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Josephson Glass and Decoupling of Flux Lattices in Layered Superconductors

Baruch Horovitz and T. Ruth Goldin
Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

(Received 26 August 1997)

Phase transitions of a flux lattice in layered superconductors with magnetic field perpendicula
the layers and in the presence of disorder are studied. We find that the Josephson coupling be
layers leads to a strongly pinned Josephson glass (JG) phase at low temperatures and fields. T
phase is bounded by a decoupling transition line and a depinning transition line. These lines cross
form a multicritical point where four phases meet. The phase diagram accounts for unusual dat
Bi2Sr2CaCu2O8 such as the “second peak” transition and the recently observed depinning transitio
[S0031-9007(98)05412-X]
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The phase diagram of layered superconductors in
magnetic fieldB perpendicular to the layers is of con
siderable interest in view of recent experiments on hig
temperature superconductors [1]. A first order transitio
in YBa2Cu3O7 (YBCO) and in Bi2Sr2CaCu2O8 (BSCCO)
has been interpreted as a melting transition of the flux l
tice. This first order transition terminates at a multicritica
point, which for BSCCO [2,3] is atB0 ø 300 103 G and
T0 ø 40 50 K, while for YBCO [4] it is atB0 ø 2 10 T
and T0 ø 60 80 K, depending on disorder and oxyge
concentration. The multicritical point also terminates
“second peak” transition [1–4] which is manifested b
a sharp increase in magnetization; the transition line
B ø B0 andT , T0 is weaklyT dependent. Neutron scat-
tering andmSR (muon spin rotation) data [1,5] show tha
positional correlations of the flux lattice are significantl
reduced near these phase boundaries, except, howe
near the multicritical point where a reentrant behavi
is observed [6]. Recent data on Nd1.85Ce0.15CuO42d

(NCCO) has also shown a second peak transition exte
ing up to the superconducting transition atTc ø 23 K with
no apparent multicritical point [7].

In a recent remarkable experiment Fuchset al. [8] have
shown that the phase diagram of BSCCO is much mo
elaborate. They show that the spatial distribution of a
external current exhibits a transition from bulk pinnin
to surface pinning of vortices with most of the curren
flowing at the sample edges. This depinning line cross
the multicritical point and its temperature is almos
B independent atB , B0. The depinning transition
correlates with anomalies in vibrating reed experimen
[9] and in magnetization [10]. Thus there are four pha
transition lines which emanate from the multicritical poin
at B0, T0: the first order line, the second peak line, an
depinning lines for bothB , B0 andB . B0.

An extensive theoretical effort has been devoted
understanding the field-temperature (B-T ) phase diagram
[11] in the presence of disorder. In particular, it wa
proposed that at lowT and B a Bragg glass is stable
[12,13], exhibiting algebraic decay of translational orde
and divergent Bragg peaks [14]. Melting is expected
0031-9007y98y80(8)y1734(4)$15.00
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occur by thermal or disorder induced dislocations, as
deed demonstrated for fields parallel to the layers [15,1

The flux lattice can undergo a transition which is uniqu
to layered superconductors, i.e., a decoupling transit
[17,18]. In this transition the Josephson coupling betwe
layers vanishes while the lattice can be maintained
the electromagnetic (EM) coupling between layers.
disorder induced decoupling was also proposed as
crossover phenomenon [19].

The theory of Daemenet al. [18] employed the method
of self-consistent harmonic approximation (SCHA) to fin
the decoupling temperatureTdsBd. The SCHA leads to a
conceptual difficulty since it predicts that the Josephs
coupling vanishes for all purposes atT . Td. Koshelev
[20] has shown that above some critical temperature
Josephson critical current vanishes; however, a fin
Josephson coupling is maintained and in fact accou
for the experimentally observed plasma resonance. T
the decoupling transition, as found by SCHA, needs to
reinterpreted.

In the present work we consider low temperatu
phases, i.e., below the melting temperatureTm of the flux
lattice, and study (i) the decoupling phase transition in
renormalization group (RG) framework and (ii) effects o
disorder by employing replica symmetry breaking (RSB
methods. We find a glass phase transitionTg such that
for T , Tg strong pinning is expected. The linesTd and
Tg cross and lead to four distinct phases which meet
one point in theB-T phase diagram, remarkably close t
the experimental phase diagram [1–4,8,10].

Consider a flux lattice with an equilibrium position
of the lth flux line at Rl . The flux line is composed
of a sequence of singular points, or “pancake” vortice
whose positions at thenth layer can fluctuate toRl 1 un

l .
Consider the transverse part ofun

l with the Fourier
transformuT sq, kd, whereq, k are wave vectors paralle
and perpendicular to the layers, respectively. The elas
energy due to EM coupling is given by

HEM ­
1
2

X
q,k

sda2d2fc0
66q2 1 c0

44skdk2
z g juT sq, kdj2, (1)
© 1998 The American Physical Society
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where the flux line density is1ya2, d is the spacing
between layers,q is within the Brillouin zone [of area
s2pyad2], jkj , pyd, and kz ­ s2ydd sinskdy2d. The
shear and tilt moduli are given (fora ¿ d) by [21]
c0

66 ­ tys16da2d and
c0

44skd ­ ftys8da2l2
abk2

z dg lns1 1 a2k2
z y4pd ,

wheret ­ f
2
0dys4p2l

2
abd sets the energy scale andlab

is the magnetic penetration length parallel to the layer
t ø 103 104 K for YBCO or BSCCO parameters [1].
Note the strong dispersion ofc0

44skd which decreases by
the large factorsaydd2 when k varies fromk & 1ya to
1ya & k , pyd.

The Josephson phase between the layersn and n 1 1
at positionr in the layer involves contributions from a
nonsingular component and from singular vortex term
The singular phase around a pancake vortex at posit
Rl 1 un

l is asr 2 Rl 2 un
l d, whereasrd ­ arctans yyxd

with r ­ sx, yd. We assume that all vortices belong to
the flux lines, i.e., there are no free pancake antipanca
(pp) pairs which appear as relevant fluctuations on
aboveTm. The effect of the nonsingular component i
a negligible Tyt term in the RG equation [22] while
expansion of the interlayer phase differenceasr 2 Rl 2

un
l d 2 asr 2 Rl 2 un11

l d yields for the Josephson phase
bnsrd ­

P
lsu

n11
l 2 un

l d=asr 2 Rld. The Hamiltonian
is then

H ­ HEM 2 sJyj2
0 d

X
n

Z
d2r cosbnsrd , (2)

where J is the interlayer Josephson coupling andj0 is
the coherence length, serving as a short distance cut
Since =a , 1yr decays slowly, even ifun

l are small
the contribution of many vortices which move in phas
(q ! 0) leads to a divergent response ofbnsrd. In Fourier
space, the relevantbsq, kd fluctuations involveq & 1ya,
wherebsq, kd ­ 2pidseikd 2 1duT sq, kdyq, i.e., enhanced
q ! 0 fluctuations.

Standard RG proceeds [22] by integrating highq com-
ponents leading to a new cutoffj . j0 and aj depen-
dent couplingJsjd. The significant softening ofc0

44skd
at k * 1ya implies that thek integration is dominated by
k ø pyd so that the resultingc0

66fq4yk2
z g jbsq, kdj2 term

from Eq. (1) can be replaced by an upper cutoff on th
q integration,qu ­ 2 ln1y2sayddylab . To first order in
JyT we obtainJsjd , sjqud2s12td, wheret ­ TyTd and
the decoupling temperature (similar to the SCHA resu
[18]) is

Td ­
4a4

d2

√Z dk

c0
44skd

!21

ø
ta2 lnsaydd

4pl
2
ab

. (3)

Thus for T . Td Jsjd vanishes on long scales (j !

`). Second order RG results in renormalization ofc0
44

and in generation of Josephson coupling between n
nearest neighbors [22]. The second order terms enha
Td by a factors1 2 gJyT d21, whereg is a nonuniversal
parameter.

The RG process shows that the decoupling transition
manifested only on long scales. Thus the thermal avera
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of the local observablekcosbnsrdl remains finite atT .

Td, as in theJyT expansion [20]. This, however, doesnot
imply long range order in cosbnsrd—the sameJyT ex-
pansion yields a power law decay forkcosbnsrd cosbns0dl
correlation, as also obtained from RG.

A hallmark feature of two-dimensional superconducti
ity is the lnr dependence of app interaction on their
separationr, leading to a power lawI-V relation [23].
Probing this feature, a high temperature expansion
Eq. (2) with an addedpp pair leads to an effective free
energy to orderJ2

Fppsrd , sJ2yT d
Z

d2r
Z

jr2r0j.j0

d2r 0jr 2 r0j24t

3 h1 2 cosfa0sr, rd 2 a0sr0, rdgj , (4)

where a0sr, rd ­ asr 2 rd 2 asrd. Equation (4) can
be shown to be bounded by a,ln2 r term, supporting
a nonlinear I-V relation at T . Td. In contrast, at
T , Td the pp interaction increases as,r leading to
a finite critical current. Thus the decoupling transitio
is manifested by the change in correlation functio
vanishing of the Josephson critical current [20] and
nonlinearI-V relation.

We proceed now to study effects of disorder. Sin
T , Tm we assume first small fluctuationsjun

l j ø a.
Consider a short range pinning potentialUn

pinsrd
which couples to the vortex shape functionpsrd asR

d2r
P

n,l Un
pinsrdpsr 2 Rl 2 un

l d. Expansion in un
l

and averagingUn
pinsrd by the replica method [24] leads to

the replicated Hamiltonian,

Hr

T
­

1
2

X
q,k;a,b

"
cskdq2da,b 2 s0

q2

k2
z

#
basq, kdbbpsq, kd

2
J

Tj
2
0

X
n;a

Z
d2r cosba

n srd

2
y

j
2
0

X
n;afib

Z
d2r cosfba

n srd 2 bb
n srdg , (5)

where a, b are replica indices, cskd ­
sa2y2pdd2c0

44skdyT , and s0 ­ Ua2dys4pd2T d2 with U
an average of the pinning potential. In Eq. (5) thec0

66
term has been replaced by a cutoffqu on q integrations,
as above. The inter-replica Josephson coupling, i.e.,
y term in Eq. (5), is generated from the J term in seco
order RG. It is essential to keep they term from the start
since it couples different replica indices and can lead
distinct physics by RSB [16,25].

Note that the more general form of the disorder term
[12–14] cosfQ ? sun,a

l 2 u
n,b
l dg, whereQ is a reciprocal

lattice vector; expansion of this cosine leads to thes0
term in Eq. (5). The cosine form is essential for derivin
the Bragg glass properties of the flux lattice, i.e., the1yr
decay of the displacement correlation at distancesr . ,.
The domain size,, over which the flux lattice is well
correlated will be of significance below.
1735
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The RSB method [24] proceeds by employing
variational free energyFvar ­ F0 1 kH 2 H0l with
F0 the free energy ofH0 ­ 1

2

P
q,k;a,b G21

a,bsq, kd 3

basq, kdbbpsq, kd and Ga,bsq, kd is determined by an
extremum condition onFvar . This yields

G21
a,bsq, kd ­ fcskdq2 1 zgda,b

2 s0sq2yk2
z d 2 sa,b , (6a)

z ­ sJy2Tj2
0dd exp

"
2

1
2

X
q,k

Ga,asq, kd

#
, (6b)

sa,b ­ syyj2
0dd

"
exps2 1

2 Ba,bd

2 da,b

X
g

exps2 1
2 Ba,gd

#
, (6c)

whereBa,b ­ 2
P

q,kfGa,asq, kd 2 Ga,bsq, kdg andz is a
renormalized Josephson coupling. The method of RS
[24] represents a hierarchy of matrices such assa,b , Ba,b

in terms of functionsssud, Bsud, respectively, with0 ,

u , 1. The amount by which the replica symmetry i
broken is measured by a glass order parameterDsud ­
ussud 2

Ru
0 ssyd dy. Using standard methods [24,25

we find that the solution forDsud is a step function, i.e.,
Dsud ­ 0 for u , 2t while Dsud ­ D0 for 2t , u , 1,
where

sz 1 D0dyDc ­ f2tyyj2
0Dcg1ys122td (7)

with the cutoff Dc ø cspyddq2
u. Thus a solution with

D0 fi 0 is possible only ift , 1y2. To solve forz in
Eq. (6b) we need the diagonal part,X

q,k

Ga,asq, kd ­ lns2etyyzj2
0 dd

1 ss0y8p2d fIszd 1 zI 0szdg , (8)

where Iszd ­
R

d2q dkyhk2
z cskd fcskdq2 1 zgj and

I 0szd ­ dIszdydz. Formally Iszd diverges at k ­ 0;
this divergence can be traced back to our assumpt
that the cosfQ ? sun,a

l 2 u
n,b
l dg term is expanded into

the s0 term in Eq. (5). Retaining this cosine leads t
Imry-Ma type domains of correlatedun

l whose size
perpendicular to the layers is,z . Within a domain the
un

l expansion is valid so thatpy,z serves as a lower
cutoff in the k integration. More formally, keeping the
cosfQ ? sun,a

l 2 u
n,b
l dg term replacess0 in Eq. (6a) by

a matrix s
s1d
a,b which corresponds to an RSB function

s1sud. This leads to an additional glass order parame
D1sud ­ us1sud 2

Ru
0 s1syd dy and the divergentIszd is

replaced by a term in Eq. (8) of the formX
q,k

1
cskdq2 1 z

Z 1

0

dy

y2

3
D1sudq2yk2

z

cskdq2 1 z 1 Dsud 1 D1sudq2yk2
z

, (9)

which converges atk ! 0. The general solution for
both Dsud and D1sud involves a rather difficult set of
two coupled differential equations. ForJ ­ y ­ 0 the
1736
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Bragg glass solution is [12,14]D1sud , u2 for u , uc

and D1sud ­ D1sucd for uc , u , 1, whereuc , s0 is
small. Thus fort ­ TyTd ¿ uc the structure ofD1sud
at smallu should not be affected byDsud with its step at
u ­ 2t. The scale at which thek divergence is cut off is
at k , D1sucdycs0d ø 1y,z.

Consider thenIszd with a lower cutoff py,z on the
k integral. If ,z , a it leads to a small correction,
Osdy,zd to the main1ya & k , pyd integration range.
If ,z . a then thepy,z , k & 1ya range inIszd can
be neglected if,z , sa4yd3dyf32 ln2sayddg. In terms
of B0 ­ f0ya2

0 (see below) we find that Bragg glass
effects are non-negligible only if2 3 103a2

0dyl
2
ab ,

a , 0.5dlabya0. This field region exists only for the
B0 ø 10 T YBCO sample and even then only nearB0; for
other YBCO samples and for all BSCCO samples Brag
glass effects can be neglected. Note that a finite thickne
of the sample can also serve as a cutoff replacing,z.

Iszd with 1ya & k , pyd integration yields
ss0y8p2dIszd ­ 2s lnsDcyzd, where the dimension-
less disorder parameter iss ­ 4pUl

4
abyft2a2 ln2sayddg.

The renormalized Josephson coupling of Eq. (6b) is the

zyDc ­ e21fJ2ys8T 2tj2
0 dDcdg1ys122sd. (10)

Comparing Eqs. (7) and (10) shows thatD0 vanishes
at s ­ t (up to a nonuniversal,1y ln y term) and
formally there is a solution withD0 , 0 when s ,

t. However, the average distribution [24] ofjbsq, kdj2
is ,expf2jbsq, kdj2yGa,asq, kdg is acceptable only if
Ga,asq, kd . 0. This is a thermodynamic stability cri-
terion and for our solution it reduces toD0 . 0. Thus
the regime where bothz, D0 are finite is limited to
s , 1

2 , t , s; we term this regime the Josephson glas
(JG) phase. The glass parameter vanishes (continuous
at t ­ s while the Josephson coupling vanishes (continu
ously) ats ­ 1

2 . Fors .
1
2 andt ,

1
2 the solution isz ­

0 while D0 fi 0 satisfies Eq. (7), i.e., it is a decoupled
glass phase. Finally, forD0 ­ 0 a replica symmetric so-
lution is valid ats , t , 1 2 s with

zyDc ø sJy2Tj2
0dDcd1ys12s2td. (11)

Thus s 1 t ­ 1 for s , 1
2 defines a decoupling

transition.
The phase diagram, Fig. 1, has four phases which

meet at a point defined asB0, T0. B0 is determined by
the disorder strength vias ­ 1

2 while T0 ­ 1
2 Tdsa ­ a0d

[Eq. (3)], where a2
0 ­ f0yB0. Since s increases with

B the s ­ 1
2 line defines a decoupling transition from

a JG phase at lowB to a pinned glass phase (G) a
high fields. It is remarkable that although the G phas
has vanishing Josephson coupling (z ­ 0) the Josephson
induced disorder [they term in Eq. (5)] is dominant in
determining the glass nature of this phase. In fact, R
shows thatJ first increases (scaling fromj0 to 1yqu),
generating they term, and only at scales beyond1yqu J
decreases to zero.
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FIG. 1. Phase diagram. Full lines are decoupling pha
transitions where the Josephson coupling vanishes. Dash
lines are depinning phase transitions where the Josephson g
parameter vanishes.B0 is determined by the disorder strength
while T0 ­ 1

2 Tdsa ­ a0d [Eq. (3)], wherea2
0 ­ f0yB0.

The JG phase atB , B0 undergoes another transition
at t ­ s, i.e., atT ­ T0 (up to lnB factors) into a phase
with finite Josephson coupling while the glass paramet
D0 vanishes. This Josephson (J) phase has, howev
the Bragg glass type disorder. The condition that,z has
negligible effects in the JG or G phases implies that th
pinning effect from the Josephson inducedD0 is much
stronger than that associated with the Bragg glass. Th
the JG-J transition is a depinning transition, from stron
to weak pinning. The G phase also undergoes a depinn
transition into a decoupled phase (D) atT ­ B0T0yB;
the D phase is a Bragg glass phase maintained by
interlayer EM coupling.

The J phase undergoes a decoupling transition atB ­
2B0T0ysT 1 T0d, usings ø By2B0. The J-D transition is
continuous for small JyT; for higher JyT the SCHA shows
a first order transition [18].

We interpret the experimentally observed second pe
phenomena [1–4,7] as the JG-G transition, i.e., a deco
pling transition within the glass phase. While a decouplin
scenario has been suggested as a crossover phenom
[1,19], the present theory predicts a strict phase transitio
The JG-G transition atB ­ B0 is T independent up toT0

andB0 decreases with impurity strength; both features a
consistent with experimental data [1–3]. For NCCO [7
with its low Tc ø 23 K a multicritical point withT0 , Tc

is probably not realized.
Recent data [8–10] have shown an additional pha

boundary in BSCCO, i.e., a depinning transition lin
which crosses the critical pointB0, T0. Our result for
the depinning temperature,T ­ T0 at B , B0 being
B independent (up to,ln B terms), is in accord with
the data. AtB . B0 we expect the depinning line at
T ­ B0T0yB, in qualitative agreement with a strongerB
dependence [10].

Neutron data [6] have shown a reentrant behavior in th
600 103 G range with positional correlations increasing
with temperature. This is consistent with our decouple
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phase which is weakly pinned, leading to enhance
positional correlations. The reentrant behavior seems
extend toB , B0 so that our J-D line may be the first
order line, at least nearB0; at lower fields this decoupling
line probably joins the melting line.

In conclusion, we have found a phase diagram whic
is remarkably close to the experimental one [1–4,8,10
having a multicritical point where four phases meet
Our theory provides a fundamental interpretation of bot
the second peak transition and the recently discovere
depinning transition.
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