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Square-Lattice Heisenberg Antiferromagnet at Very Large Correlation Lengths
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The correlation length of the square-lattice spjfHeisenberg antiferromagnet is studied in the low-
temperature (asymptotic-scaling) regime. Our novel approach combines a very efficient loop cluster
algorithm—operating directly in the Euclidean time continuum—with finite-size scaling. This enables
us to probe correlation lengths up o= 350000 lattice spacings, more than 3 orders of magnitude
larger than in any previous study. We resolve a conundrum concerning the applicability of asymptotic-
scaling formulas to experimentally and numerically determined correlation lengths. Our results have
direct implications for the zero-temperature behavior of spiadhdders. [S0000-0000(98)00001-1]

PACS numbers: 75.10.Jm, 02.70.Lq, 31.15.Kb, 71.10.Fd

Soon after the discovery of high-temperature superconef asymptotic scaling to experimentally and numerically
ductivity in doped lamellar copper oxides it was found determined correlation lengths [1,6—8]. To effect this,
that the undoped compounds are quasi-two-dimensionate combine an efficient loop cluster algorithm operating
(2D) spin S = 1/2 quantum antiferromagnets. A theo- in the Euclidean time continuum—hence with zero sys-
retical model that captures the essential features of thesematic error—with a finite-size scaling technique. With
materials is the nearest-neighbor quantum antiferromaghis powerful new approach, the infinite-volume correla-
netic Heisenberg model (AFHM) on a square lattice.tion length ¢ is probed up to=350000 lattice spacings
Through experimental, numerical, and theoretical efforts:. This allows us to paint a detailed picture of the varia-
much progress has been made in the understanding 66n of ¢ with temperature well into the asymptotic scal-
these systems. In particular, detailed neutron scatterinipg regime, and to arrive at the presently most precise
measurements of the spin-spin correlation length in theletermination of the low-energy observables of the spin-
magnet SfICuG,Cl, were found to be described quantita- 1/2 AFHM. We find that asymptotic scaling @f with
tively [1] by both high-temperature numerical results forthe three-loop3 function of the 2D classical O(3) model
the AFHM [2] and low-temperature theory for the renor- sets in only at about0’a, while a four-loop fit describes
malized classical regime of tHg + 1)D O(3)-symmetric the data already at/a = 100-200, corresponding to the
nonlinearo- model [3,4]. largest correlation lengths measured experimentally [1].

The ground state of the above systems shows longBy exchanging a spatial with the Euclidean time direc-
range antiferromagnetic order, thus spontaneously breakion, as suggested in Ref. [9], our results may be applied
ing the O(3) rotational symmetry to O(2). The low-energyto spin-1/2 ladders at zero temperature.
excitations are two massless bosons called magnons orin CPT, the 2D quantum spin system is described
spin waves. These long-range excitations determine thiey a (2 + 1)D O(3) symmetric Euclidean field theory.
dynamics at low energies. One can use chiral perturAt nonzero temperaturd the Euclidean time direc-
bation theory (CPT) to derive universal expressions fotion has a finite extent/T. For a system of massless
low-energy observables in terms of three material-specifiparticles—that is, one with an infinite zero-temperature
parameters: the staggered magnetizatibfy, the spin-  correlation length—the nonzero temperature system ap-
wave velocity ¢, and the spin stiffnesg, [5]. Both  pears dimensionally reduced to two dimensions, because
numerical data and predictions of CPT are in apparent/T is then negligible compared t§. However, the
good agreement with experimental results foe= 1/2  Hohenberg-Mermin-Wagner-Coleman theorem forbids in-
[1]. However, neutron scattering measurements on antteraction among massless Goldstone bosons in two di-
ferromagnets witt§ > 1/2 [1,6] reveal a striking discrep- mensions. Consistent with this, the 2D O(3) model is
ancy with CPT predictions based on three-loop asymptotiknown to have a nonperturbatively generated mass gap.
scaling. It has been suggested that $or 1/2, asymp-  This in turn implies that the spin waves of a 2D quan-
totic scaling sets in only at very low temperatures—thatum antiferromagnet at nonzero temperature also acquire
is, for correlation lengths much larger than those accesseal mass. Using perturbative renormalization group argu-
experimentally and numerically [7]. ments, Chakravarty, Halperin, and Nelson (CHN) [3] de-
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Consistent with dimensional reductiofiis exponentially must simulate lattices with a spatial extent at least
large compared ta/7T. We note that the exponent in 6£. Even with the best algorithms available [11-13],
Eqg. (1) comes from a one-loop calculation, while theworking on lattices starting witih.> = 9007 is extremely
factorc/2mp, is a two-loop result. time consuming.

Hasenfratz and Niedermayer [4] averaged(the- 1)D How then can we investigaté in the low-temperature
field over cubic space-time volumes of sizéT in the regime? We make use of finite-size effects instead of
Euclidean time direction and/7T in the two spatial trying to avoid them. Finite-size scaling methods were
directions. Since at low temperaturés> ¢/T, the field used by Kim [14] and by Caracciolet al.[15] to test
is essentially constant over these blocks. The averagemsymptotic scaling of the correlation length with the bare
field naturally lives at the block centers, which form acoupling constant in the classical 2D lattice O(3) model.
2D lattice of spacing:’ = ¢/T (which is different from To investigateé in the AFHM, we apply the technique
the lattice spacing). Hence, the effective action of the of Ref. [15], in which renormalization group methods are
averaged field defines a 2D lattice O(3) model. Usingused to justify the search for a universal scaling function
CPT, as well as the exact mass gap and the three-loop

B function of the 2D O(3) model [10], Hasenfratz and §2L)/&(L) = F(§(L)/L). (4)

Niedermayer extended the CHN formula to Carraccioloet al. [15] showed that their data indeed col-
e ¢ 27, T T2 lapse to a single scaling functia[&(L)/L]. They also

&= K} 27ps ex;{ T ) 1 - 47 p,s + 0 p_%> , showed that iteration of Eq. (4) yields rapid convergence

2 to &, the correlation length of the infinite system.

The universal functionF for the classical 2D O(3)
which we call the CHIN, formula. This equation is valid model was determined very precisely in Ref. [15]. Since
at low temperatures, that iS, for Iarge correlation Iengthsat low temperatures the quantum model reduces to a
When the correlation length is correctly described byclassical 2D lattice O(3) model, one can use the same
Eq. (2), it scales asymptotically with the three-logp  function to deduce¢ from &(L) data. We verified
function of the 2D O(3) model. The undeterminedthat indeed the same scaling function works for the
O(T?/p}) term represents a four-loop effect. Heisenberg model with measurements£ét.) for lattices

In relativistic quantum field theory the lattice spacing of successively larger size. This calculation yields very
serves as an ultraviolet cutoff that is ultimately removedgood, though not exact, agreement with¢ (L)/L]. We
The question of asymptotic scaling is thus unphysicaincorporated a tiny correction to the scaling function to
because it involves the bare coupling constant. In th@ccount for these violations at each stage of the iteration.
2D AFHM, however, the lattice spacing of the inducedwe found that the correlation length so determined was
classical model isa’ = ¢/T, where T is the physical insensitive to the form of the scaling violation, for several
temperature. Hence, the question of asymptotic scalingifferent fitted functional forms.
becomes physical A priori, it is unclear for what values  We emphasize that Eq. (4) assumes universal behavior,
of &£ one should expect asymptotic scaling for the effectivehat is, scaling, but not asymptotic scaling. This is
2D lattice action. important, because we want to use Eq. (4) to compare
This raises the important question: for witatloesthe  wjth the CH,N, formula Eq. (2) without bias.
CH;N, formula work correctly? We address this issue for The scaling procedure is very sensitive to small changes

the AFHM, defined by the Hamiltonian in the finite-volume correlation lengti§(L), that is, a
H— s> - 3 small error in&(L) can lead to large uncertainties in the
- JXZMSX " S (3) infinite-volume ¢. Hence, one needs a very accurate nu-

R merical method to determiné&(L). Fortunately, for the
whereJ > 0 is the antiferromagnetic coupling,, is a AFHM there exists a very efficient loop cluster algorithm
guantum spin-12 operator located at point of a square [11,13], which practically eliminates autocorrelations in
lattice with spacinga, and & is the unit vector in the successive Monte Carlo configurations. The cluster al-
w direction. Previously, comparisons of Monte Carlogorithm also enables improved estimators which drasti-
calculations of the staggered and uniform susceptibilitiegally reduce statistical errors. Finally, implementing the
(xs and x,,) with CPT predictions yielded = 1.68(1)Ja,  cluster algorithm in continuous Euclidean time completely
ps = 0.186(4)J, and M, = 0.3083(2)/a> [11,12]. The eliminates the systematic error due to the Trotter-Suzuki
calculation of Ref. [11] indicates that CPT results fgr  discretization of time [12]. This continuous-time cluster
and y, of the same kind as Eg. (2)—but with known algorithm (CTCA) has greatly reduced storage and com-
O(T?/p?) terms—work very well for the AFHM for puter time requirements, enabling simulation at very low
T = 0.2J. Hence, one expects that asymptotic scaling atemperatures.
the four-loop level sets in at about the same temperature. For J/T = 0.5,1.0,...,3.5, we carry out simulations
At T = 0.2J the CHN, formula predictsé/a = 150.  that measure the correlation length directly in a large vol-
To avoid finite-size effects in numerical simulations, oneume L = 6¢£, while for J/T = 4.0,4.5,...,12.0, we use
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the finite-size scaling technique. A single-cluster version c = 1.657(2)Ja, ps = 0.1800(5)J ,
of the CTCA is used with an improved estimator for the . 2
staggered correlation function, théfL) is extracted from M, = 0.30797()/a.
the correlation function using the second-moment methodhis is in very good agreement with results of an expan-
[14,15]. For the direct-measurement cas&®, Monte  sion around the Ising limit, which gives= 1.654(11)Ja,
Carlo configurations are used; for the scaled-measuremept = 0.182(5)J, and M, = 0.307(1)/a® [17].
cases4 X 10° are used. The numerical data (L) to- In order to fit the correlation length data down to
gether with the inferred infinite-volumé are given in  y/a =~ 100, it was necessary to include th@(T?/p?)
Table I, and are compared with experimental data andour-loop term—not determined in Ref. [4]—with a
the CHN, formula in Fig. 1. The largest accessibde fitted coefficientC,. We findC, = —0.75(5) if the fit is
is more than 3 orders of magnitude larger than those ofestricted to quadratic order and fg7 > 2.8. Higher-
any previous study [1,2,8,16]. order fits (includingCs, Cy, ...) shift the value determined
Deviations from asymptotic scaling are invisible onfor C,, although it remain€) (1) and stable. A previous
the semilog scale of Fig. 1. Figure 2 shows the devistudy also found that quadratic-order terms are needed
ation from two-loop asymptotic scaling as a functionto match the precision of thg, and y, measured with
of T/2mp,. Here, the three-loop result of Eq. (2) is athe CTCA [12]. Thus, it should come as no surprise
line of slope—1/2. The quantitative agreement shown that asymptotic scaling at the three-loop level of the
in Fig. 1 between experiment and theory in the regimeCH,N,-formula sets in at rather large correlation lengths
24 < J/T < 5.3 is seen to be coincidental. We find of ¢ = 10°a. The same is true for the classical 2D O(3)
that with decreasing temperature the correlation lengtimodel with the standard lattice action [15].
crosses and undershoots the three-loop result before ap-We also carried out an additional independent fit for the
proaching it from below. Consequently, the deviations aprefactor in the ChiN, formula. That is, we multiplied
intermediate and high temperatures from the,NHfor-  Eq. (2) by an extra fitted parametdr, and foundA =
mula turn out to be relatively small. Although neutron 1.02(2) (using the four-loop form for the3 function),
scattering results for S€uG,Cl, cover a wide range of  in excellent agreement with Eq. (2). This gives added
with relatively small errors [1], the deviations from three- confidence both in our scaling procedure and in the
loop asymptotic scaling turn out to be too subtle to becorrectness of the exact mass gap.
discernable experimentally. This explains why the low- A large discrepancy between the é¥y formula and
temperature result of Eq. (2) appears to describe the exexperimental data has been discovered for systems with
perimental data at such high temperatures. S > 1/2[1,6]. A likely explanation of this discrepancy
Owing to the exponential dependence @n, the s that three-loop asymptotic scaling again sets in only
placement of the numerical data on the graph of Fig. 2t very small temperatures. In fact, the existence of a
is extremely sensitive t@, in the low-T regime. This crossover from high- to low-temperature behavior was
enables a very precise estimate mf. The correlation suggested in Ref. [7]. Although the asymptotic region is
length data are fitted simultaneously with previouslyinaccessible to experiments, we have demonstrated that it
obtained results fory, and y, in cubical [11] and is possible to investigate it using the cluster algorithm in
cylindrical [12] space-time geometries, resulting in

6
TABLE I. Finite- and infinite-volume correlation length. 10 ’,5’
Infinite-volume ¢ /a are deduced using finite-size scaling. 1051 O  Present Work L7
5 b

JT__ La £(L)/a fa=t@)a S | TR g

0.5 20 0.481(1) 0.481(1) E 10° T e/

1.0 80 0.973(2) 0.973(2) 5 3 ,0"

15 80 1.818(4) 1.818(4) j 10° ’

2.0 80 3.351(8) 3.351(8) 2 » °

25 80 6.23(1) 6.23(1) g 10"+

3.0 160 11.60(3) 11.60(3) £ ; .

3.5 160 2123(2) 2125(2) O 10' + . Experlment: SI'2CUO2C12

4.0 80 31.3(1) 39.4(2) g

4.5 80 39.0(1) 69.9(7) 10° @ | | |

5.0 80 44.6(1) 126(2) 0 5 10 15

6.0 80 52.5(1) 403(6) Inverse Temperature J/T

7.0 80 58.8(1) 1275(27)

8.0 80 64.2(1) 3960(120) FIG. 1. Experimental [1] (filled circles) and computed values
10.0 80 73.5(1) 38460(1010) (open circles; errors are much smaller than symbol size) of the
12.0 160 159.0(2) 352 000(10 500) staggered-spin correlation length. The solid line is the three-

loop CH N, formula, Eq. (2), withp, = 0.1800.
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precedentedly low temperatures. Our study resolves the

_ & computed conundrum concerning the applicability of the three-loop
y= e ¢ 5 T asymptotic scaling description fér = 1/2, and it points
8 2mp, exp(2mp,/T) the way toward a quantitative resolution of this issue for
S > 1/2. Our results also have direct implications for the
9\9 ®e o low-temperature properties 6f= 1/2 ladders.
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