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Josephson Glass and Decoupling of Flux Lattices in Layered Superconductors
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Phase transitions of a flux lattice in layered superconductors with magnetic field perpendicular to
the layers and in the presence of disorder are studied. We find that the Josephson coupling between
layers leads to a strongly pinned Josephson glass (JG) phase at low temperatures and fields. The JG
phase is bounded by a decoupling transition line and a depinning transition line. These lines cross and
form a multicritical point where four phases meet. The phase diagram accounts for unusual data on
Bi,SrLCaCuyOg such as the “second peak” transition and the recently observed depinning transitions.
[S0031-9007(98)05412-X]

PACS numbers: 74.60.Ge, 74.25.Dw, 74.80.Dm

The phase diagram of layered superconductors in accur by thermal or disorder induced dislocations, as in-
magnetic fieldB perpendicular to the layers is of con- deed demonstrated for fields parallel to the layers [15,16].
siderable interest in view of recent experiments on high The flux lattice can undergo a transition which is unique
temperature superconductors [1]. A first order transitiorto layered superconductors, i.e., a decoupling transition
in YBa,Cu;0; (YBCO) and in BySrp,CaCuyOg (BSCCO)  [17,18]. In this transition the Josephson coupling between
has been interpreted as a melting transition of the flux latlayers vanishes while the lattice can be maintained by
tice. This first order transition terminates at a multicriticalthe electromagnetic (EM) coupling between layers. A
point, which for BSCCO [2,3] is aBy =~ 300-10° G and  disorder induced decoupling was also proposed as a
Ty = 40-50 K, while for YBCO [4] itisatBy, = 2—10 T  crossover phenomenon [19].
and T, = 60-80 K, depending on disorder and oxygen The theory of Daemeat al. [18] employed the method
concentration. The multicritical point also terminates aof self-consistent harmonic approximation (SCHA) to find
“second peak” transition [1—4] which is manifested bythe decoupling temperatui@ (B). The SCHA leads to a
a sharp increase in magnetization; the transition line atonceptual difficulty since it predicts that the Josephson
B = BpandT < T, isweaklyT dependent. Neutron scat- coupling vanishes for all purposes&t> T,. Koshelev
tering andu SR (muon spin rotation) data [1,5] show that [20] has shown that above some critical temperature the
positional correlations of the flux lattice are significantly Josephson critical current vanishes; however, a finite
reduced near these phase boundaries, except, howevdosephson coupling is maintained and in fact accounts
near the multicritical point where a reentrant behaviorfor the experimentally observed plasma resonance. Thus
is observed [6]. Recent data on NgCe15CuQ,—s the decoupling transition, as found by SCHA, needs to be
(NCCO) has also shown a second peak transition extendeinterpreted.
ing up to the superconducting transitiorfat~= 23 K with In the present work we consider low temperature
no apparent multicritical point [7]. phases, i.e., below the melting temperatiizeof the flux

In a recent remarkable experiment Fuehsl. [8] have lattice, and study (i) the decoupling phase transition in a
shown that the phase diagram of BSCCO is much moreenormalization group (RG) framework and (ii) effects of
elaborate. They show that the spatial distribution of ardisorder by employing replica symmetry breaking (RSB)
external current exhibits a transition from bulk pinning methods. We find a glass phase transitignsuch that
to surface pinning of vortices with most of the currentfor T < T, strong pinning is expected. The lin&s and
flowing at the sample edges. This depinning line crosseg, cross and lead to four distinct phases which meet at
the multicritical point and its temperature is almostone point in theB-T phase diagram, remarkably close to
B independent atB < By. The depinning transition the experimental phase diagram [1-4,8,10].
correlates with anomalies in vibrating reed experiments Consider a flux lattice with an equilibrium position
[9] and in magnetization [10]. Thus there are four phaseof the I/th flux line atR;. The flux line is composed
transition lines which emanate from the multicritical point of a sequence of singular points, or “pancake” vortices,
at By, Ty: the first order line, the second peak line, andwhose positions at theth layer can fluctuate tR; + u;.
depinning lines for botlB < By andB > By. Consider the transverse part aff with the Fourier

An extensive theoretical effort has been devoted tdransformur(q, k), whereq, k are wave vectors parallel
understanding the field-temperatu®-7) phase diagram and perpendicular to the layers, respectively. The elastic
[11] in the presence of disorder. In particular, it wasenergy due to EM coupling is given by
proposed that at lowl’ and B a Bragg glass is stable
[12,13], exhibiting algebraic decay of translational order 1., = 1S (74%)[c% g% + % (k2] |ur(q. )2, (1
and divergent Bragg peaks [14]. Melting is expected to EM zq%( Mea R
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where the flux line density id/a?, d is the spacing of the local observablegcosb, (r)) remains finite af” >
between layersq is within the Brillouin zone [of area T,, asinthe//T expansion [20]. This, however, doest
m/a), |kl < w/d, and k, = (2/d)sin(kd/2). The imply long range order in cds,(r)—the same//T ex-
shear and tilt moduli are given (for > d) by [21] pansion yields a power law decay f@osb,, (r) cosb,(0))
cos = 7/(16da?) and correlation, as also obtained from RG.

cu(k) = [7/(8da’* A2, k2)]In(1 + a’kZ/4m), A hallmark feature of two-dimensional superconductiv-
wherer = ¢2d/(4m2A2,) sets the energy scale ang, ity is the Inp dependence of @7 interaction on their
is the magnetic penetration length parallel to the layersseparationp, leading to a power law-V relation [23].
7 =~ 10°-10* K for YBCO or BSCCO parameters [1]. Probing this feature, a high temperature expansion of
Note the strong dispersion ef},(k) which decreases by EQ. (2) with an addegbp pair leads to an effective free
the large factor(a/d)> whenk varies fromk < 1/a to ~ €nergy to ordey?

1/a =k < w/d.
The Josephson phase between the layeandn + 1 F,5(p) ~ (J2/T)f dzr[ d*r'lr — /|7
at positionr in the layer involves contributions from a Ir—r'|>&
nonsingular component and from singular vortex terms. X {1 — coday(r,p) — ao(®,p)l}, (4)

The singular phase around a pancake vortex at position )

R, + uisa(r — R, — u}), wherea(r) = arctarf y/x) where ay(r, p) = a(r — p) — a(r). Equation (4) can
with r = (x,y). We assume that all vortices belong to P& shown to be bounded by -aln’ p term, supporting
the flux lines, i.e., there are no free pancake antipancak@ nonlinear/-V relation atT > T,. In contrast, at
(pp) pairs which appear as relevant fluctuations only!’ < T« the pp interaction increases asp leading to
aboveT,,. The effect of the nonsingular component is & flnlte.crltlcal current. Thus th_e decoupll_ng transition
a negligible T/7 term in the RG equation [22] while IS mamfested by the change. in correlation function,
expansion of the interlayer phase difference — R, — vanishing of the Josephson critical current [20] and by

u}) — a(r — R, — u*") yields for the Josephson phase Nonlinear’-V relation. , ,
by(r) = Y, — u/)Va(r — R;). The Hamiltonian We proceed now to study effects of disorder. Since

is then T < T, we assume first small fluctuations}| < a.
Consider a short range pinning potentid/,;,(r)
H = Hem — (J/fg)ZfderOSbn(l‘), (2)  which couples to the vortex shape functignr) as
n [d*r Y, Upin(r)p(r — R; — uf). Expansion inuf
nd averagind/,;,(r) by the replica method [24] leads to
he replicated Hamiltonian,

where J is the interlayer Josephson coupling aéglis
the coherence length, serving as a short distance cuto
Since Va ~ 1/r decays slowly, even iu; are small

the contribution of many vortices which move in phase #H, ) | . B
(¢ — 0) leads to a divergent responsetofr). In Fourier 7~ 2 2 c(k)g"dap = so75 |*(4.k)b"(q. k)
space, the relevaitt(q, k) fluctuations involveg < 1/a, d ’j”g :
whereb(q, k) =2mid(e™ — 1)ur(q,k)/q, i.e., enhanced - = Z f d*r cosb? (r)
g — 0 fluctuations. T&) na
Standard RG proceeds [22] by integrating higleom- v ) " B
ponents leading to a new cutoff > &, and a& depen- 2 'Z‘B f d*rcodb(r) — bE(r)], (5)

dent coupling/(¢). The significant softening of (k)
atk = 1/a implies that thek integration is dominated by \yhere a, B are replica indices, c(k) =
k = /d so that the resultingge[q*/k2]1b(q, k)|* term (@22 d)?cQ(k)/T, and so = Uald/(4mwd?T)? with T
from Eq. (1) can be replaced by an upper cutoff on theyn average of the pinning potential. In Eq. (5) e
q integration,q, = 2In'/*(a/d)/Aa,. To first order in  term has been replaced by a cutgff on ¢ integrations,
J/T we obtainJ(¢) ~ (£¢.)*' ™", wherer = T/T; and a5 above. The inter-replica Josephson coupling, i.e., the
the decoupling temperature (similar to the SCHA result, term in Eq. (5), is generated from the J term in second

[18]) is ) 1 ) order RG. Itis essential to keep theterm from the start
T, = 4a” f dk ~ L(a/d) (3)  Since it couples different replica indices and can lead to
d? (k) 47 A2, distinct physics by RSB [16,25].
Thus for T > T, J(¢) vanishes on long scales & Note that the more general form of the disorder term is

), Second order RG results in renormalization c6f [12—14] co$Q - (u]“ — u?’B)], whereQ is a reciprocal
and in generation of Josephson coupling between nexattice vector; expansion of this cosine leads to the
nearest neighbors [22]. The second order terms enhant¢erm in Eqg. (5). The cosine form is essential for deriving
T, by a factor(1 — yJ/T)~!, wherey is a nonuniversal the Bragg glass properties of the flux lattice, i.e., tHe
parameter. decay of the displacement correlation at distances €.

The RG process shows that the decoupling transition iThe domain sizef, over which the flux lattice is well
manifested only on long scales. Thus the thermal averageorrelated will be of significance below.
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The RSB method [24] proceeds by employing aBragg glass solution is [12,14} () ~ u? for u < u.
variational free energyF.. = Fo + (H — Ho) with  and A;(u) = A(u.) for u, < u < 1, whereu, ~ sq is
Fo the free energy ofH, = %Zq,k;aﬁ G;’}g(q, k) X small. Thus forr = T/T; > u. the structure ofA;(u)
b*(q, k)bP*(q, k) and Gap(q.k) is determined by an atsmallu should not be affected bx(u) with its step at

extremum condition oify,.. This yields u = 2t. The scale at which thk divergence is cut off is
G—l ,k — k 2 + 5& atk < Al(uc)/c(O) =~ 1/€Z
ap(@0) = [ck)g” + 21bap Consider then/(z) with a lower cutoff /¢, on the
— s0(q*/k2) = Tap. (6a) k integral. If €, < a it leads to a small correction-

z=(/2T&}d) exp =3 Y Gaalq. k) If €, > a then thew/¢, < k < 1/a range inI(z) can
gk be neglected if¢. < (a*/d?)/[32In*(a/d)]. In terms

2 .
g = 21 ex _lBa of By = ¢o/a; (see below) we find that Bragg glass
Tap = /& )|: =2Bap) effects are non-negligible only i2 X 10%a3d/A2, <

} 0(d/¢,) to the mainl/a < k < 7 /d integration range.
. (6b)

| a < 0.5dA,,/ag. This field region exists only for the
— Sap D eXP(— EBa,y):| , (6) By, = 10 T YBCO sample and even then only ne&y; for
Y other YBCO samples and for all BSCCO samples Bragg
whereB, g = 2> i[Gau(q.k) — Gaplq.k)]andz isa  glass effects can be neglected. Note that a finite thickness
renormalized Josephson coupling. The method of RSBf the sample can also serve as a cutoff replaéing
[24] represents a hierarchy of matrices suclrag, B, g I(z) with 1/a <k <m/d integration vyields
in terms of functionso(u), B(u), respectively, with0 <  (so/872)I(z) = 2sIn(A./z), where the dimension-
u < 1. The amount by which the replica symmetry is less disorder parameter is= 47Uy, /[72a? In*(a/d)].
broken is measured by a glass order paramAte) =  The renormalized Josephson coupling of Eq. (6b) is then
uo(u) — [ o()dv. Using standard methods [24,25 B s,
we find tP{gt the solution fog(u) is a step function[, i.e.,] 2/Ac = e I[Jz/(SthfgdAc)]l/(l 2, (10)
A(u) = 0 for u < 2t while A(u) = Ag for 2t < u < 1,

Comparing Egs. (7) and (10) shows thAp vanishes
where

at s =t (up to a nonuniversal~1/Inv term) and
(z + Ag)/A. = [2tv/E2A,]/0720) (7) formally there is a solution withAy < 0 when s <

with the cutoff A, =~ c(7/d)q?. Thus a solution with - However, the average distribution [24] ¢#(q, k)|*
Ao # 0 is possible only ifr < 1/2. To solve forz in 18 ~exd—1b(q.k)|*/Gau(q. k)] is acceptable only if

Eqg. (6b) we need the diagonal part, Ga,a(q,k) > 0. This is a thermodynamic stability cri-
terion and for our solution it reduces toy > 0. Thus
ZGaaa(‘l’ k) = InQetv/z£2d) the regime where botly, A, are finite is limited to
Q.k s < % t < s; we term this regime the Josephson glass

 (s0/87) 1) + 2I'D)],  (8) (JG) phase. The glass parameter vanishes (continuously)
where  I(z) = [d*qdk/{k}c(k)[c(k)g* + z]} and atr = s while the Josephson coupling vanishes (continu-
I'(z) = dI(z)/dz. Formally I(z) diverges atk =0; ously)ats = 3. Fors > 1 ands < 1 the solution i, =
this divergence can be traced back to our assumptiop while A, # 0 satisfies Eq. (7), i.e., it is a decoupled
that the coQ - (u;* — u?’B)] term is expanded into glass phase. Finally, fak, = 0 a replica symmetric so-
the 5o term in Eq. (5). Retaining this cosine leads tolution is valid ats < ¢t < 1 — s with
Imry-Ma type domains of correlatedi; whose size ) 1/(=s—1)
perpendicular to the layers i&. Within a domain the 2/Ac = (J/2T£5dA.) : (11)
u; expansion is valid so thatr/¢, serves as a lower _ 1 : :
cutoff in the k integration. More formally, keeping the lgﬁzitii)nf r=1 for s <3 defines a decoupling

co4Q - (“?;T) — u;”)] term replaces, in Eq. (6a) by The phase diagram, Fig. 1, has four phases which all
a matrix o, g which corresponds to an RSB function meet at a point defined a8, To. B, is determined by
oi(u). This leads to an additional glass order parametethe disorder strength via = % while Ty = %Td(a = agp)
Ay(u) = uoi(u) — [y o1(v) dv and the divergenk(z) is  [Eq. (3)], wheread = ¢o/By. Since s increases with

replaced by a term in Eq. (8) of the form B the s = 1 line defines a decoupling transition from
Z 1 ]1 dv a JG phase at lowB to a pinned glass phase (G) at
< c(k)g> +z Jo 2 high fleIQS._ It is remarkable th_at although the G phase
’ O has vanlshlng Josephson co_upllnzg=€ 0) _the Jogephsqn
g % ., (9) induced disorder [thes term in Eq. (5)] is dominant in
c(k)g® + z + Alw) + Ay(u)g?/kZ determining the glass nature of this phase. In fact, RG

which converges at — 0. The general solution for shows that/ first increases (scaling frondy to 1/q,),
both A(x) and A,(u) involves a rather difficult set of generating thes term, and only at scales beyondg, J
two coupled differential equations. Fdr= v = 0 the  decreases to zero.
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14— Y ‘ . phase which is weakly pinned, leading to enhanced
\ positional correlations. The reentrant behavior seems to
Glass \ Decoupled extend toB < By so that our J-D line may be the first
order line, at least ned; at lower fields this decoupling

\ line probably joins the melting line.

. In conclusion, we have found a phase diagram which
is remarkably close to the experimental one [1-4,8,10],
having a multicritical point where four phases meet.

Josephson Our theory provides a fundamental interpretation of both
the second peak transition and the recently discovered
0.6 — L depinning transition.
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