisJj $kl ­ J$kj $kl, and
kJl ­ 0. So CJ smd can be evaluated by means of tim
evolution of momentum initial statesjcs0dl ­ j $k0l,

CJ smd ­
1

LN 0

X
$k0

0
J$k0

X
$k

J$kp$k $k0smd , (3)

where p$k $k0smd ­ jk $k j csmdlj2 ­ jk $k j Umj $k0lj2. For
large sizesL, a smaller but uniformly random sample o
N 0 initial statesj $k0l, 1 ø N 0 ø N , is used in order
to save computer time. Direct computation ofCJsmd for
m # M can be performed in,s2MN N 0yLd log2 N

FPO since, due to translational symmetry, one c
simultaneously simulate the dynamics ofL different
states with different values of the conserved tot
momentum K ­

P
n k0

n smod Ld. Using the eigen-
2),
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phaseshn and eigenstatesjnl of evolution operator
U, Ujnl ­ e2ihn jnl, n ­ 1, . . . , N , one can write the
dissipative dc conductivity of such a kicked system
s :­

PN
n­1 s≠fhnd2 ø CJ s0d 1 2

PN y2
m­1 CJ smd. Note

that≠fhn ­ knjJjnl.
In Fig. 1 we present numerical computation of cor

relation functionCJsmd for parameterst ­ V ­ 1 and
t ­ V ­ 4, for various sizesL, but at fixed densityr ­
NyL ­

1
4 . Quite generally,CJ smd exhibits fast relaxation

on a time scaleMp which is typically small,Mp , 10,
and roughly independent ofL, and afterwards it fluctuates
around the averaged limiting value, thestiffness

DJ ­ lim
M!`

1
M

MX
m­1

CJ smd , (4)

where the strength of fluctuations decreases with increa
ing sizeL. Note again that TLL ! ` should be taken
prior to the time-limit, limM!`s1yMd

PM
m­1 s?d which, for

systems of finite sizeL here and below, is estimated nu-
merically ass1yM 0d

P2M0

m­M 011 s?d with sufficiently large
but fixed averaging timeM 0 . Mp; we take M 0 ­ 30.
For sufficiently large control parameters the system
quantum ergodic (caset ­ V ­ 4 of Fig. 1), DJ goes
to zero, ands remains finite asL ! ` sN ! `d and
r ­ NyL fixed, whereas in the other case (t ­ V ­ 1
of Fig. 1), DJ remains well above zero as we approac
TL, whereas conductivitys diverges [8]. In Fig. 2 we
have analyzed1yL scaling ofDJ . Again, for large val-
ues of parameters, sayt ­ V ­ 4, DJ is already practi-
cally zero forL ø 20, while for smaller (but not small)
control parametersDJ ø D`

J 1 byL, whereD`
J . 0. In

theclose-to-criticalcaset ­ V ­ 2, we find a larger cor-
relation time Mp , 102, and hence use a longer aver
aging timeM 0 ­ 200. In Fig. 3 we illustrate anideal
transport for t , V , 1 by plotting a persistent cur-
rent J

p
$k0

­ limM!`s1yMd
PM

m­1 k $k0jJsmdj $k0l vs the initial

FIG. 1. Current autocorrelation functionCJ smd against dis-
crete timem for the quantum ergodic (t ­ V ­ 4, lower set of
curves for various sizesL) and intermediate regimes (t ­ V ­
1, upper set of curves) with densityr ­

1
4 . Averaging over

the entire Fock space is performed,N 0 ­ N , for L # 20,
whereas random samples ofN 0 ­ 12 000 andN 0 ­ 160 ini-
tial states have been used forL ­ 24 andL ­ 32, respectively.
1809
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FIG. 2. StiffnessDJ vs 1yL at constant densityr ­ 1
4 and

for different values of control parameters in the ergodic,t ­
V ­ 4 and t ­ V ­ 2, and intermediate,t ­ 1, V ­ 2 and
t ­ V ­ 1, regimes. Other parameters are the same as
Fig. 1.

currentJ$k0 . The normal transport in the ergodic regim
t ­ V ­ 4 is characterized byJ

p
$k0

­ 0, while for t ,
V , 1 we find the ideal transport with the persistent cu
rent being proportional to the initial current,J

p
$k0

­ aJ$k0 .
Proportionality constanta can be computed from [Eq. (4)]
DJ ­ s1yLd kJ$k0J

p
$k0

l ­ sayLd kJ2l, so a ­ 2DJyfrs1 2

rdg, wherekJ2l is given below [Eq. (5)].
Because of translational symmetry, the total mome

tum K ­
P

k kñk smodLd is the only conserved quan-
tity (apart from N and parity), so the evolution of
the initial momentum statej $k0l takes place inNK ø
N yL dimensional subspaceHK , spanned byj $kl with
K ­ j $kj :­

P
n kn. Starting with a momentum state

j $k0l, the number of “excited” statesj $kl after time m is
characterized by information entropy [9] (see also [7
as expf2

P
$k p$k $k0 smd ln p$k $k0 smdg. Averaging the entropy

over a uniformly random sample ofN 0 initial statesj $k0l,
we definerelative localization dimensionin Fock space as
a measure of quantum ergodicity,

Rsmd ­
L

N
exp

√
2

1
N 0

X
$k0

0 X
$k

p$k $k0smd ln p$k $k0smd

!
.

Again, similar behavior is found numerically forRsmd as
for CJ smd, namely, it typically saturates within the same
(short) correlation timeMp to a roughly constant value
R̄ ­ limM!`s1yMd

PM
m­1 Rsmd. If there are no conser-

vation laws then the unitary blocksUmjHK
should have no

preferred basis other than eigenbasis, and hence they m
be modeled by circular orthogonal ensemble (COE)
random matrices for sufficiently largem giving the max-
imal asymptotic (asN ! `) value of relative localiza-
tion dimension,R̄COE ø 0.655. This case corresponds to
quantum ergodicity sincep$k $k0 smd, for m . Mp, become
pseudorandom and independent of$k and $k0, hence the cor-
relation function (3) factorizes and yieldsCsmd ­ kJl2 ­
0. Indeed, as we show in Fig. 4, such behavior is obtain
only for sufficiently large parameters, say,t ­ V ­ 4,
1810
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FIG. 3. Persistent currentJ
p
$k

against initial currentJ $k (aver-
aged over bins of sizeDJ ­ 0.05) in the ergodic,t ­ V ­ 4,
(nearly) ergodic,t ­ V ­ 2, and intermediate,t ­ V ­ 1 and
t ­ 1, V ­ 2, regimes (L ­ 24 andr ­

1
4 .)

while for smaller values of parameterst, V , Rsmd satu-
rates to a smaller value indicating that there may exis
approximate conservation laws causing nontrivial loca
ization inside the Fock space. Scaling with1yL suggests
that, even in TL,R̄ is smaller thanR̄COE for the interme-
diate regimet , V , 1 (Fig. 5).

Finally, we discuss current fluctuations, or more gene
ally, current distributionPc sId ­ kcjdsI 2 Jdjcl giving
a probability density of having a currentI in a statejcl.
We let the statec with a “good” known initial currentI0

evolve for a long time from which we compute a steady
state current distribution (SSCD),

PsI; I0d ­ lim
M!`

1
M

MX
m­1

kdsssI0 2 Js0dddddsssI 2 Jsmddddl .

Of course, delta functions should have a finite small widt
providing averaging over several statesj $kl with J$k ø I0.
In the quantum ergodic regime all states eventually be
come populated, so SSCDPsI ; I0d should be independent
of the initial currentI0 and equal to themicrocanoni-
cal current distribution PmcsId ­ kdsI 2 Jdl. It has
been shown by elementary calculation that in TL
the latter becomes a Gaussian,PmcsId ! PGausssId ­
s1y

p
2pkJ2ld exps2 1

2 I2ykJ2ld, while at any finite sizeL

FIG. 4. Relative localization dimension in Fock spaceRsmd
for data of Fig. 1.
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FIG. 5. Limiting relative localization dimension̄R vs 1yL for
data of Fig. 2.

the first few moments are

kJ2l ­
NsL 2 Nd
2sL 2 1d

ø
1
2

rs1 2 rdL,

kJ4l
kJ2l2

­
3sL 2 1d f2NsL 2 Nd 2 Lg

2NsL 2 2d sL 2 Nd
­ 3 1 O

µ
1
L

∂
.

(5)

Numerical results forL ­ 24 (see Fig. 6) indicate that
in the ergodic regime,t ­ V ­ 4, SSCD is already in
good agreement with microcanonical distributionPmcsId,
while in the nonergodic (intermediate) regime,t ­ V ­
1, SSCD islocalized on a smaller range indicating that
the current fluctuation is smaller thankJ2l. Note that
the mean̄I ­

R
dIIPsI ; I0d is just a persistent current, so

Ī ­ aI0 (see Fig. 3).
In this Letter we have presented numerical evidenc

based on efficiently coded time evolution of a kicke
fermionic system, in support of hypothesis, that intermed
ate (neither integrable nor ergodic) behavior of a quantu
many-body system may survive TL provided that contro
parameters are not too far away from integrable points.
this regime ideal transport is possible due to nonvanis
ing current time correlations as a consequence of quant
nonergodicity (nonmixing). However, when the contro
parameters are sufficiently large we have a strong inte
action between particles, hence we expect (according
ergodic hypothesis) and confirm quantum ergodicity com
patible with RMT and normal transport properties. It is
interesting to note that, at the transition point between th
two regimes, whereorder parameter—stiffnessDJ jL­`

(inferred from1yL scaling)—becomes zero, the correla
tion time scaleMp drastically increases what is reminis-
cent of a type ofdynamicalphase transition. This seems
to be a discontinuous “order-to-chaos” transition in con
trast to a smooth (KAM-like) transition in systems with
a finite number of degrees of freedom. Although onl
data for quarter-filled latticesr ­

1
4 d are presented here,

we should stress that the same conclusion follows fro
e,
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m
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FIG. 6. Steady-state current distribution divided by a Gauss
ian PsI , I0dyPGausssId averaged over279 initial states with
jI0j , 0.08 in the ergodic,t ­ V ­ 4, and intermediate,t ­
V ­ 1, regimes, and the finite-size microcanonical current dis
tribution PmcsId. (L ­ 24 andr ­ 1

4 .)

our data for other densities,r ­
1
3 , 3

8 , 2
5 , and 1

2 , with a
general rule that the border of a quantum ergodic regim
moves to slightly smaller values of control parameter
t, V as the densityr approaches1

2 . It should be noted
that statistics of eigenphases of evolution operatorU have
been computed as well, and it has been found that,
the ergodic regime, level statistics are indeed that of CO
while, in the intermediate regime, it interpolates smoothly
between Poisson and COE.
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