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We study macroscopic quantum coherence in antiferromagnetic molecular magnets in the prese
of magnetic fields. Such fields generate artificial tunnel barriers with externally tunable strength. W
give detailed semiclassical predictions for tunnel splitting in various regimes for low and high magne
fields. We show that the tunneling dynamics of the Néel vector can be directly measured via the st
magnetization and the specific heat. We also report on a new quantum phase arising from fluctuati
The analytic results are complemented by numerical simulations. [S0031-9007(97)04930-2]
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Quantum spin dynamics in mesoscopic magnets has
ceived much attention over the recent years, both fro
experiment and from theory [1]. A number of nanosize
particles in the superparamagnetic regime have been id
tified as promising candidates for the observation of macr
scopic quantum phenomena (MQP) such as the tunnel
of the magnetization out of a metastable potential min
mum, or, more strikingly, macroscopic quantum coheren
(MQC), where the magnetization (or the Néel vector) tun
nels coherently between classically degenerate directio
over many periods. On the one hand, these phenome
are interesting from a fundamental point of view as the
extend our understanding of the transition from quantu
to classical behavior. On the other hand, the measurem
of MQP quantities such as the tunnel splitting provides in
dependent information about microscopic parameters su
as anisotropies and exchange constants.

A prominent example of such MQC behavior that ha
attracted wide attention is the antiferromagnetic ferritin [2
More recently, molecular magnets [3] such as the ferr
wheel or Mn12 have emerged as promising candidates f
the experimental observation of MQP [4,5] mainly fo
three reasons. First, molecular magnets have well-defin
structures and magnetic properties. Thus, precise valu
for the tunneling rates can be calculated. Second, mole
lar magnets can be produced as single crystals that con
a macroscopic number of identical magnetic subunits th
are weakly coupled to each other as well as to the
surroundings, as evidenced, e.g., by the observed MQP
Mn12. Thus the amplification of the single-unit signal is
naturally provided. Third, the typically high symmetry
of these magnets reduces the number of independ
parameters.

In this Letter we discuss novel tunneling scenarios
antiferromagnetic (AFM) molecular magnets. A key fea
ture of our discussion is to exploit the well-known fac
that an effective anisotropy can be generated in an AF
by applying a magnetic field. Thus it is possible to crea
tunnel barriers that are tunable by an external parame
Evidently, such control parameters are highly desirable
they open the door to systematic tests of MQC. We co
centrate on ringlike structures such as Fe6, Fe10, and V8 [3],
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where the spins interact with their nearest neighbors via e
change coupling. In particular, we show that the tunnelin
rates become field dependent and thus can be measured
the static magnetization and (less surprisingly) also via th
Schottky anomaly of the specific heat. Our discussion
based on the nonlinear sigma model (NLsM) that include
anisotropies and magnetic fields [6]. The quantum dynam
ics of the Néel vector is then studied by instanton meth
ods. Such methods are semiclassical in nature, i.e., va
for large spins and in the continuum limit. To cover the
small end of the size scale, we performedab initio numeri-
cal calculations; they agree well with the analytic result
in the regime where a comparison is possible. We fin
several distinct tunneling regimes, depending on the rat
of crystalline anisotropy to magnetic field. Motivated by
recent measurements on single-crystal Fe10 which indicate
the presence of an anisotropy axis [7], we give estimates
these MQC corrections in the magnetization and the sp
cific heat, and we show that they are within experimenta
reach.

We consider a ringlike molecular magnet, modeled asN
spinss regularly spaced on a circle lying in thexy plane,
with N even. The Hamiltonian is (SN11 ; S1)

H  J
X

i

Si ? Si11 1
X

i

UisSid 1 h̄h ?
X

i

Si , (1)

with AFM exchange couplingJ . 0, and whereUisSid is
the crystalline anisotropy at sitei, h  gB, with B being
the magnetic field,g  gmByh̄, andg is the electronic g
factor. For simplicity, we assume that bothg and J are
isotropic, and that the point symmetry of the molecule i
that of a ring. Up to second order in the spin variables
the most general form of the anisotropies is thenUisSid 
k̃zS2

i,z 1 k̃rsSi ? eid2, where k̃z and k̃r are the axial and
radial anisotropies, respectively, andei is a unit vector
at sitei pointing radially outwards. We also assume tha
J ¿ k̃z , k̃r , which is typically the case.

We now derive an effective Lagrangian (NLsM)
describing the low-energy physics of (1) by extendin
standard techniques [8] to include magnetic fields. W
introduce spin coherent states, and decompose the lo
spin asSi  s21disn 1 li , where the Néel vectorn (with
© 1997 The American Physical Society 169
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n2  1) is taken as uniform for our small system, andli is
the fluctuation at sitei (with li ? n  0). After integrat-
ing out theli [9], and keeping only the lowest-order term
in k̃zyJ andk̃ryJ, we obtain the Euclidean Lagrangian [6

LE 
Nh̄2

8J
f2sin 3 Ùn 2 hd2 1 sh ? nd2g 1 Nkzs2n2

z ,

(2)

with a single effective axial anisotropykz  k̃z 2 k̃ry2.
Note that the magnetic field has two effects. First,
creates a hard axis anisotropy along its direction. Th
is easy to interpret: The spins can gain Zeeman ener
by canting towards the magnetic field, and this effect
maximal when the Néel vector is perpendicular to the fiel
What makes this anisotropy interesting for our purposes
that it is tunable by an external field. Second, a pha
factor arises from the cross term2ih ? sn 3 Ùnd. It will
have important consequences at high fields.

Depending on the sign ofkz and on the orientation of
the field, various scenarios can be envisaged [10]. For la
of space we restrict ourselves to the most interesting ca
where the field is in the ring plane,B  sBx , 0, 0d, and
perpendicular to a hard axis, i.e.,kz . 0. The potential
energy has then two minima atn  6ey . Tunneling of
the Néel vector between these classically degenerate st
results in a tunnel splitting of the ground state energ
which can be calculated using instanton methods. For t
semiclassical dynamics two kinds of hard axis anisotropi
compete, the crystalline one,Nkzs2, and that induced by
the field, NsgmBBxd2y8J. Let us introduce their ratio
l  8s2JkzysgmBBxd2. For low fields (l ¿ 1), the hard
axis is thez axis, and the Néel vector, staying close t
thexy plane, tunnels via thex axis. For high fields (l ø
1) on the other hand, the hard axis is thex axis, and the
Néel vector tunnels via thez axis while staying in theyz
plane. Without the phase term2ih ? sn 3 Ùnd in (2), the
crossover would occur forl  1, i.e., for a fieldBx 
s
p

8JkzygmB. As we will see, this extra term reduces th
critical field.

We first concentrate on the high-field regime (l ø 1).
In this case, the Néel vector is conveniently parametriz
asn  scosu, sinu sinf, sinu cosfd. We then find that
the instanton solution minimizing the action belonging t
(2) moves in theyz plane [11] with the frequencyvhf 
s
p

8Jkzyh̄, and action

Shfyh̄  Ns
q

2kzyJ 6 ip
NgmBBx

4J
, (3)

where the upper and lower signs correspond to instanto
and anti-instantons, respectively. Note that both the tu
neling barrier and the attempt frequency are constant. T
phase term in Eq. (3) arises because the spins cant towa
the field, thereby acquiring an additional geometric pha
factor.

For the calculation of the fluctuation determinants,
is convenient to pass to dimensionless variables in (
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We write the action asS  h̄NgmBBxy8J
R

dt̃ sL̃ 2 hxd,
with

h̄vlf  gmBBx ,

L̃  Ùn2 1 2isn 3 Ùndx 1 n2
x 1 ln2

z ,
(4)

where time is rescaled as̄t  vlft. Expanding around
the instanton solution up to second order, one se
that the u and f fluctuations are decoupled. For the
u-fluctuation determinant we find in leading order
exph6i

p

2 1 O sl3y2dj. This is a new quantum phase dis-
tinguishing instantons from anti-instantons. Its occurrenc
is surprising, because it is due to quantumfluctuations,
and not due to a topological term in the action, in marke
contrast to phases arising usually in spin problems [8,12
Moreover, this new quantum phase doesnot depend on
the spins. The fluctuation determinant forf is standard,
and by summing over all configurations [12], we finally
find for the tunnel splitting of the ground state in the
high-field regime,

Dhf  8h̄vhf

s
ReShf

2p h̄
e2Re Shfy h̄

Ç
sin

µ
p

2
NgmBBx

2J

∂ Ç
.

(5)

Note that the tunnel splitting oscillates with theB field
as a result of interference between quantum spin phas
(the new additional phase induces a shift from the usu
cosine [12] to a sine). Similar oscillations have bee
found in biaxial FM [13] and uniaxial AFM [14]; note,
however, that in the latter work the fluctuation-induce
phase shift identified here has been overlooked. O
results, including the phase shift, are fully confirmed b
independent numerics (see below and Fig. 2).

Next, we consider the low-field regime (l ¿ 1), where
we use the parametrizationn  ssinu cosf, sinu 3

sinf, cosud. We start by integrating out theu fluctua-
tions to obtain an effective action. The termsn 3 Ùndx

in the Lagrangian (4) forces the instantons out of thexy
plane. However, forl ¿ 1 the deviations are small.
Thus, we writeu  py2 1 q , and expand the Lagrangian
to second order inq . This givesL̃ ø Ùf2 1 cos2 f 1

4iq Ùf cosf 1 qGq , where G  2≠
2
t̃ 1 l 2 cos2 f 2

Ùf2. Integrating outq is now straightforward. Forl ¿ 1
we find [15] thatG ø l. Hence, we end up with the
effective Lagrangian

L̃eff 

µ
1 1

4
l

cos2 f

∂
Ùf2 1 cos2 f . (6)

A simple quadrature shows that the instantons of this L
grangian have an actioñSeff  4f1 1 4y3l 1 O sl22dg.
Reinstating full units, we finally get for the action in the
low-field regime (neglecting corrections of orderl22)

Slfyh̄  N
gmBBx

2J

µ
1 1

1
6

sgmBBxd2

s2Jkz

∂
. (7)
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Comparison with Eq. (3) shows that the crossover betwe
the low- and high-field regimes occurs for a magnet
field Bx  as

p
8JkzygmB, with a  fs3 1

p
10 d1y3 2

s3 1
p

10 d21y3gy2 ø 0.64, a sizable reduction over the
result that would follow from neglecting the phase term
2ih ? sn 3 Ùnd in (2).

Next we determine the fluctuation determinant. Th
raises one problem. While the action for the instanton s
lutions of (6) is easy to calculate, the solutions themselv
cannot be obtained analytically. However, being interest
only in the regimel ¿ 1, we can approximate this deter
minant by the one obtained for the fluctuations around t
instantons of the Lagrangian̄L  Ùf2 1 cos2 f. This re-
sults in

Dlf  8h̄vlf

s
Slf

2p h̄
e2Slfy h̄. (8)

The low-field splitting decreases (roughly) exponential
with the field. This is easily interpreted: The tunnelin
barrier increases quadratically with the field, whereas t
attempt frequency increases linearly.

We complete our derivation by discussing the range
validity of our results. A necessary condition to have tu
neling (in the ground state) is that the barrierDU be much
larger than half the attempt frequencyv [16]. Application
of this criterion to the low- and high-field regimes yield
two conditions,gmBBx ¿ 4JyN, and Ns

p
kzy2J ¿ 1.

The effective Lagrangian (2) was derived under the a
sumption of (local) Néel order. Hence, the Zeeman ener
must be smaller than the exchange energy, i.e.,gmBBx ø
4Js. Finally, our expression for high-field tunnel splitting
is valid for l ø 1, i.e., for gmBBx ¿ s

p
8Jkz, whereas

the low-field predictions hold ifl ¿ 1, i.e., forgmBBx ø

s
p

8Jkz . We summarize in Fig. 1 the various regimes an
critical fields we have obtained.

We now turn to the question of how to observe the tunn
splitting. In contrast to previous cases [17] such as ferri
[2] it is not possible to observe the switching of the Né
vector via an excess spin, since even if such an exc
moment were present, it is easily seen [10] that it wou
always point along the magnetic field and not along th
Néel vector. However, the dynamics of the Néel vect
could be observed via resonances (occurring atD) in the
NMR spectrum, which provides local spin information
An entirely different approach, which is possible onl
because the tunnel splitting isB-field dependent, is to
measure the static magnetizationM  2kgmB

P
i Sil as a

FIG. 1. Summary of the various regimes we have obtained
functions of the applied magnetic field (a ø 0.64).
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function of applied field. Indeed, we have seen that the t
lowest energy levels are tunnel split byD and are separated
from the other levels by an energȳhv ¿ D, where D

and v are approximated byDlf, Dhf, and vlf, vhf,
respectively, depending on the field. At low temperature
such thatkBT ø h̄v, the magnetization along thex axis
is then found to be

Mx 

µ
N
8J

gmBBx 2
1
2

∂
gmB 1

D0

2
tanh

µ
D

2kBT

∂
.

(9)

Note that the first two terms in Eq. (9) give only a linea
dependence onBx. The last term shows that deviation
are proportional toD0  ≠Dy≠Bx .

The tunnel splitting is also reflected in other therm
dynamic quantities. For example, the low temperatu
specific heat exhibits a characteristic Schottky anoma
cV  kBsDy2kBT d2 sech2sDy2kBT d, with a peak of height
0.64kB at a temperatureT ø 0.6DykB. The location of
this peak thus gives the tunnel splitting.

The Lagrangian (2) is not limited to the tunnelin
regime, but also covers the nearly free limit of smallkz ,
such thatNs

p
kzy2J ø 1. This regime is most conve-

niently studied in terms of the corresponding Hamilto
ian which is of rigid rotor type,Hrot 

2J
N h̄2 L2 1 gL ?

B 1 Nkzs2n2
z , wheren and the angular momentumL sat-

isfy standard commutation relationsfLj , nkg  ih̄ejklnl .
For kz  0, the ground state is the statejl, ll, with l 
bgmBBxNy4Jc. Hence, the magnetizationMx  lgmB

consists of steps of heightgmB, occurring with a period
gmBDBx  4JyN [18]. This agrees with previous result
obtained in the absence of anisotropies and tunneling
A small value ofkz (before tunneling sets in) leads to
rounding of the steps, as is easily seen from perturbat
theory. For largerkz such thatD ø h̄v the Néel vector no
longer freely rotates but becomes strongly localized alo
the easy axis. As a consequence, the steps in the ma
tization vanish; see (9). Conversely, notice that whatev
the value ofkz ø J sharp steps are recovered if the ma
netic field is appliedalong the hard axis. We have also
confirmed this picture by direct numerical diagonalizatio
of Hrot.

The semiclassical analysis presented so far app
strictly speaking only to a sizable number of spins wi
s ¿ 1. However, as is often the case with such metho
the results are valid (at least qualitatively) even dow
to a few spins of small size. This expectation is inde
confirmed by direct numerical simulations which we hav
performed on Hamiltonian (1). Results forN  4 and
s  5y2, and for some typical values̃kz  Jy10, and
k̃r  0, are presented in Fig. 2. We note that since mo
symmetries are broken in (1), larger system sizes beco
quickly inaccessible to numerics. The agreement with t
semiclassical prediction is satisfactory in the high-fie
regime. Since for our test system the low-field regim
171
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FIG. 2. Results for the energy splittingDE12 between the
lowest two states (upper panel) and the magnetizationMx at
T  0 (lower panel) for a system ofN  4 spins s  5y2
with kz  Jy10 and kr  0. The symbols give the results of
a direct diagonalization of the Hamiltonian (1); the continuou
lines give the semiclassical predictions. The dashed vertic
lines indicate the various critical fields (see Fig. 1).

becomes vanishingly small, i.e.,1 ø gmBBxyJ ø
p

5,
we cannot expect to find good quantitative agreeme
in this regime. Still, we can see from Fig. 2 that at th
qualitative level the numerical and semiclassical approa
show reasonable agreement. We have also calcula
numerically the matrix elements of the staggered magn
tization and could confirm the tunneling picture. Thus
our theoretical predictions give reasonably good resu
even for a very small cluster (and similarly for rings with
largerN but smallers [10]). Obviously, the accuracy of
the semiclassical results will improve for larger systems

To support the experimental relevance of our results, w
give some estimates for the ferric wheel, Fe10, for which
N  10, s  5y2, JygmB  10 T [3]. While magnetiza-
tion measurements have been reported [3], no conclus
comparison with our theory is possible presently since th
have been performed on polycrystalline samples with ra
dom orientation of the anisotropy axis, whereas the tunne
ing effect discussed here requires theB field to have a fixed
orientation with respect to such an axis. However, from
the well-defined steps that have been observed and fr
recent single-crystal measurements [7] one can infer th
the magnitude ofkzyJ is small, and of the order of0.03
[7]. The low-field regime extends then from 4 to 7.8 T
with a tunnel splittingDlfyh decaying exponentially from
(roughly)6 3 1010 to 4 3 109 Hz. Correspondingly, the
Schottky peak of the specific heat shifts from 1.6 to 0.12 K
while the tunneling corrections in the magnetization rang
from 60% down to 16% ofmB. The high-field regime
starts at 12 T, with the tunnel splitting having oscillation
of magnitudeDhfyh ø 6 3 109 Hz and period 4 T. The
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tunneling corrections in the magnetization reach at th
peak 17% ofmB. The Schottky peak oscillates betwee
zero and 0.2 K. The crossover temperature to the qu
tum regime,Tc  h̄vy4kB, is in the 1–4 K range. Finally
we remark that the same numbers apply to the high-fie
regime of an easy-axis system [10]. Hence, all quantiti
appear to be well within experimental reach [19].
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