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The position operator (defined within the Schrödinger representation in the standard way) bec
meaningless when periodic boundary conditions are adopted for the wave function, as usu
condensed matter physics. I show how to define the position expectation value by means of a s
many-body operator acting on the wave function of the extended system. The relationships o
present findings to the Berry-phase theory of polarization are discussed. [S0031-9007(98)05419-
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The position operator within the Schrödinger represe
tation acts multiplying the wave function by the space c
ordinate. This is trivial, but applies only to the boun
eigenstates of a finite system, which belong to the cla
of square-integrable wave functions. This is not the w
condensed matter theory works: almost invariably, o
considers a large system within periodic boundary co
ditions (PBC), and the position operator (defined as usu
becomes then meaningless. For the sake of simplic
most of this Letter will deal with the one-dimensiona
case. The Hilbert space of the single-particle wa
functions is defined by the conditioncsx 1 Ld ­ csxd,
where L is the imposed periodicity, chosen to be larg
with respect to atomic dimensions. An operator maps a
vector of the given space into another vector belonging
the same space: the multiplicative position operatorx is
not a legitimate operator when PBC are adopted for t
state vectors, sincex csxd is not a periodic function when-
evercsxd is such. Of course, any periodic function ofx is
a legitimate multiplicative operator: this is the case, e.g
of the nuclear potential acting on the electrons. Sin
the position operator is ill defined, so is its expectatio
value, whose observable effects in condensed matter
related to macroscopic polarization. For the crystallin
case, the long-standing problem of dielectric polarizatio
has been solved a few years ago [1–3]: polarization is
manifestation of the Berry phase [4,5], i.e., it is an ob
servable which cannot be cast as the expectation value
anyoperator, being instead a gauge-invariant phase of
wave function. Here we find a different, and more fund
mental, solution: we arrive indeed at defining the expec
tion value of the position in an extended quantum syste
within PBC, where the operator entering this definitio
is simple but rather peculiar. Among the most releva
features, the expectation value is defined moduloL, and
the operator is no longer one body: it acts as a genu
many-body operator on the periodic wave function ofN
electrons.

The present result can be related to a discretized Be
phase, and sheds new light into the physical meaning
the latter. Our compact and general expression for t
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macroscopic polarization, Eq. (4) below, applies on th
same footing to correlated systems and to independe
electron systems, as well as to crystalline and to diso
dered systems. At variance with present understandi
[1–3], lattice periodicity and integration in reciproca
space are not needed in order todefinewhat polarization
is. In the case of a correlated electron system, polariz
tion was previously defined by means of a peculiar kind o
“ensemble average,” integrating over a set of many-bod
wave functions [3,5]: this is correct, but unnecessary. Th
present advance allows defining polarization by means
a “pure state” expectation value.

We study a system ofN electrons in a segment of
lengthL, and eventually the thermodynamic limit is taken
L ! `, N ! `, andNyL ­ n0 constant. At any finite
L the ground eigenfunction obeys PBC in each electron
variable separately:

C0sx1, . . . , xi , . . . , xN d ­ C0sx1, . . . , xi 1 L, . . . , xN d .

(1)
We assume the ground state nondegenerate, and we d
with insulating systems only: This means that the ga
between the ground eigenvalue and the excited on
remains finite forL ! `. Since the spin variable is
irrelevant to this problem, we omit it altogether, and
we deal with a system of spinless electrons. Our maj
goal is defining the expectation value of the electron
position kXl, and to prove that our definition provides
in the thermodynamic limit the physical macroscopi
polarization of the sample.

Before attacking the main problem, let us discuss th
much simpler case where PBC arenot chosen, and the
N-particle wave function (calledF0 in this case) goes to
zero exponentially outside a bounded region of space. W
may safely use the operatorX̂ ­

PN
i­1 xi, and define the

position expectation value as usual:

kXl ­ kF0jX̂jF0l ­
Z

dx x nsxd , (2)

wherensxd is the one-particle density. The value ofkXl
scales with the system size, and the quantity of intere
is indeed the dipole per unit length, which coincide
© 1998 The American Physical Society
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with macroscopic polarization. The expectation valu
of this same operator cannot be evaluated if the wa
function obeys PBC: In fact̂X does not commute with a
translation byL, and therefore is not a legitimate operato
in the Hilbert space defined by Eq. (1).

We are now ready to state our main result, demo
strated in the following. When PBC are adopted, the p
sition expectation value can be defined through

kXl ­
L

2p
Im lnkC0je

i 2p

L
X̂
jC0l . (3)

The expectation valuekXl is thus defined only modulo
L, hardly a surprising finding since the wave function i
periodical. The right-hand side of Eq. (3) is not simpl
the expectation value of an operator: the given form,
the imaginary part of a logarithm, is indeed essentia
Furthermore, its main ingredient is the expectation valu
of the multiplicative operatore1s2pyLdX̂ : It is important
to realize that this is a genuinemany-bodyoperator.
In general, one defines an operator to be one bo
whenever it is thesum of N identical operators, acting
on each electronic coordinate separately: for instance,
X̂ operator in Eq. (2). In order to express the expectatio
value of a one-body operator the full many-body wav
function is not needed: knowledge of the reduced on
body reduced density matrixrsx, x0d is enough. This is,
e.g., the case in Eq. (2), wherensxd ­ rsx, xd. I stress
that, instead, the expectation value ofeis2pyLdX̂ over a
correlated wave functioncannot be expressed in terms
of r, and knowledge of theN-electron wave function is
explicitly needed.

What remains to be done is to prove that our definitio
of kXl provides the relevant physical observable in th
thermodynamic limit. Notice thatL ! ` is a tricky limit,
since the exponential operator in Eq. (3) goes formally
the identity, but the size of the system and the number
electrons in the wave function increase withL [6]. We
will show that the electronic polarization (dipole per uni
length) is

Pel ­ lim
L!`

e
2p

Im lnkC0 jei 2p

L
X̂
jC0l , (4)

wheree is the electron charge. It is expedient to introduc
the family of Hamiltonians:

Ĥsad ­
1

2m

NX
i­1

spi 2 h̄ad2 1 V̂ , (5)

where a is a real constant, and̂V is the many-body
potential. A parametric Hamiltonian of this kind was firs
introduced by Kohn many years ago [7], and subsequen
used by different authors [3,8]. The ground eigenstate
Ĥs0d is preciselyjC0l; more generally, the state vecto
eiaX̂ jC0l fulfills the equation

ĤsadeiaX̂ jC0l ­ E0eiaX̂ jC0l , (6)

with an a-independentE0. This does not warrant that
it is an eigenstate since PBC, Eq. (1), arenot fulfilled,
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except in the special cases wherea is a multiple of2pyL.
Since by hypothesisE0 is nondegenerate,eis2pyLdX̂ jC0l
is the ground eigenstate of̂Hs2pyLd: we may then use
perturbation theory to expand it to leading order in1yL
in terms of the eigenstatesjCjl of Ĥs0d. However, the
standard formulas perform an arbitrary choice for the
phase of the perturbed eigenstate; in the most general ca
we write instead:

ei 2p

L
X̂
jC0l . eigL

√
jC0l 2

2p h̄
mL

X
jfi0

jCjl
kCjjP̂jC0l
E0 2 Ej

!
,

(7)

where P̂ ­
PN

i­1 pi is the momentum operator. It is
important to realize that the perturbative expansion is
good approximation wheneverL is much larger than a
typical atomic dimension, while the number of electrons
in the wave function and the system size are irrelevant.

Replacement of Eq. (7) into Eq. (3) shows that the
phasegL is a most fundamental quantity and cannot be
forgotten, since

kXl .
LgL

2p
. (8)

But perturbation theory is unable to providegL, and a dif-
ferent path must be chosen for relating Eq. (3) to a phys
cal observable. In order to prove thatekXlyL for large
L is indeed the electronic polarization—as anticipated i
Eq. (4)—it will be enough to show that its time deriva-
tive coincides with the adiabatic electrical current flowing
through the system whenever the Hamiltonian contains
slowly varying time-dependent term. We start from

d
dt

kXl ­
L

2p
Im

√
k ÙC0je

i 2p

L
X̂
jC0l

kC0je
i 2p

L
X̂
jC0l

1
kC0je

i 2p

L
X̂
j ÙC0l

kC0je
i 2p

L
X̂
jC0l

!
,

(9)

where j ÙC0l is the time derivative of the instantaneous
adiabatic eigenstate. Substituting now Eq. (7) into Eq. (9
the (undetermined) phase factor cancels out; to lowe
order in1yL we get

e
L

d
dt

kXl .
ieh̄
mL

X
jfi0

k ÙC0jCjl
kCjjP̂jC0l
E0 2 Ej

1 c.c. , (10)

where c.c. indicates the complex conjugate. In Eq. (10
the j ­ 0 term is omitted from the sum, sincek ÙC0jC0l 1

kC0j
ÙC0l is real; furthermore we have exploited time-

reversal symmetry, owing to which all the adiabatic
instantaneous eigenstatesCj can be taken as real.

This concludes our proof. In fact the right-hand
member of Eq. (10) is the electronic current flowing
through the system when the potentialV̂ is adiabatically
varied, a well-known expression previously used by Niu
and Thouless [8] in demonstrating the quantization o
particle transport [9]. The rest of this Letter is devoted
to an analysis of our major result, Eqs. (3) and (4), and o
its relationship to previous work.
1801
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The special case ofN ­ 1 corresponds to a lone
quantum electron diluted in a large sample. The positio
expectation value, Eq. (3), can then be expressed in ter
of the periodic density as

kXl ­
L

2p
Im ln

Z L

0
dx e1 2p

L
X̂nsxd . (11)

A similar expression has been previously used by
few authors [10] in order to heuristically follow the
adiabatic time evolution of a single quantum particle in
disordered condensed system within PBC. The caseN . 1
is qualitativelydifferent, in that—as stressed above—th
operator used in Eq. (3) to definekXl is a genuine many-
body one. This is particularly remarkable in view of the
fact that the physical observable is an integrated curre
the current is a typical one-body operator, as in fact
the operator̂P in the right-hand member of Eq. (10). The
case of independent electrons is also worth commenti
on. In this special case theN-particle wave function
is uniquely determined by the one-body reduced dens
matrix rsx, x0d (which is the projector over the set of the
occupied one-particle orbitals): therefore the expectatio
valuekXl is uniquely determined byr.

For the crystalline case, macroscopic polarization
presently understood as a manifestation of the Berry pha
[4], both for independent electrons [1,2] and for corre
lated electrons [3,5]. The definition of Eq. (4) reduces t
the well established ones in the crystalline case: for
nite L the present findings can be shown to be equivale
to a discretization of the line integral defining the Berr
phase. In this Letter I provide an explicit proof for the
independent-electrons case only: the algebra for the cor
lated case is not much different, although the present fin
ing leads to a novel—and more fundamental—physic
interpretation.

Suppose we have a crystalline system of lattice consta
a, where we impose PBC overM linear cells: there are
thenM equally spaced Bloch vectors in the reciprocal ce
f0, 2pyad:

qs ­
2p

Ma
s, s ­ 0, 1, . . . , M 2 1 . (12)

The size of the periodically repeated system isL ­ Ma.
The one-body orbitals can be chosen to have the Blo
form

cqs ,msx 1 td ­ eiqstcqs ,msxd , (13)

where t ­ la is a lattice translation, andm is a band
index. There areNyM occupied bands in the Slater
determinant wave function, which we write as

jC0l ­ A
NyMY
m­1

M21Y
s­0

cqs ,m , (14)

whereA is the antisymmetrizer. It is now expedient to
define a new set of Bloch orbitals:

c̃qs ,msxd ­ e2i 2p

L
x
cqs ,msxd . (15)
1802
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We then recast the expectation value of Eq. (3), after
double change of sign, as

kXl ­ 2
L

2p
Im lnkC0jC̃0l , (16)

where jC̃0l is the Slater determinant of thẽc ’s. Ac-
cording to a well-known theorem, the overlap among tw
determinants is equal to the determinant of the overla
matrix among the orbitals:

kXl ­ 2
L

2p
Im ln det S , (17)

where

Ssm,s0m0 ­
Z L

0
dx cp

qs ,msxde2i 2p

L
x
cqs0 ,m0sxd . (18)

Owing to the orthogonality properties of the Bloch
functions, the overlap matrix elements vanish excep
when qs0 ­ qs 1 2pyL, that is s0 ­ s 1 1. The N 3

N determinant can then be factorized intoM small
determinants:

det S ­
M21Y
s­0

det Ssqs , qs11d , (19)

where—in order to make contact with previous literatur
[2]—for the small overlap matrix we use the notation

Sm,m0sqs, qs11d ­
Z L

0
dx cp

qs ,msxde2i 2p

L
x
cqs11,m0sxd ,

(20)

and cqM ,msxd ; cq0,msxd is implicitly understood (so-
called periodic gauge). Replacing Eq. (7) into Eq. (4
we get

Pel ­ 2
e

2p
lim
L!`

Im ln
M21Y
s­0

det Ssqs, qs11d , (21)

which concludes our equivalence proof. Equation (21
coincides in fact with the well-known expression of the
modern theory of polarization [1,2], obtained by King-
Smith and Vanderbilt by defining a (continuum) Berry
phase as a line integral, and then discretizing it.

The discretization of the Berry phase was originally
introduced for purely computational purposes, and is
fact routinely used in first-principles calculations [2].
The alternate path followed here to arrive at the sam
result shows that the discretization has instead a ve
basic meaning of its own. Macroscopic polarization ca
be cast as the thermodynamic limit of an expressio
involving the expectation value of a relatively simple and
physically meaningful many-body operator as in Eq. (4
This operator “extracts” the Berry phase from thesquare
modulusof the many-body wave function, which embeds
the relevant information about therelative phasesof the
one-particle orbitals.

Several previous findings about macroscopic polariz
tion [1–3] apply to the present formulation as well: we
report here a few of them for the sake of completenes
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One is not interested in defining an “absolute” polariz
tion: the measured bulk quantity is always the differen
DP between two states of the given solid, connected
an adiabatic transformation of the Hamiltonian:

DP ­ DPnucl 1 DPel ­
Z Dt

0
dt Jstd , (22)

where Jstd is the total (nuclear + electronic) curren
flowing through the sample while the potentialV̂ is
adiabatically varied. Notice that in the adiabatic lim
Dt goes to infinity andJstd goes to zero. The quantity
of interestDP can be evaluated as a two-point formula
using the initial and final states only: for the electron
term, one evaluates Eq. (4) with both the final and th
initial wave functions, and takes the difference. The res
is only defined moduloe; a similar indeterminacy applies
to the nuclear termDPnucl. Nothing can be done abou
this ambiguity of the two-point formula, which ultimately
stems from Niu-Thouless quantization of particle transpo
[8,11]. There is, of course, no indeterminacy if one trad
away the two-point formula and performs instead the tim
integral in Eq. (22), using for the electronic current th
right-hand term of Eq. (10).

Generalization of Eqs. (3) and (4) to the three
dimensional case requires some care. SincekXl is
extensive, within a naı¨f approach thex component
of DPel would be defined only moduloeyL2, which
becomes vanishingly small in the thermodynamic limi
Fortunately, the problem is less serious than this, and
drawback is easily eliminated by adapting to the prese
formulation a major finding from Ref. [3]. Suppose
the system is crystalline with a simple cubic lattice o
constanta. Then—upon exploiting the lattice periodicity
of the one-particle density—it can be shown that th
two-point formula provides each component ofDPel with
an indeterminacy ofeya2, which is no serious drawback.
Such indeterminacy has nothing to do with electron co
relation, and not even with quantum mechanics: a simi
indeterminacy is also present in the classical nuclear te
DPnucl whenever this term is evaluated as a two-poi
formula [12]. If the system is noncrystalline, then
large “supercell” is needed to reproduce the disorder, a
only small polarization differences are accessible via t
two-point formula. Again, this looks like a fundamenta
consequence of Niu-Thouless quantization of partic
transport [8,11].

The modern viewpoint about macroscopic polarizatio
[1–3] has even spawned a critical rethinking of densit
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functional theory in extended systems. The debate start
in 1995 with a paper by Gonze, Ghosez, and Godby [13
and continues these days [14]. When mapping the inte
acting system into the noninteracting Kohn-Sham one, th
awkward quantity to deal with is precisely macroscopic
polarization. The polarization of an interacting extende
system, in fact, could be defined only as a peculiar kind o
ensemble average and not as a pure state property [3,
The present main achievement—namely, defining the p
larization of a many-electron system by means of a sim
ple expectation value—removes this drawback and cou
possibly help in further clarifying the matter.
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