VOLUME 80, NUMBER 9 PHYSICAL REVIEW LETTERS 2 MRcH 1998

Quantum-Mechanical Position Operator in Extended Systems
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The position operator (defined within the Schrédinger representation in the standard way) becomes
meaningless when periodic boundary conditions are adopted for the wave function, as usual in
condensed matter physics. | show how to define the position expectation value by means of a simple
many-body operator acting on the wave function of the extended system. The relationships of the
present findings to the Berry-phase theory of polarization are discussed. [S0031-9007(98)05419-2]

PACS numbers: 03.65.Ca, 03.65.Bz, 71.10.-w, 77.84.—s

The position operator within the Schrédinger represenmacroscopic polarization, Eq. (4) below, applies on the
tation acts multiplying the wave function by the space co-same footing to correlated systems and to independent-
ordinate. This is trivial, but applies only to the bound electron systems, as well as to crystalline and to disor-
eigenstates of a finite system, which belong to the clasdered systems. At variance with present understanding
of square-integrable wave functions. This is not the way1—-3], lattice periodicity and integration in reciprocal
condensed matter theory works: almost invariably, onespace are not needed in orderdefinewhat polarization
considers a large system within periodic boundary conis. In the case of a correlated electron system, polariza-
ditions (PBC), and the position operator (defined as usualjon was previously defined by means of a peculiar kind of
becomes then meaningless. For the sake of simplicity)\ensemble average,” integrating over a set of many-body
most of this Letter will deal with the one-dimensional wave functions [3,5]: this is correct, but unnecessary. The
case. The Hilbert space of the single-particle wavepresent advance allows defining polarization by means of
functions is defined by the conditiop(x + L) = #(x), a “pure state” expectation value.
where L is the imposed periodicity, chosen to be large We study a system oN electrons in a segment of
with respect to atomic dimensions. An operator maps anjengthL, and eventually the thermodynamic limit is taken:
vector of the given space into another vector belonging td. — %, N — «, andN /L = no constant. At any finite
the same space: the multiplicative position operatas L the ground eigenfunction obeys PBC in each electronic
not a legitimate operator when PBC are adopted for thevariable separately:
state vectors, sinceys(x) is not a periodic function when- Wolxi,.. oy Xiyensxy) = Wolxi,...,x; +L,....xn).
every(x) is such. Of course, any periodic functionxofs
a legitimate multiplicative operator: this is the case, e.g., (1)
of the nuclear potential acting on the electrons. SincéVe assume the ground state nondegenerate, and we deal
the position operator is ill defined, so is its expectationWith insulating systems only: This means that the gap
value, whose observable effects in condensed matter ak€tween the ground eigenvalue and the excited ones
related to macroscopic polarization. For the crystallingemains finite forL — «. Since the spin variable is
case, the long-standing problem of dielectric polarizatioriftelevant to this problem, we omit it altogether, and
has been solved a few years ago [1-3]: polarization is #€ deal with a system of spinless electrons. Our major
manifestation of the Berry phase [4,5], i.e., it is an ob-goal is defining the expectation value of the electronic
servable which cannot be cast as the expectation value 8@sition (X), and to prove that our definition provides
anyoperator, being instead a gauge-invariant phase of th@ the thermodynamic limit the physical macroscopic
wave function. Here we find a different, and more funda-Polarization of the sample. .
mental, solution: we arrive indeed at defining the expecta- Before attacking the main problem, let us discuss the
tion value of the position in an extended quantum systenfluch simpler case where PBC amet chosen, and the
within PBC, where the operator entering this definition/V-particle wave function (called@, in this case) goes to
is simple but rather peculiar. Among the most relevan#ero exponentially outside a bounded region of space. We
features, the expectation value is defined moduland May safely use the operatar = > ., x;, and define the
the operator is no longer one body: it acts as a genuinBosition expectation value as usual:
many-body operator on the periodic wave function\of (X) = (Do|X|Dy) = ] dx xn(x), @)
electrons.

The present result can be related to a discretized Bermwheren(x) is the one-particle density. The value ©f)
phase, and sheds new light into the physical meaning dfcales with the system size, and the quantity of interest
the latter. Our compact and general expression for thes indeed the dipole per unit length, which coincides
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with macroscopic polarization. The expectation valueexcept in the special cases wherés a multiple of27 /L.
of this same operator cannot be evaluated if the wavince by hypothesig, is nondegenerate; ?7/L)X | )
function obeys PBC: In fack does not commute with a is the ground eigenstate @ (27/L): we may then use
translation byL, and therefore is not a legitimate operator perturbation theory to expand it to leading orderlifL
in the Hilbert space defined by Eqg. (1). in terms of the eigenstatd¥;) of H(0). However, the

We are now ready to state our main result, demonstandard formulas perform an arbitrary choice for the
strated in the following. When PBC are adopted, the pophase of the perturbed eigenstate; in the most general case
sition expectation value can be defined through we write instead:

L 2% A
= T . iR . 2mh v\ P|W
(X) = 5= ImIn(Wole' =¥ o) @) iy, - em(|q,0> L2 gy (WP o>>,
The expectation valugX) is thus defined only modulo

mL Eo — Ej
L, hardly a surprising finding since the wave function is . @
periodical. The right-hand side of Eq. (3) is not simplywhere 2 = >, p; is the momentum operator. It is
the expectation value of an operator: the given form, agmportant to realize that the perturbative expansion is a
the imaginary part of a logarithm, is indeed essentialgood approximation whenever is much larger than a
Furthermore, its main ingredient is the expectation valudypical atomic dimension, while the number of electrons
of the multiplicative operatoe!@7/DX: |t is important  IN the wave function and the'system size are irrelevant.
to realize that this is a genuinmany-bodyoperator. Replacement of Eq. (7) into Eq. (3) shows that the
In general’ one deﬁnes an Operator to be one bod hase’}/L |S-a most fundamental quant|ty and cannot be
whenever it is thesumof N identical operators, acting forgotten, since
on each electronic coordinate separately: for instance, the
X operator in Eq. (2). In order to express the expectation
value of a one-body operator the full many-body wave
function is not needed: knowledge of the reduced one
body reduced density matrix(x, x’) is enough. This is,
e.g., the case in Eq. (2), wherdx) = p(;”/CL))X | Stress 1 'is indeed the electronic polarization—as anticipated in
that, instead, the expectation value &f*7/"* over a Eq. (4)—it will be enough to show that its time deriva-
correlated wave functiomannotbe expressed in (€rms e coincides with the adiabatic electrical current flowing
of p, and knowledge of théV-electron wave function is ,rqgh the system whenever the Hamiltonian contains a

explicitly needed. _ .. slowly varying time-dependent term. We start from
What remains to be done is to prove that our definition

j#0

(x) = % ®

But perturbation theory is unable to proviglg, and a dif-
ferent path must be chosen for relating Eq. (3) to a physi-
cal observable. In order to prove thetX)/L for large

of (X) provides the relevant physical observable in the g4 L (Wole' TX W) (Wole! TX W)
thermodynamic limit. Notice that — o is a tricky limit, ~ —{X) = -— % + =3 :
since the exponential operator in Eq. (3) goes formally to (Wole' =7 [Wo)  (Wole =" [Wy) (9)

the identity, but the size of the system and the number of S . I .
electrons in the wave function increase with[6]. We where [¥,) is the time derivative of the instantaneous

will show that the electronic polarization (dipole per unit adiabatic eigen_state. Substituting now Eq. (7) i.nto Ea. (9)
length) is the (undetermined) phase factor cancels out; to lowest

e 2o order in1/L we get
P = lim = Im In(¥y |e' ¥ |W,), (4) 5
L—w 277 e d __ieh - (W;|P|Wo)
wheree is the electron charge. Itis expedient to introduce E<X> T L Zf ol¥;) Ey — E; +
the family of Hamiltonians: ”

N
ﬁ (pi — ha)* + V, (5)  thej=0 term is omitted from the sum, sin¢@,|V¥,) +
i=1 A (Wo| ¥y is real; furthermore we have exploited time-
where « is a real constant, and is the many-body reversal symmetry, owing to which all the adiabatic
potential. A parametric Hamiltonian of this kind was first instantaneous eigenstat®s can be taken as real.
introduced by Kohn many years ago [7], and subsequently This concludes our proof. In fact the right-hand
used by different authors [3,8]. The ground eigenstate ofnember of Eq. (10) is the electronic current flowing
H(0) is precisely|Wo); more generally, the state vector through the system when the potentialis adiabatically
e'*“X|W,) fulfills the equation varied, a well-known expression previously used by Niu
A iaX o iak and Thouless [8] in demonstrating the quantization of
H(a)e'* | Wo) = Eoe"™"[Wo), 6 particle transport [9]. The rest of this Letter is devoted
with an a-independentt,. This does not warrant that to an analysis of our major result, Egs. (3) and (4), and of
it is an eigenstate since PBC, Eq. (1), amet fulfilled, its relationship to previous work.

c.c., (10)

. where c.c. indicates the complex conjugate. In Eq. (10)
H(a) =

1801



VOLUME 80, NUMBER 9 PHYSICAL REVIEW LETTERS 2 MRcH 1998

The special case ofv =1 corresponds to a lone We then recast the expectation value of Eq. (3), after a
quantum electron diluted in a large sample. The positiomouble change of sign, as

expectation value, Eq. (3), can then be expressed in terms L -
of the periodic density as (X) = =5 Im In{o[¥o), (16)
_ L L ES' where |¥) is the Slater determinant of th@’s. Ac-
&) = 2 Im In] dx et 7n(x). (11) cording to a well-known theorem, the overlap among two

A similar expression has been previously used by éieterminants is equgl to the determinant of the overlap
few authors [10] in order to heuristically follow the Matrix among the orbitals:

adiabatic time evolution of a single quantum particle in a L

disordered condensed system within PBC. The dasel (X) = 2 Im In det 5, (17)

is qualitativelydifferent, in that—as stressed above—thewhere

operator used in Eqg. (3) to defif®) is a genuine many- L o

body one. This is particularly remarkable in view of the Ssm,sim = [ dx ¢;S’m(x)e_’Tx¢qS,’m/(x). (18)
fact that the physical observable is an integrated current: 0

the current is a typical one-body operator, as in fact ig9wing to the orthogonality properties of the Bloch
the operato in the right-hand member of Eq. (10). The functions, the overlap matrix elements vanish except
case of independent electrons is also worth commentinghen gy = g, + 27 /L, that iss’" = s+ 1. The N X

on. In this special case th&-particle wave function N determinant can then be factorized intd small

is uniquely determined by the one-body reduced densitgleterminants:

matrix p(x, x’) (which is the projector over the set of the M—1
occupied one-particle orbitals): therefore the expectation det s = [ det S(gy.qs+1). (19)
value(X) is uniquely determined by. s=0

For the crystalline case, macroscopic polarization isvhere—in order to make contact with previous literature
presently understood as a manifestation of the Berry phage]—for the small overlap matrix we use the notation
[4], both for independent electrons [1,2] and for corre- I
lated electrons_[3,5]. The dgfinition of Eq_. (4) reduces 00 S, (g5, gss1) = [ dx lﬂ;,m(X)e_izTﬂxtpqwm/(x),
the well established ones in the crystalline case: for fi- 0
nite L the present findings can be shown to be equivalent (20)
to a discretization of the line integral defining the Berryand ¢, . (x) = ¢, .(x) is implicitly understood (so-
phase. In this Letter | provide an explicit proof for the called periodic gauge). Replacing Eg. (7) into Eq. (4)
independent-electrons case only: the algebra for the correve get

lated case is not much different, although the present find- M—1
ing leads to a novel—and more fundamental—physical p,, = ~~ Jim Imn l_[ detS(gs, gs+1),  (21)
interpretation. 297 L 5=0

Suppose we have a crystalline system of lattice constaghich concludes our equivalence proof. Equation (21)
a, where we impose PBC ove linear cells: there are coincides in fact with the well-known expression of the
thenM equally spaced Bloch vectors in the reciprocal cellmodern theory of polarization [1,2], obtained by King-
[0,27 /a): Smith and Vanderbilt by defining a (continuum) Berry

_ 27 . B phase as a line integral, and then discretizing it.
= ya > s=0L...M—1. (12) The discretization of the Berry phase was originally

The size of the periodically repeated systenLis= Ma. introduced for purely computational purposes, and is in

The one-body orbitals can be chosen to have the Bloc ct routinely used in first-principles cqlculations [2].
form he alternate path followed here to arrive at the same

A result shows that the discretization has instead a very
Ygmx + 1) = ey ,(x), (13)  basic meaning of its own. Macroscopic polarization can
be cast as the thermodynamic limit of an expression
involving the expectation value of a relatively simple and
physically meaningful many-body operator as in Eq. (4).
This operator “extracts” the Berry phase from duare
modulusof the many-body wave function, which embeds
Wo) = A U U Ya.m (14 the relevant information about tielative phasesf the
nels=0 one-particle orbitals.
Several previous findings about macroscopic polariza-
o tion [1-3] apply to the present formulation as well: we
Dgmx) = e TPy m(x). (15)  report here a few of them for the sake of completeness.

where r = la is a lattice translation, and: is a band
index. There areN/M occupied bands in the Slater
determinant wave function, which we write as

N/M M—1

where A is the antisymmetrizer. It is now expedient to
define a new set of Bloch orbitals:
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One is not interested in defining an “absolute” polariza-functional theory in extended systems. The debate started
tion: the measured bulk quantity is always the differencen 1995 with a paper by Gonze, Ghosez, and Godby [13],
AP between two states of the given solid, connected bynd continues these days [14]. When mapping the inter-

an adiabatic transformation of the Hamiltonian: acting system into the noninteracting Kohn-Sham one, the
A awkward quantity to deal with is precisely macroscopic
AP = AP, + AP, = dt J(t) (22) polarization. The polarization of an interacting extended

system, in fact, could be defined only as a peculiar kind of
ensemble average and not as a pure state property [3,5].
The present main achievement—namely, defining the po-
larization of a many-electron system by means of a sim-
ple expectation value—removes this drawback and could
possibly help in further clarifying the matter.

Discussions with M. Bernasconi and E. Yaschenko are
ratefully acknowledged. Work partly supported by the
ffice of Naval Research, through Grant No. NO0014-96-
-0689.

where J(r) is the total (nuclear + electronic) current
flowing through the sample while the potentifll is
adiabatically varied. Notice that in the adiabatic limit
Ar goes to infinity and/(¢z) goes to zero. The quantity
of interestAP can be evaluated as a two-point formula,
using the initial and final states only: for the electronic
term, one evaluates Eq. (4) with both the final and thed
initial wave functions, and takes the difference. The resul
is only defined module; a similar indeterminacy applies
to the nuclear termAP,,.. Nothing can be done about
this ambiguity of the two-point formula, which ultimately
stems from Niu-Thouless quantization of particle transport
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