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Ginzburg-Landau Theory of Spiral Surface Growth
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A description of the spiral crystal growth of thin films in terms of a Ginzburg-Landau—like continuum
field equation is proposed. The phase of the complex order parameter is identified with the local
height of the growing surface and the absolute value represents the density of crystalline phase. This
theory describes the helicoidal configuration from the growth of a screw dislocation core, as well as
spontaneous nucleation of new dislocation pairs. [S0031-9007(98)05394-0]

PACS numbers: 81.10.Aj, 64.60.Qb, 82.40.Ck

Spiral waves arising in diverse physical, chemical,of growing spirals was found not to be directly related to
and biological systems are now one of the paradigmshe density of screw dislocation emerging from the sub-
of nonequilibrium dynamical phenomena [1]. Examplesstrate on which the film was grown: typically, the density
include the Belousov-Zhabotinsky reaction, concentratiorof spirals substantially exceeds the density of substrate
waves in colonies of aggregating amoeba, waves iscrew dislocations [7,8], suggesting that the spinaisle-
cardiac tissue, crystal growth, liquid crystal patternsate spontaneouslin the process of growth. This obser-
nonlinear optics, and many others. The above seeminglyation is in conflict with past theory of surface growth,
unrelated phenomena share a common feature: they oftevhere the dislocations are treated in the framework of
allow for a description within the framework of two quasilinear elasticity, and spontaneous spiral nucleation
component reaction-diffusion-type systems, for whichis prohibited. Although a simple equation yielding ro-
spiral solutions are generic. tating spirals in the presence of a screw dislocation had

Spiral ridges are ubiquitous in surface crystal growth.already been known in growth theory (the overdamped
Where a dislocation meets the surface its line tensiosine-Gordon equation, or solid-on-solid model; see, e.g.,
produces a depression in the surface and considerabl9,10]), it has serious limitations related to the oversimpli-
enhances the growth rate. If the Burgers vector of thdied treatment of the core region where the spiral initiates.
dislocation has a component normal to the surface, a stephe experiments suggest that spiral patterns are sponta-
runs from the point of emergence. As the crystal growsieous solutions even in the absence of substrate screw
the steps wind up into spirals. Numerous observationsglislocations as nucleation centers.
of growth have revealed spirals associated with a dislo- Here we propose a quantitative description of spiral sur-
cation emerging at their centers (dislocations slip out oface growth in terms of a Ginzburg-Landau continuum
the crystal after growth is completed leaving behind a sligevolution equation for the crystal surface. We show that
trace). It has long been appreciated that dislocations hawbis model supports spontaneous creation of spiral pat-
a large influence on the growth and equilibrium morphol-terns even in the absence of substrate screw dislocations.
ogy of the crystals: Faraday [2] was the first to describe
the importance of surface imperfections for crystal growth.

Yet, despite even early observations qualitatively confirm-§ a
ing Frank’s original [3] theory and despite numerous ef-
forts (mostly Monte Carlo simulations) [4] to analyze the
problem, a consistent continuum theory of spiral surface
growth is still absent.

A resurgence of interest in spiral growth has occurred .
in connection with fabrication of high-temperature super-
conducting films. Scanning tunnel microscopy (STM) im-
ages of yttrium oxide films (YBCO) [5,6] revealed that
over a wide range of experimental conditions (tempera-jg
ture, growth rate, lattice mismatch with the substrate)FlG' 1(color). STM images of YBCO thin film surface. (a)

the growing surface of the crystals develops spiral ridgeﬁ;ow-resolution image of growing spirals; (b) high-resolution

Typical patterns, observed in the growth process of thimage of off-center screw dislocations. Courtesy of M. Hawley
YBCO films, are shown in Fig. 1. Strikingly, the density (Los Alamos National Laboratory).
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We introduce a complex order parame¥ey the phase of linear approximation [15], one takes

which is associated with the local heightof the crystal

and where|W|? represents the local densigy of crys- plewy) — (a0 Ap 3)
talline phase (related to the stress field). Coupling of the

height with the density field eliminates the nonphysicalrhe negative sign expresses the fact that positive curva-
singularity at the spiral core. _ ture corresponds to an energetically favorable situation
_Our equation modeling the surface growth is a two-yhere more bonds appear as compared to the flat surface,
dimensional complex Ginzburg-Landau equation with ad-nq accordingly the energy decreases. Near the negatively
ditional terms accounting for the crystalline anisotropy . rved interface the adatoms have less bonds and the en-

(e.g., YBCO is a cubic crystal), discreteness of the atomig, gy increases. The shift in the chemical potential gives
lattice, and thermal noise. Our numerical S|mulat|onsrise to the growth rate:

show that such an equation provides a good phenomeno-
logical description for the existing experimental observa-
tions. We find, in particular, that at low levels of thermal

noise (low temperature), spirals indeed start to wind from

screw dislocations already existing in the substrate. How!N€ constan® can be choserB = 1 after appropriate
caling of the length, height, time, deposition rateand

ever, the loci of spiral centers (i.e., the dislocation coresfC@!f , o
evolve by circling around verticals starting from substrated€nsityp. Inthe foIIo(l/L\ﬁ?)g we use these scaled quantities.
dislocations, thus forming helicoidal lines in the bulk of Thus, one obtains;, = Ah. Combining both the
the growing crystals. This is consistent with the experi-stress and the interface curvature effects, we obtain for
mental observation of off-center spirals [Fig. 1(b)]. At the growth rate

higher temperatures new spirals nucleate at the periphery

of the existing spirals. At even higher temperature, the h, = b
original spirals are destroyed and the newly born spirals

become decorrelated from the screw dislocations in thghe height of the interface at a fixed point can vary not

Substrate. only because of deposition or desorption, but also because
In order to derive the growth equation of crystalline of convective mass transport:

spirals grown in vapor phase epitaxy, we consider first

the large deposition rate limit where the local growth hﬁc"nv) — —Vhy 6)

rate ¢;) of a flat, unstressed interface is governed by ’

the local supersaturatiorwf of the adatom density [3]

(curv) _

X w10 e — pag (4)

(stress)

+ hy =Ah+ ol —cp). (5)

b~ In this case the supersaturatian~ Q.10 /p wherev is the local convective velocity, which can be
t ~ & (Flat) i Sup : .. .7 evaluated from the balance of the stress-induced diffusive
where() is the deposition rate, and is the diffusion ; Cv —

. fltux ~ —Vp and the convective flopv: v = —Vp/p.
constant for the unstressed_ interface. The growth rate o Last, we must take into account that the crystal growth
a flat, unstressed interface is [11] is a stepwise process due to the discreteness of the crystal

(£lat) lattice. The conventional approach (see, e.g., [15]) is to
hi = o . (1) modulate the growth rate by adding a periodic potential
] term vy f(p) sin(k) to the equation of mation, wherg,
As the stress field and the curvature of th(_e surfacgs the lattice spacing, and(p) is some function which
develop, the local supersaturation is modified [12].vanishes ap = 0, since there is no discreteness (crystal
The stress field ) affects the diffusion constant: strycture) for small density. The particular form of this
D = Do(1 — ao) (compressive stress increased,  function is not relevant since far from the core the density
while tensile stress decreasesat> 0 is a material and  approaches its constant equilibrium value. For simplicity
temperature dependent coefficient) [13]. Since the stresge takef(p) ~ /p. Bringing all the above contributions

changes the local lattice spacing, it is related to a locajpgether we arrive at the following equation:
change in crystal density as ~ 1 — p/poy, Where pg

is the equilibrium crystal density. Using the relations _ B B .
amonga, D, o, andp, in the linear approximation one dcth = Ah + ViVp/p + @ — wcp — y/psink.
obtains @)

plsuess) _ w(ﬂaom = w(l —¢p), (2) If we associate the interface height with the phase of
(I = ¢cpo) the complex order parametgr= R exdik], p = R?, we

) . can write the self-consistent growth equation
where w = 0™29/(1 — ¢py), and ¢ > 0 is a material

constant characterizing a stress-induced correction to the . L . 2
supersaturation [14]. The local curvature of the interface 0 = Ay +[1 +iw = (1 +iwo)lylTly
also changes the local chemical potengial Again in the + ylyl> + 7, (8)
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where w is the material deposition rate} is a random

(thermal) noise, andy is the parameter characterizing [
the discrete nature of the growth process on the atomidy
scale. The termiwc|¢|?¥ accounts for the stress-

noise is modeled by theé-correlated Langevin noise
term n(x,y,1) = n, +in;, (nlx,y,Onk’,y, 1)) =
2T 6(x — x)8(y — y)8(t — t'), whereT has the mean-
ing of temperature.

Equation (8) is our main relation. One can immediately
obtain from Eq. (8) the equation f& = ||, expressing
the density evolution (fof' = 0):

R =R — R>+ AR — (Vh)’R + yR>cosh. (9)

Although Eq. (9) incorporates local dynamics in the
growth process (long-range interaction can arise througt
the stress field), it turns out that it is sufficient to describe
the principal phenomenologgf our problem: formation,
rotation, and nucleation of spirals.

Far from the core, the densify becomes slaved th

(omitting slowly varying terms),R, AR): FIG. 2(color). Color-coded images of the surface height
h, obtained from solution of Eq. (8). (a) Square-shaped
R ~1+ yR cosh (10) spiral, y = 027, = 0.8, ¢c =04, v =2, T = 0; (b) low-

temperature nucleation of new spiraly, = 0.002, » = 3,

. T ¢ =047, v=0,T = 0.0000937; (c) higher temperature
Assuming ¢,y < 1, and substitutingR from Eq. (10) ,cleation of spiralsT = 0.0008437; (d) rough growth

into Eqg. (7) we arrive at the first order sine-Gordont — (.0019.
equation with some corrections:

dh = Ah — ysinh + w. 11 L . . N
! Y @ (11) tion invariance in the direction of the surface growth and

This has been used in earlier considerations to describgauses periodic forcing of the spiral core. Since, in the
a wide range of phenomena, including roughening tranframework of Eg. (8), the mobility of the spiral is finite,
sitions and spiral growth [9,10,15,16]. The drawback ofthis forcing causes finite periodic rotation of the spiral
this reduced equation is that although it produces (apprccore. In the smally limit the radius of the meandering is
priate initial conditions are necessary to introduce screvef the ordery and can be calculated analytically starting
dislocations) spiral growth possessing the correct rotatfrom the exact spiral solution.
ing symmetry [9,10], it fails to correctly describe the core We have found that the rotation frequency of the spiral
region where the spiral initiates. This has two importantand the surface growth rate decrease upon increasing the
consequences: (a) a spiral core remains pinned to its initigarametery. The dependence of the spiral frequency on
location [17] and (b) Eq. (11) does not yiedpontaneous 7 is shown on Fig. 3. The spiral loses its stability and
spiral nucleation. We show that Eq. (8) consistently devanishes at some critical value ¢f= y.. This value is
scribes these phenomena. slightly below the threshold, for the pinning (or lock-
We performed numerical simulations of Eq. (8) usinging) of the growing surface due to the discreteness of the
an implicit Crank-Nicholson method with no-flux bound- growth process.y, can be calculated from Eq. (8) and
ary conditions. The number of grid points was typi- the condition for the existence of the stable equilibrium
cally 200 X 200. Selected results are presented in Figs. 2y = const. This givey?2 = 2\/(w? + 1) (@?c? + 1) —
and 3. The stable spiral solution to Eq. (8) is shown in2 — 2w?c, which is very close to the spiral stability limit.
Fig. 2(a). The spiral was initiated from an initial condi- In principle, according to Eq. (11), spiral growth is pos-
tion containing2 topological charge (circulation) at the sible even fory > y,. However, in the framework of
defect’'s core. In order to model square in-plane crysEq. (8) we have found that the spiral tip contracts and
talline anisotropy we have added to the equation the terraventually leaves the system. Persistence of spirals in
—v(o* + a‘y‘). As we can see from the picture, the spiral Eq. (11) even fory > vy, can be formally attributed to
assumes a “ziggurat” shape, resembling the STM imagethie pinning of the spiral core bynmobilescrew disloca-
of Ref. [5]. Notably, the spiral core meanders around thdion in the substrate.
center of the spiral’s rotation. The reason for this mean- Now we consider the effect of thermal noise. The
dering is the effect of discreteness on the growth processpiral survives a small-amplitude noise perturbation. The
characterized by the teryy|>. This term breaks transla- main effect of the noise is diffusive motion of the core.
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scribes, in a natural way, the essential phenomenology of
the growth process: core meandering of the growing spi-
rals, spontaneous nucleation and separation of defects, and
the transition to rough growth [5,7]. The parameters of the
equation can be identified from comparison with existing
035 | experimental data and molecular dynamics simulations of
G the growth process. We also speculate that, under specific
conditions, spontaneous nucleation of spirals may result in
faster growth and anomalous roughening. Future studies
will also address the interaction and pinning of the spiral
core by substrate dislocations.
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