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Square-Lattice Heisenberg Antiferromagnet at Very Large Correlation Lengths
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The correlation length of the square-lattice spin-1y2 Heisenberg antiferromagnet is studied in the low-
temperature (asymptotic-scaling) regime. Our novel approach combines a very efficient loop cluster
algorithm—operating directly in the Euclidean time continuum—with finite-size scaling. This enables
us to probe correlation lengths up toj ø 350 000 lattice spacings, more than 3 orders of magnitude
larger than in any previous study. We resolve a conundrum concerning the applicability of asymptotic-
scaling formulas to experimentally and numerically determined correlation lengths. Our results have
direct implications for the zero-temperature behavior of spin-1y2 ladders. [S0000-0000(98)00001-1]
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Soon after the discovery of high-temperature superco
ductivity in doped lamellar copper oxides it was foun
that the undoped compounds are quasi-two-dimensio
(2D) spin S ­ 1y2 quantum antiferromagnets. A theo
retical model that captures the essential features of th
materials is the nearest-neighbor quantum antiferroma
netic Heisenberg model (AFHM) on a square lattice
Through experimental, numerical, and theoretical effor
much progress has been made in the understanding
these systems. In particular, detailed neutron scatter
measurements of the spin-spin correlation length in t
magnet Sr2CuO2Cl2 were found to be described quantita
tively [1] by both high-temperature numerical results fo
the AFHM [2] and low-temperature theory for the renor
malized classical regime of thes2 1 1dD O(3)-symmetric
nonlinears model [3,4].

The ground state of the above systems shows lon
range antiferromagnetic order, thus spontaneously bre
ing the O(3) rotational symmetry to O(2). The low-energ
excitations are two massless bosons called magnons
spin waves. These long-range excitations determine
dynamics at low energies. One can use chiral pertu
bation theory (CPT) to derive universal expressions f
low-energy observables in terms of three material-speci
parameters: the staggered magnetizationMs, the spin-
wave velocity c, and the spin stiffnessrs [5]. Both
numerical data and predictions of CPT are in appare
good agreement with experimental results forS ­ 1y2
[1]. However, neutron scattering measurements on an
ferromagnets withS . 1y2 [1,6] reveal a striking discrep-
ancy with CPT predictions based on three-loop asympto
scaling. It has been suggested that forS . 1y2, asymp-
totic scaling sets in only at very low temperatures—th
is, for correlation lengths much larger than those access
experimentally and numerically [7].

In this Letter, we investigate the correlation length o
the 2D nearest-neighbor square-lattice spin-1y2 Heisen-
berg antiferromagnet at unprecedentedly low temper
tures. We resolve the puzzle concerning the applicabil
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of asymptotic scaling to experimentally and numericall
determined correlation lengths [1,6–8]. To effect this
we combine an efficient loop cluster algorithm operatin
in the Euclidean time continuum—hence with zero sys
tematic error—with a finite-size scaling technique. With
this powerful new approach, the infinite-volume correla
tion lengthj is probed up toø350 000 lattice spacings
a. This allows us to paint a detailed picture of the varia
tion of j with temperature well into the asymptotic scal
ing regime, and to arrive at the presently most precis
determination of the low-energy observables of the spi
1y2 AFHM. We find that asymptotic scaling ofj with
the three-loopb function of the 2D classical O(3) model
sets in only at about105a, while a four-loop fit describes
the data already atjya ø 100 200, corresponding to the
largest correlation lengths measured experimentally [1
By exchanging a spatial with the Euclidean time direc
tion, as suggested in Ref. [9], our results may be applie
to spin-1y2 ladders at zero temperature.

In CPT, the 2D quantum spin system is describe
by a s2 1 1dD O(3) symmetric Euclidean field theory.
At nonzero temperatureT the Euclidean time direc-
tion has a finite extent1yT . For a system of massless
particles—that is, one with an infinite zero-temperatur
correlation length—the nonzero temperature system a
pears dimensionally reduced to two dimensions, becau
1yT is then negligible compared toj. However, the
Hohenberg-Mermin-Wagner-Coleman theorem forbids in
teraction among massless Goldstone bosons in two
mensions. Consistent with this, the 2D O(3) model i
known to have a nonperturbatively generated mass ga
This in turn implies that the spin waves of a 2D quan
tum antiferromagnet at nonzero temperature also acqu
a mass. Using perturbative renormalization group arg
ments, Chakravarty, Halperin, and Nelson (CHN) [3] de
rived the expression

j ­ 0.31s4d
c

2prs
exp

µ
2prs

T

∂ "
1 1 O

√
T
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!#
. (1)
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Consistent with dimensional reduction,j is exponentially
large compared tocyT . We note that the exponent in
Eq. (1) comes from a one-loop calculation, while th
factorcy2prs is a two-loop result.

Hasenfratz and Niedermayer [4] averaged thes2 1 1dD
field over cubic space-time volumes of size1yT in the
Euclidean time direction andcyT in the two spatial
directions. Since at low temperaturesj ¿ cyT , the field
is essentially constant over these blocks. The averag
field naturally lives at the block centers, which form a
2D lattice of spacinga0 ­ cyT (which is different from
the lattice spacinga). Hence, the effective action of the
averaged field defines a 2D lattice O(3) model. Usin
CPT, as well as the exact mass gap and the three-lo
b function of the 2D O(3) model [10], Hasenfratz and
Niedermayer extended the CHN formula to

j ­
e
8

c
2prs

exp

µ
2prs

T

∂ "
1 2

T
4prs

1 O

√
T2

r2
s

!#
,

(2)

which we call the CH2N2 formula. This equation is valid
at low temperatures, that is, for large correlation length
When the correlation length is correctly described b
Eq. (2), it scales asymptotically with the three-loopb

function of the 2D O(3) model. The undetermined
O sT 2yr2

s d term represents a four-loop effect.
In relativistic quantum field theory the lattice spacing

serves as an ultraviolet cutoff that is ultimately removed
The question of asymptotic scaling is thus unphysic
because it involves the bare coupling constant. In th
2D AFHM, however, the lattice spacing of the induce
classical model isa0 ­ cyT , where T is the physical
temperature. Hence, the question of asymptotic scali
becomes physical.A priori, it is unclear for what values
of j one should expect asymptotic scaling for the effectiv
2D lattice action.

This raises the important question: for whatj doesthe
CH2N2 formula work correctly? We address this issue fo
the AFHM, defined by the Hamiltonian

H ­ J
X
x,m

$Sx ? $Sx1m̂ , (3)

where J . 0 is the antiferromagnetic coupling,$Sx is a
quantum spin-1y2 operator located at pointx of a square
lattice with spacinga, and m̂ is the unit vector in the
m direction. Previously, comparisons of Monte Carlo
calculations of the staggered and uniform susceptibilitie
(xs andxu) with CPT predictions yieldedc ­ 1.68s1dJa,
rs ­ 0.186s4dJ, andMs ­ 0.3083s2dya2 [11,12]. The
calculation of Ref. [11] indicates that CPT results forxs

and xu of the same kind as Eq. (2)—but with known
O sT2yr2

s d terms—work very well for the AFHM for
T # 0.2J. Hence, one expects that asymptotic scaling
the four-loop level sets in at about the same temperatu
At T ­ 0.2J the CH2N2 formula predictsjya ø 150.
To avoid finite-size effects in numerical simulations, on
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must simulate lattices with a spatial extent at leastL ø
6j. Even with the best algorithms available [11–13
working on lattices starting withL2 ­ 9002 is extremely
time consuming.

How then can we investigatej in the low-temperature
regime? We make use of finite-size effects instead
trying to avoid them. Finite-size scaling methods we
used by Kim [14] and by Caraccioloet al. [15] to test
asymptotic scaling of the correlation length with the ba
coupling constant in the classical 2D lattice O(3) mode
To investigatej in the AFHM, we apply the technique
of Ref. [15], in which renormalization group methods ar
used to justify the search for a universal scaling functio

js2LdyjsLd ­ FsssjsLdyLddd . (4)

Carraccioloet al. [15] showed that their data indeed col
lapse to a single scaling functionFfjsLdyLg. They also
showed that iteration of Eq. (4) yields rapid convergen
to j, the correlation length of the infinite system.

The universal functionF for the classical 2D O(3)
model was determined very precisely in Ref. [15]. Sinc
at low temperatures the quantum model reduces to
classical 2D lattice O(3) model, one can use the sa
function to deducej from jsLd data. We verified
that indeed the same scaling function works for th
Heisenberg model with measurements ofjsLd for lattices
of successively larger size. This calculation yields ve
good, though not exact, agreement withFfjsLdyLg. We
incorporated a tiny correction to the scaling function t
account for these violations at each stage of the iterati
We found that the correlation length so determined w
insensitive to the form of the scaling violation, for sever
different fitted functional forms.

We emphasize that Eq. (4) assumes universal behav
that is, scaling, but not asymptotic scaling. This
important, because we want to use Eq. (4) to compa
with the CH2N2 formula Eq. (2) without bias.

The scaling procedure is very sensitive to small chang
in the finite-volume correlation lengthjsLd, that is, a
small error injsLd can lead to large uncertainties in th
infinite-volumej. Hence, one needs a very accurate n
merical method to determinejsLd. Fortunately, for the
AFHM there exists a very efficient loop cluster algorithm
[11,13], which practically eliminates autocorrelations i
successive Monte Carlo configurations. The cluster
gorithm also enables improved estimators which dras
cally reduce statistical errors. Finally, implementing th
cluster algorithm in continuous Euclidean time complete
eliminates the systematic error due to the Trotter-Suzu
discretization of time [12]. This continuous-time cluste
algorithm (CTCA) has greatly reduced storage and co
puter time requirements, enabling simulation at very lo
temperatures.

For JyT ­ 0.5, 1.0, . . . , 3.5, we carry out simulations
that measure the correlation length directly in a large vo
umeL ø 6j, while for JyT ­ 4.0, 4.5, . . . , 12.0, we use
1743
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the finite-size scaling technique. A single-cluster versio
of the CTCA is used with an improved estimator for the
staggered correlation function, thenjsLd is extracted from
the correlation function using the second-moment metho
[14,15]. For the direct-measurement cases,105 Monte
Carlo configurations are used; for the scaled-measurem
cases,4 3 105 are used. The numerical data forjsLd to-
gether with the inferred infinite-volumej are given in
Table I, and are compared with experimental data an
the CH2N2 formula in Fig. 1. The largest accessiblej

is more than 3 orders of magnitude larger than those
any previous study [1,2,8,16].

Deviations from asymptotic scaling are invisible on
the semilog scale of Fig. 1. Figure 2 shows the dev
ation from two-loop asymptotic scaling as a function
of Ty2prs. Here, the three-loop result of Eq. (2) is a
line of slope21y2. The quantitative agreement shown
in Fig. 1 between experiment and theory in the regim
2.4 , JyT , 5.3 is seen to be coincidental. We find
that with decreasing temperature the correlation leng
crosses and undershoots the three-loop result before
proaching it from below. Consequently, the deviations a
intermediate and high temperatures from the CH2N2 for-
mula turn out to be relatively small. Although neutron
scattering results for Sr2CuO2Cl2 cover a wide range ofj
with relatively small errors [1], the deviations from three-
loop asymptotic scaling turn out to be too subtle to b
discernable experimentally. This explains why the low
temperature result of Eq. (2) appears to describe the e
perimental data at such high temperatures.

Owing to the exponential dependence onrs, the
placement of the numerical data on the graph of Fig.
is extremely sensitive tors in the low-T regime. This
enables a very precise estimate ofrs. The correlation
length data are fitted simultaneously with previousl
obtained results forxs and xu in cubical [11] and
cylindrical [12] space-time geometries, resulting in

TABLE I. Finite- and infinite-volume correlation length.
Infinite-volumejya are deduced using finite-size scaling.

JyT Lya jsLdya jya ; js`dya

0.5 20 0.481(1) 0.481(1)
1.0 80 0.973(2) 0.973(2)
1.5 80 1.818(4) 1.818(4)
2.0 80 3.351(8) 3.351(8)
2.5 80 6.23(1) 6.23(1)
3.0 160 11.60(3) 11.60(3)
3.5 160 21.23(2) 21.25(2)
4.0 80 31.3(1) 39.4(2)
4.5 80 39.0(1) 69.9(7)
5.0 80 44.6(1) 126(2)
6.0 80 52.5(1) 403(6)
7.0 80 58.8(1) 1275(27)
8.0 80 64.2(1) 3960(120)

10.0 80 73.5(1) 38 460(1010)
12.0 160 159.0(2) 352 000(10 500)
1744
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c ­ 1.657s2dJa, rs ­ 0.1800s5dJ ,

Ms ­ 0.30797s3dya2.

This is in very good agreement with results of an expan
sion around the Ising limit, which givesc ­ 1.654s11dJa,
rs ­ 0.182s5dJ, andMs ­ 0.307s1dya2 [17].

In order to fit the correlation length data down to
xya ø 100, it was necessary to include theO sT2yr2

s d
four-loop term—not determined in Ref. [4]—with a
fitted coefficientC2. We findC2 ­ 20.75s5d if the fit is
restricted to quadratic order and toJyT . 2.8. Higher-
order fits (includingC3, C4, . . .) shift the value determined
for C2, although it remainsO s1d and stable. A previous
study also found that quadratic-order terms are need
to match the precision of thexs and xu measured with
the CTCA [12]. Thus, it should come as no surpris
that asymptotic scaling at the three-loop level of th
CH2N2-formula sets in at rather large correlation length
of j ø 105a. The same is true for the classical 2D O(3
model with the standard lattice action [15].

We also carried out an additional independent fit for th
prefactor in the CH2N2 formula. That is, we multiplied
Eq. (2) by an extra fitted parameterA, and foundA ­
1.02s2d (using the four-loop form for theb function),
in excellent agreement with Eq. (2). This gives adde
confidence both in our scaling procedure and in th
correctness of the exact mass gap.

A large discrepancy between the CH2N2 formula and
experimental data has been discovered for systems w
S . 1y2 [1,6]. A likely explanation of this discrepancy
is that three-loop asymptotic scaling again sets in on
at very small temperatures. In fact, the existence of
crossover from high- to low-temperature behavior wa
suggested in Ref. [7]. Although the asymptotic region i
inaccessible to experiments, we have demonstrated tha
is possible to investigate it using the cluster algorithm i

FIG. 1. Experimental [1] (filled circles) and computed value
(open circles; errors are much smaller than symbol size) of th
staggered-spin correlation length. The solid line is the thre
loop CH2N2 formula, Eq. (2), withrs ­ 0.1800.
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FIG. 2. Analysis of the correlation length as the asymptot
scaling regime is approached. To remove the exponent
inverse-temperature dependence,j is divided by the two-loop
formula, using the best-fit valuers ­ 0.1800s5d. The three-
loop result (dashed line) is accurate only forjya ø 105, while
the four-loop regime (solid line) begins at roughlyjya ø 102.

combination with finite-size scaling. A similar study for
S . 1y2 is presently in progress.

Recently, it was pointed out that the CH2N2 formula
can also be applied to the correlation length atT ­
0 of even-width Heisenberg spin ladders [9]. Thes
ladders comprise an even numbern of coupledS ­ 1y2
chains with periodic boundary conditions. This mappin
exchanges one spatial direction with the Euclidean tim
direction, so the time extent plays the role ofn. The
three-loopb function is the same for the square lattic
and the ladder. In contrast, the undetermined highe
order terms are influenced by the distinction that space
a lattice, whereas Euclidean time is continuous. Henc
the O sT 2yr2

s d terms are expected to be different fo
the square lattice and the spin ladders. Early densi
matrix renormalization group calculations of the spi
gap of even-width ladders were reported in Ref. [18
The correlation length of spin-1y2 ladders was studied
numerically for n # 6 [16,19]. We see in Fig. 2 that
three-loop asymptotic scaling sets in only atT ø 0.13J.
We thus expect the three-loop CH2N2-formula to work
quantitatively only for ladders with widths greater tha
n ­ cyT ø 12. It was already realized in Ref. [19]
that the three-loop result is insufficient to describe th
numerical data forn # 6. A four-loop form should work
for n $ 6.

In conclusion, we have combined a powerful and a
curate quantum Monte Carlo technique with finite-siz
scaling. This has made possible the determination
the correlation length of theS ­ 1y2 nearest-neighbor
square-lattice antiferromagnetic Heisenberg model at u
ic
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precedentedly low temperatures. Our study resolves
conundrum concerning the applicability of the three-loo
asymptotic scaling description forS ­ 1y2, and it points
the way toward a quantitative resolution of this issue f
S . 1y2. Our results also have direct implications for th
low-temperature properties ofS ­ 1y2 ladders.

We are indebted to A. Ferrando and F. Niedermayer
very interesting discussions. We also thank A. Pelisse
for providing us with the universal finite-size-scalin
function F. This work was supported by the NSF
under Grant No. DMR 97-04532, the International Joi
Research Program of NEDO (New Energy Developme
Organization) International Joint Research Grant, a
the DOE under cooperative research agreement No. D
FC02-94ER40818. U.-J. W. is also supported by the A.
Sloan Foundation.

[1] M. Greven et al., Phys. Rev. Lett.72, 1096 (1994);
Z. Phys. B96, 465 (1995).

[2] M. S. Makivić and H.-Q. Ding, Phys. Rev. B43, 3562
(1991).

[3] S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phy
Rev. B39, 2344 (1989).

[4] P. Hasenfratz and F. Niedermayer, Phys. Lett. B268, 231
(1991).

[5] P. Hasenfratz and H. Leutwyler, Nucl. Phys. B343, 241
(1990); P. Hasenfratz and F. Niedermayer, Z. Phys. B92,
91 (1993).

[6] K. Nakajima et al., Z. Phys. B96, 479 (1995); Y. S. Lee
et al. (to be published).

[7] N. Elstneret al., Phys. Rev. Lett.75, 938 (1995).
[8] J.-K. Kim, D. P. Landau, and M. Troyer, Phys. Rev. Let

79, 1583 (1997).
[9] S. Chakravarty, Phys. Rev. Lett.77, 4446 (1996).

[10] P. Hasenfratz, M. Maggiore, and F. Niedermayer, Phy
Lett. B 245, 522 (1990); P. Hasenfratz and F. Niede
mayer, Phys. Lett. B245, 529 (1990).

[11] U.-J. Wiese and H.-P. Ying, Z. Phys. B93, 147 (1994).
[12] B. B. Beard and U.-J. Wiese, Phys. Rev. Lett.77, 5130

(1996).
[13] H. G. Evertz, G. Lana, and M. Marcu, Phys. Rev. Lett.70,

875 (1993).
[14] J. K. Kim, Phys. Rev. Lett.70, 1735 (1993); Phys. Rev. D

50, 4663 (1994).
[15] S. Caraccioloet al., Phys. Rev. Lett.75, 1891 (1995).
[16] M. Greven, U.-J. Wiese, and R. J. Birgeneau, Phys. R

Lett. 77, 1865 (1996).
[17] Z. Weihong, J. Oitmaa, and C. J. Hamer, Phys. Rev. B43,

8321 (1991); C. Hamer, Z. Weihong, and J. Oitmaa, Ph
Rev. B50, 6877 (1994).

[18] S. R. White, R. M. Noack, and D. J. Scalapino, Phys. Re
Lett. 73, 886 (1994).

[19] O. F. Syljuåsen, S. Chakravarty, and M. Greven, Phy
Rev. Lett.78, 4115 (1997).
1745


