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Electromigration-Induced Breakup of Two-Dimensional Voids
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The motion and shape evolution of a void in a two-dimensional current carrying conductor is
studied numerically. A circular void is linearly stable, but becomes unstable beyond a finite threshold
deformation amplitude which decreases with increasing void radius. If the void is initially elongated
along the current direction it expels small, stable daughter voids, while for elongations perpendicular to
the current an invagination occurs which splits the void in two. The behavior near threshold is linked
to the non-normality of the eigenmodes of the linearized problem. Perfectly circular voids can also be
destabilized by their mutual long-ranged electromagnetic interaction. [S0031-9007(98)05418-0]

PACS numbers: 66.30.Qa, 05.70.Ln, 68.35.Ja, 85.40.Qx

Electromigration along grain boundaries and interfacegircular solution is found to be linearly stable [6—8]; how-
[1] is a key factor determining the reliability of inte- ever, it is destabilized beyond a finite threshold perturba-
grated circuits [2]. As miniaturization progresses and curtion amplitude [6] which depends on the ratio of the void
rent densities increase, a detailed understanding of failumadius to a characteristic length scétedetermined by the
mechanisms is needed to safely extrapolate from an abalance of capillarity and electromigration [4,12]; larger
celerated testing environment to actual operating condivoids move more slowly and are less stable.
tions. Arzt and collaborators [3] have shown that a new Through the numerical solution of the full, nonlinear
type of failure appears when the linewidth of metallic in- moving boundary value problem [12], we show that typi-
terconnects becomes comparable to or smaller than theally the void disintegrates at long times. Two main routes
grain size of the film. In this “bamboo” regime grain are observed. If the initial deformation is an elongation in
boundaries no longer provide connected diffusion pathshe current direction, a protrusion develops at the leading
along the conductor line. Instead, failure occurs due tend of the void, which subsequently pinches off in a kind
intragranular voids which nucleate at the edges of theof budding transition [10] and forms a separate daughter
line, migrate in the current direction, and finally collapsevoid. Since the daughter is smaller, it moves more rapidly
into a slit which disconnects the conductor. This ob-and runs ahead of the mother void. This process can be
servation has motivated recent theoretical work on theepeated several times. If, on the other hand, the void is
electromigration-induced motion and shape evolution ofnitially elongated perpendicular to the current, an invagi-
voids [4-8]. Since the conductor lines consist of thinnation develops which eventually splits the void horizon-
metal films, two-dimensional modeling is appropriate.  tally. The invagination scenario occurs also in the final

In this Letter we present a detailed study of the concepstage of the budding process, after several daughter voids
tually simplest case of an insulating void in an infinitely have been expelled. A typical example is shown in Fig. 1.
extended, isotropic, homogeneous two-dimensional con- Model—We adopt a continuum description of surface
ductor. This idealization removes several complicationslectromigration developed in a previous paper [12]. The
present in real conductor lines—grain boundaries, edgespid shape changes through the mass curfealong the
and crystalline anisotropy—but retains the fundamentainner void surface. The current has two contributions,
physics of surface diffusion, capillarity, and long-rangedfrom capillary smoothening and from electromigration,
electromagnetic interaction, which underlies the dynamicsvhich can be written in the form
of v0|d_s. We o!qserve a s_urpnsmgly rich range of mor- J = o[yask(s) + gE(s)]. (1)
phological transitions, reminiscent of the behavior of lig- .
uid droplets [9] or bilayer vesicles [10]. This suggests Here o andy denote the adatom mobility and the
that void dynamics, apart from its practical importance,surface tension, respectively, both of which are assumed

holds considerable promise as a model system for shap@ P€ isotropic,s is the arc length along the (one-
evolution far from equilibrium. dimensional) surface, and its curvature. The micro-

The basic solution of interest is a circular void mov- SCOPIC features of the electromigration force [1] are
ing at a constant velocity inversely proportional to its ra-'UMPed into a constant effective charge densitwhich

dius [11]. The motion proceeds in the direction of theMultiplies the local tangential electric field(s). Con-

applied current: The momentum transfer from the conServation of the void area (the two-dimensional volume)

duction electrons (the “electron wind” [1]) induces massimplies that the inner surface translates with a normal ve-
transport along the inner edge of the void, which therelOCity v given by

fore translates against the direction of electron flow. The v, + d,J =0. (2)
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T dimensionless void area, which will be expressed through
350 ro °© 175 the dimensionless radiug of an equivalent circular void.
o o 165 The electromigration force dominates over the surface
tension for voids large compared &g, i.e., forRy > 1.
300 o 155 Numerically the solution of (2) is achieved by first
o 145 solving the Laplace equation using a boundary element
method, extracting the tangential electric field, and then
© 135 iterating a finite difference analog of (2) by a variable-
250 o 125 order variable-step Adams method. The void is typically
modeled by 100—200 surface points. A breakup procedure
© 115 is triggered if two points belonging to different surface seg-
o 105 ments get closer than half the distance between neighbor-
200 I ing points along the surface. Merging of two voids can be
= B treated in a similar manner, but will not be considered here.
- 85 = Shape evolutior—In our numerical analysis the elec-
tric field is oriented along the axis. AssumingzEgy > 0,
150 |- 75 the voids move in the negativedirection. As initial con-
65 figuration we choose a circular void subject to a perturba-
s tion of the form
100 | 1 + ecodk(e — ¢o)]
35 e determines the magnitude of the shape imperfection,
50 25 its wave number, and, its orientation relative to the
direction of the applied electric field. Throughout this
15 paper we present results fer= 0.1 andk = 2; the initial
R =10, p=n/4, £=0.1 5 shape is then very close to an ellipse with eccentrieity
0 ku L The denominator in (4) ensures that the perturbed void
-100 -50 0 has the same area as a circular void with radigs
x [Ig] For small void radiugR, the shape imperfection decays

exponentially, restoring a circular void which moves

FIG. 1. Shape evolution of a void with dimensionless radiuswith velocity —2/R, [11]. IncreasingR, the behavior
1:0_=0110' '?'E:n\}git:jo{]si?]iﬁegé trtﬁfgﬂﬂﬁfgmaitﬁogr daer:’]?(l)lt;::\i/% changes, depending on the orientation of the void. For
a better visualization. Two budding incidents occur before theVOIdS glongated along the field (;llrectlon we obse_rve the
invagination leads to a splitting of the void. formation of a bump at the leading end of the void (the

“lemon” shape), whereas for voids elongated perpendicu-
| lar to the field an invagination forms at the same end
(the “crescent” shape). For intermediate void orientations
a mixed shape occurs. In all cases the voids are still

To computeE(s), the Laplace equation for an electric . )
potentialU has to be solved in the infinite domain outsideStable and even.tually relax exponentially to the C|r_cular
shape. Increasing, further beyond a critical radius

the void, subject to the boundary conditions that the’, the def . | d Instead. th i
normal electric field vanishes at the void surface and‘0r '€ delormatons no longer aecay. Instead, the vol

a constant electric fieldg, is imposed far away from continues to distort and eventually breaks up, the lemon

the void. The existence of this potential is guaranteecf?(pe”ing a bud and the crescent splitting along the field

within a quasistatic treatment of the electrodynamics,dlrectlon (Fig. 1).

which is justified due to the separate time scales on which Figure ?;Eusnaées the time evoluftltc;]n lijSI?g thet_cwcu?r;
electrodynamic and diffusive processes take place [12 €rence ot ine void as a measure ot the detormation. €
pper three curves end when the void breaks up. The

Dimensional analysis shows that [4] " Al | o
critical radiusR, for the onset of the instability is seen to
_ depend on the orientation of the void: Voids elongated
s v/qEo) ®) along the field direction &, = 0) are more stable than
is the only characteristic length scale in the problemthose with the perpendicular orientatipg = 7 /2.
The natural time scale is then given by = I%/(oy). Linear stability and non-normality—As can be seen
After rescaling lengths withl /I, time with 1/7z, and  from Fig. 2, for void sizes close to but belowy,
the electric field with 1/Ey, the only parameter left the deformation initiallyincreasesin time before the
over in our model, apart from initial conditions, is the exponential decay sets in. This honmonotonic behavior

The central theoretical difficulty lies in the nonloca
influence of the void shape on the electric field [12].
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. . . FIG. 3. The most slowly decaying eigenmodes obtained from
FIG. 2. Time evolution of the circumferenceas a measure ihe linear stability analysis for different values B§ = 1—10

of deformation. S, denotes the circumference of a circle with 5qqed with a fixed amplitude ot = 0.1 to the circular

the same area. The solid lines show the prediction of the lineago|ytion. The upper frames show the (symmetric) cosine
dynamics which is independent of the orientation For this  odes, the lower ones the sine modes [see Eg. (5)]. Between

perturbation strength the critical radil, is between 5 and 6  the |eft and right frames the perturbations differ in the sign.
for ¢ = /2, and between 6 and 7 fas, = 0.

] ] ) ) ) ) that they become increasingly nonorthogonal with increas-
is already inherent in the linearized dynamics [7], anding R,. As a consequence, a perturbation different from
hlnts at the_non—normgllty of the eigenvalue problem. _Thean eigenmode, such as that given by Eq. (4), may grow
linear stability analysis [6—8] starts from a perturbationpy 5 considerable amount before it eventually decays, in
expansion of the form agreement with the data shown in Fig. 2. This mechanism
) for transient instability in linearly stable systems with a
R(¢) = Ro{1 + € > [axcogke) + bisinke)]t, (5)  non-normal eigenmode structure has previously been de-
k=1 scribed for hydrodynamic flows [13]. In the present con-
where a; and b, are real coefficients, normalized such text the important conclusion is that an initially increasing
thatY (a; + b7) = 1. Thek = 0 andk = 1 modes can void deformation is not a reliable sign of instability, not
be safely omitted, since they correspond to an increase @ven on the linear level.
the void radius and a translation, respectively, which can Beyond breakup—Looking at the budding events
be absorbed by a change of coordinates. The breakinig Fig. 1, an obvious question concerns the size of the
of rotational symmetry by the electric field causes adaughter voids. Systematic investigation shows that
coupling of modek to the modesk = 1, leading to a the size of the first daughter is an increasing function
nontrivial eigenvalue problem. Numerically it is easily of the initial radiusR, of the mother which, however,
shown that all eigenvalues are negative [6—8], indicatingappears to saturate for larg; in the original units this
linear stability. The eigenvalues are twofold degeneratémplies that the size of the daughters expelled from large
due to the independence of symmetric and antisymmetrimother voids is proportional tfy.
perturbations. For long times the linear dynamics is Subsequently expelled daughter voids become progres-
dominated by the modes with the largest eigenvalusively smaller. The second daughter will therefore even-
(smallest decay rate}oy = —12/R;. Figure 3 shows tually catch up with the first, and initiate a “collision.”
the symmetric and antisymmetric eigenmode for differentAn example of this situation is shown in Fig. 4, where
values of Ry and a fixed perturbation strength= 0.1.  two circular voids of comparable size have been started
Depending on the sign of the perturbation, with increasingt a separation large compared to their radii, and slightly
Ry the symmetric mode approaches either the lemomisaligned along the field direction. As the leading larger
shape or the crescent shape, while the shape of theid is approached by the smaller one both deform, the
antisymmetric mode corresponds to a void with initial former adopting a lemon shape while the latter becomes
orientationgpy = */4; compare to Fig. 1. crescent shaped. The further evolution follows the two
For small voids the effect of electromigration is small, scenarios observed for single voids—the lemon expels a
and the coupling between the modes is weak. The bud and the crescent splits horizontally. In this manner
eigenvectors are then essentially given by thenodes the number of voids constantly increases. In principle,
themselves, and they are therefore orthogonal. By conthere is no difficulty in handling an arbitrary number
puting the scalar products of eigenmodes it can be showof voids numerically; however, if the total number of
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FIG. 4. Final approach of two initially circular voids with

radii Ry; = 5 andRy, = 4. Initially the voids were separated

horizontally by5(Ry1 + Ry2) and vertically shifted byR,,/10.

ary disorder—is responsible for the failure mechanism
identified by Arztet al. [3], these additional effects will
have to be included in our model. At this point we remark
that, while the multiple breakup of voids has been seen
experimentally in conductor lines [14], the phenomenon
appears to be less common than in our simulations.
Future experiments which more closely approach the
idealized conditions of this paper—e.g., using extended,
single crystal films [15] in which voids are deliberately
created—could test our prediction of electromigration-
induced breakup as the dominant pathway of shape
evolution.
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Mullins, M. Rost, and Z. Suo. Support by DFG within
SFB 237Unordnung und groRe Fluktuationeis grate-
fully acknowledged. M.S. wishes to thank the IFF,
Forschungszentrum Jiilich, for its hospitality.
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