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Generalization of a Fermi Liquid to a Liquid with Fractional Exclusion Statistics
in Arbitrary Dimensions: Theory of a Haldane Liquid
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A liquid of interacting quasiparticles with Haldane-Wu (fractional exclusion) statistics in arbitrary
dimensions is discussed in terms of Fermi-liquid theory. The universal properties of this Haldane liquid
are investigated. [S0031-9007(97)05241-1]
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In 1957 Landau [1] introduced the famous concept To ease the reference | first summarize the universal
of quasiparticles with Fermi-Dirac statistics (FDS) in aproperties of a Haldane liquid stemmed from the point
Fermi liquid in order to describe electrons in a metalof view of quasiparticles in the Landau’s Fermi liquid
where the interaction between electrons was believed ttheory [1] as follows: (1) the particle-hole asymmetry
be very significant, as a generalization of the Sommerfeldiniversally exists in the system; (2) the volume of the
theory for a degenerate Fermi gas [2]. This descriptiorpseudo-Fermi sphere is conserved under the introduction
was later justified by Luttinger [3]. of the interaction between quasiparticles—the generalized

Recently Haldane [4] introduced the concept of frac-Luttinger’'s theorem from a Fermi liquid [3] to a Haldane
tional exclusion statistics (FES) which quasiparticles inliquid; (3) many physical quantities such as the specific
strongly interacting systems in arbitrary dimensions mighteat areT linear at very low temperature unlegs= 0
satisfy as a generalization of Pauli’s exclusion prin-[13—-15]; and (4) the true condensation exists only when
ciple. Wu [5] first formulated quantum statistical me- ¢ = 0 [15]. Here g stands for a pure HWS parameter
chanics (QSM) in the state representation and derived thisee Eq. (1)].
distribution function for an ideal gas with FES as a gen- In this way many properties of the Haldane liquid are
eralization of the FD and the Bose-Einstein (BE) distribu-shared with those of the Luttinger liquid in one dimension
tion functions. [Throughout this Letter the FES is referredsuch as the TLM [6], CSM [7], and HSM [8] as a
to as the Haldane-Wu statistics (HWS) such as FDS andeneralization of the Fermi liquid [1]. Thus, | conclude
BES, while a gas or liquid with HWS is called a Haldanethat the concept of a Haldane liquid presented here is a
gas or liquid such as a gas or liquid with FDS (BES) wasgeneralization of that of a Luttinger liquid as well as a
called a Fermi (Bose) gas or liquid.] Fermi liquid.

This concept has played a very important role to under- Let us first consider the system of a Haldane gas
stand strongly interacting system such as the Tomonagavith a statistical parametey. The total numbewv, the
Luttinger model (TLM) [6], the Calogero-Sutherland energy E and the entropyS of the system of quasi-
model (CSM) [7], and the Haldane-Shastry model (HSM)particles are given bW = > ny, E = >, €pnp, S =
[8] in one dimension and the fractional quantum Hall effectks >, (n, + pp)In(ny + pp) — nyInny, — ppInpy, re-
in two dimensions [9]. Especially, notable is that Das-spectively, where:, is the momentum distribution func-
nieres de Veigy and Ouvry [10] revealed a deep connectiotion of quasiparticles angj, the hole distribution function
between the FES and the fractional quantum Hall systenwith kp the Boltzmann constant. If | impose the condition
while Bernard and Wu [11] and Isakov [12] found the of HWS with g,
one between the FES and the CSM. More recently, QSM 4oy =1—(g—1) (1)
formulation has been developed further by Nayak and o T Pp g ">
Wiczek [13], Isakov, Arovas, Myrheim, and Polychrona-then by taking the extreme of the thermodynamic
kos [14], and the author [15]. Here, the QSM formulationpotential ) as §Q = §(E — uN — TS) = 0, | ob-
allows us to evaluate the equation of state for an ideal gagin Q = —PV = —kBTZp In[(1 + Wp)/Wp], N =
with HWS in arbitrary dimensions with obtaining all the >, n, = >, 1/(W, + g), where | have the Wu’s func-
exact cluster coefficients in the cluster expansion [14,15]tional relation [4],

However, interacting quaS|part|cIe§ Wlth_HWS in arbi- WE(L + W)l "8 = eBlerm) 2
trary dimensions have never been investigated yet, and p P
therefore the concept of a Haldane liquid is still missing.This is an alternative derivation for the thermodynamic
In this Letter | will explore this concept as a generalizationpotential and the density of the system compared to the
of the Landau’s Fermi liquid theory and generalize the Lut-derivation in Ref. [15], and has been discussed by Bernard
tinger's theorem for a Fermi liquid to that for a Haldaneand Wu [11] as a conjecture generalizing the CSM to
liquid. the models in higher dimensions. | also note that if
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one identifies agpp/n, = W, and substitutes this into np + pp=1- Z[g(p/,p) —8(p — pInp,  (9)
Eq. (1), one obtains, = 1/(W, + g). P’

Let us now consider the interaction between quasiparti- , , of(p’,p)
cles. Following Landau [1], not only, for a given distri- g(p’,p) =8 —p) — Top (10)
butionn, but also the change i, produced by a change in
nyp is of essential importance for the theory of the quantu
liquid. Hence, | assume that the energy change is given

nHere 6(p — p’) is a Dirac’s delta function and the
gontribution of of(p, p")op from p = p’ is excluded by
the delta-function part. This can be regarded as the
Sep = Zf(P’P/)‘S”p” (3)  9eneralization of the pure HWS of Eq. (1) to the mutual
o HWS case. Thud:g. (6) determines the statistics of the
system.
As Landau [1] also discussed the quasiparticle energy
changes due to the change of the momentum distribution
fithction, from Eg. (3) the quasiparticle energy is given

by

where the functiorf (p, p’) is a symmetric function relative
to p and p’ and called the scattering matrix describing
the scattering between quasiparticles such as the scatteri
processp, + p» = p| + pb. | assume thathe velocity
of the quasiparticle in a quantum liquid is given by

dep/0p, and the number of quasiparticles coincides with e =e + > [(p.pny. (11)
the number of free quasiparticles in a quantum,gasm P
which | have the total momentum given by This gives the famous free energy functional of the mean-
dep field type as
P=§ponp Z%mgn‘,, 4) F — I“N:Z(fx()o) — Wy
P
where py represents momentum for a free quasiparticle 1
when r?o intgraction exists and it is a functior?p)f 'IE)he Ty Zz,f(p’p/)”l’"l" - 715, (12)
variational derivation with respect tg, should be the same bor
on both sides of Eq. (4). Then using Eq. (3) | obtain When Landau [1] considered quasiparticles in a Fermi
1 Jde 9 liquid, there existed only the concept of FD or BE
ZZPO(?np = Za—pp5np + ZZ@J‘(P,P/)MW"})- quasiparticles. Therefore, the momentum distribution
P P PP function might have been either, = 1/(e#@~» + 1)
Since thedn,, is arbitrary, | obtain for FDS orn, = 1/(ef%~# — 1) for BES. However,
e 3/ (p'.p) this is not true in our case of quasiparticles with HWS
Po_ %% Z 9/P.p) Np: . (5) in a Haldane liquid. In this case, Eqg. (12) together with
G T Eq. (9) must be maximized, which provides the desired

Wu’s distribution function Eq. (2).
The free energy functional of Eq. (12) was also found
recently by Haldane [18] in the study of the HSM [8]

Denotingmadep /op by p, the Landau’s relation Eq. (5)
turns out to be

p =po + f(p), (6) and by Murthy and Shankar [19] in the study of the
; CSM [7], respectively. In the former the excitations are
f(p) = — Zf(p’,p)np,, f(p’.p) = mm ) described as the spinon gas represented by an exact mean-
] ap field theory with BES [see Eg. (8) in Ref. [18]], while

(7) in the latter the excitations are described as quasiparticles

This type of relations was recently discussed by Sutherrepresented by a mean-field theory with HWS [see Eq. (5)
land [16] as a generalization of the CSM in one di-in Ref. [19]]. Thus, | conjecture thahere exists a class
mension to that in two dimensions, and thg) was of interacting quasiparticle systems with HWS in any
called thedisplacement field Here the scattering function dimension such that the above Eq. (12) becomes exact.
f(k) = f(lk]) with & = 1 was represented in terms of the Let us consider the relationship between Eg. (11) and
two-dimensional partial wave phase shiftgk) such that Yang and Yang's method [17]. In the Landau's quasi-
kf(k) =437 . 60y+1(k) [see Eq. (3.7) in Ref. [16]]. particle picture, if | assume that quasiparticles are fermi-
And he defined a generalization of Yang and Yang'sons with the FD momentum distribution function, then |
method [17] to that in the higher-dimensional systems byhavee, = e,(, + 2, fp', p)/(eP& ~ + 1) which is
taking the derivative of Eq. (6) with respect pg which  an integral equatlon fog,. Assuming as

then gives the relation af(p’,
D ¢(p'.p) = /(pp) p), (13)
ny + pp = L0 |0 _ el RN g o
T ap ap | the integration by parts yields

where|dpo/ap| means the Jacobian. If | expand Eq. (8) € = 6(0) + kBTZQ')(p p)In(l + e Ble—w)  (14)
up to linear order of (p), then | obtain

1699



VOLUME 80, NUMBER 8 PHYSICAL REVIEW LETTERS 23 EBRUARY 1998

This is exactly the same form known as thermal Bethe although Bernard and Wu [11] were not able to guarantee
ansatz (TBA) equatiom Yang and Yang’s method [17] this relationship.

for the one-dimensional systems whefr@, p’) is exactly Let us now generalize the Luttinger’s theorem [3] for a
the momentum derivative of phase shiftp,p’) of the  Fermi liquid to that for a Haldane liquid. To do so, let

two-body scattering between quasiparticles. So, Ed. (14)s first evaluate the pseudo-Fermi sphef& for a Hal-
can be regarded as a generalization of the TBA equatiofane gas. Suppose that the total number of free quasipar-

to that for quasiparticles in Haldane liquid. ticles is fixed asv. At zero temperature where = E}(g),

As is known in the one-dimensional systems such as thg,o |y gistribution function has the following property:
CSM, the TBA equation is exactly equivalent to the Wu'’s g property:

- — ) (0) .
relation for the distribution functiorw,, for an ideal gas "'® I/g(=0) for € = €p (€ > €r’), which means the
with HWS[11,12]. In our case of the higher-dimensional Particle-nole asymmetrieg. (9)] as a consequence of the

systems, it also holds true as follows: Suppositig = Falrtlcl_e—hole duality[11-13] in the system of quaS|par—._
Ble, ) icles in a Haldane liquid at very low temperature. Substi
e~ EqQ. (14) becomes

tuting this intoN = >, np, | obtain
InWy — Zd)(p’,p)ln(l + 1/Wp) = Bley) — w). N = l20(6(0) 0)y — v ©)
" g g Qmmp "7

So, if | put the relation,
wheref(e) is a step function and the volume of the pseudo-

! — ! !
sp.p)=o(p —p)+ $p.p). (15) Fermi sphere for a Haldane gas is denoted/bY, which
then I get is given as
Wp/ ! e{,o)— D/2
1+ Wp)]_,[(1 a ,>g(p P = Bl m (1) yo _ f iy = 2 2P dp

p P lpl=pro F(D/Q') 0=p=pro
This is exactly the condition that was recently discussed o
by the author [15] and that Bernard and Wu [11] have _ ™ D
conjectured for an ideal gas with HWS in arbitrary I'b/2 +1) Pro

dimensions. Thus, the Landau’s quasiparticle picture als

provides a good foundation for the quasiparticles in

Haldane liquid as well, providing a microscopic origin for 1/D

the HWS. — @mh)® T(D/2 + 1)d
Let us consider the relationship betweerdf(p’,p)/ PO =1 8 70D

dp in Eg. (10) andp (p,p’) in Eq. (15). Bernard and Wu ) )

[11] suggested that they are related to each other wheihered =(01)V/V. Hence the pseudo-Fermi energy’ is

V(p,p') and ¢(p,p’)/27 in their notation correspond given byex = pf.o/2m.

to f(p,p’) and ¢(p,p’) in our notation, respectively, Let us next consider the pseudo-Fermi sph&gefor

while reserving the same notation for the mutual statisticaf Haldane liquid. Following the argument of Luttinger

parameteg(p, p’) [see Eqgs. (40) and (41) in Ref. [11]]. | [3], define f(e) = € — ey’ — Kp(€), where Kp(e) is

prove here that they are identical to each other as followshe self-energy part of the renormalization equation [3]

Suppose that the excitation spectrum has the linear fornguch as Dyson’s equation [20] and Eq. (11) in the mean-

€p = vrlp — prl in the vicinity of the pseudo-Fermi field picture. This has a discontinuity at the pseudo-

surface. (This assumption does not mean that= e Fermi surfacee = ey such thatf(e) > 0 (< 0) when

sincep # po due to the particle-hole asymmetry.) Using € < €7 (> €r). Therefore, the total numbe¥ is given

the definition for¢ (p,p’) of Eq. (13) and the symmetry by

betweenp andp’, then 1 1 v
N=—=> 6ler — € - K =——— V.
¢(p'.p) = af(p'.p)/dey = —af(p’,p)/dep g % ler = & pler)] g Qmryp "

= —(1/vp)af(p’,p)/op = —(m/pr)af(p'.p)/9p  Since the total numbe¥ of the interacting quasiparticles

fith T (s) the gamma function. Solving the above foro,
9 obtain the pseudo-Fermi momentum

~ —md f(p’,p)/apop = —md*f(p',p)/Ipap . are kept at the same as that of the free quasiparticles, |
o . o conclude the following theorem:
Hence, | obtain the following theorem: Theorem 2:
Theorem 1: o
VF = VF 5
splp) = @0 @fp'.p) _ _of(@.p) ah
, den pap p and hence
a7) PF = DF0- (18)

This guarantees the exact relationship between the dynanihis theorem means that the volume of the pseudo-Fermi
ical interactionf(p,p’) and the mutual statistics(p,p’)  sphere for an ideal Haldane gas is conserved depending
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on the statistical parametgrwith degeneracyl/g under dimensions, as generalizing the point of view of the
the introduction of the interaction between quasiparticled.andau’s Fermi liquid theory [1]. | have shown that
in a Haldane liquid. The volume of the pseudo-Fermimany properties of a Haldane liquid, if it exists in nature,
sphere coincides with that of the Fermi sphere withare shared with those of a Luttinger liquid [6] in one
degeneracy unity wheg = 1. On the other hand, it dimension. Itis very interesting to study what a physical
vanishes ag — 0 with an infinite degeneracy so that one system satisfies the Haldane liquid properties.

can interpret thathe BE condensation is a condensation | would like to thank Professor Bill Sutherland for
of all quasiparticles with BES to the pseudo-Fermi spheresending me an article prior to publication and Kazuko
with an infinitesimal volume in momentum spac&nd  Iguchi for continuous encouragement.

therefore, the true BE condensation occurs only when the

pure boson case gf = 0 as was recently proved by the
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