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The self-dual random-bond eight-state Potts model is studied numerically through large-scale Monte
Carlo simulations using the Swendsen-Wang cluster flipping algorithm. We compute bulk and surface
order parameters and susceptibilities and deduce the corresponding critical exponents at the random
fixed point using standard finite-size scaling techniques. The scaling laws are suitably satisfied. We can
conclusively rule out that the model belongs to the 2D Ising model universality class. The dimensions
of the relevant bulk and surface scaling fields are found tg,be 1.849, y, = 0.977, andy,, = 0.54,
in contrast to their Ising valueks/8, 1, and1/2, respectively. [S0031-9007(98)05377-0]

PACS numbers: 64.60.Cn, 05.50.+q, 05.70.Jk, 64.60.Fr

The understanding of the role played by impurities onPotts models for different values gf Their estimation
the nature of phase transitions is of great importanceof the critical exponents leads to a continuous variation of
both from experimental and theoretical perspectives. 118,/v with g. This result is in accordance with previous
is a quite active field of research where the resort tdheoretical calculations wheg = 4 [15], and, in the
large-scale Monte Carlo simulations is often necessaryandomness-induced second-order phase transition regime
[1]. The effect of quenched bond randomness in a system > 4, it is quite different from the Ising value o-i;
which undergoes, in the homogeneous case, a secondnd in sharp disagreement with the Monte Carlo results
order phase transition has been extensively studied. tf Ref. [8] for ¢ = 8.
is well understood since Harris proposed a relevance The surface properties of dilute magnetic systems paid
criterion for the fluctuating interactions [2]. Disorder less attention. Quite generally, the scaling laws involving
appears to be a relevant perturbation when the specifsurface and/or bulk exponents can be deduced from
heat exponen& of the pure system is positive. Since in a homogeneity assumption for both surface and bulk
the two-dimensional Ising model (IM)y vanishes due singular free energies, e.g.,
to the logarithmic Onsager singularity, this model was
carefully studied in the 1980s [3]. Fort(t, hohg) = b 9V fo (b8, b h, b hy) . (1)

The analogous situation when the pure system exhibits
a first-order transition was less well studied, in spite of theAll the standard critical exponents can be expressed
early work of Imry and Wortis who argued that quenchedin terms of the anomalous dimensions associated
disorder could induce a second-order phase transition [4l0 the relevant scaling fields [16]. This makes their
This argument was then rigorously proved by Aizenmardetermination of great importance in the case of random
and Wehr, and Hui and Berker [5]. In two dimensions,systems. The(l,1) surface of the Ising model on a
even an infinitesimal amount of quenched impuritiessquare lattice has only recently been investigated through
changes the transition into a second-order one. The firdflonte Carlo simulations by Sellet al. [17]. The critical
intensive Monte Carlo study of the effect of disorder at aexponentB; of the surface magnetization was found to be
first-order phase transition is due to Chen, Ferrenberg aneery close to its value in the pure 2D IM.

Landau (CFL). These authors studied the= eight-state In this Letter, we report a FSS study of the bulk
two-dimensional Potts model, which, in the pure caseand surface critical properties of the eight-state random-
is known to exhibit a first-order phase transition whenbond Potts model. Although this model has already been
q > 4 [6]. They definitively showed that the transition studied by Monte Carlo simulations, our approach is the
becomes second order in the presence of bond randomnédsst investigation of the surface properties for a random
[7], and obtained the critical exponents from a finite-system other than Ising-like. It leads furthermore to
size scaling (FSS) study at the critical point of a self-different results in which concerns the bulk properties,
dual disordered system [8,9]. Their results, together wittand our aim is to bring some clear evidence to solve the
other related works [10,11], suggested that any twodiscrepancy between the recent results of CJ (Ref. [13])
dimensional random system should belong to the 2D purand those of CFL (Ref. [8]).

IM universality class [12]. In a recent paper, Cardy and In the following, we consider the eight-state
Jacobsen (CJ) used a different approach [13], based gandom-bond Potts model on the square lattice. The
a transfer matrix formalism [14], to study random-bondHamiltonian of the system with quenched random
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interactions is written randomness are more pronounced, and a larger number
of configurations is needed.) These values guarantee the
~BH =Y Kijbo.o - (2)  same order of magnitude for the contributions to the sta-
(.1) tistical errors resulting from the thermal average and from
where the spins take the values= 1,2,...,q and the the replica average.
sum goes over nearest-neighbor pairg). The coupling The translational invariance is restored in the vertical

strengths are allowed to take two different valdgs= K  direction by averaging over the disorder realizations. The
and K, = Kr with probabilities p and 1 — p, respec- local order parameter for a given replica, writtgn, is
tively. The ratio K,/K, is kept to the constant value defined by the majority orientation of the spins at column
r = 10 (a strong enough value in order to ensure that the [21]:

critical behavior is no longer governed by the pure system apman(j) — 1
fixed point) for all the simulations. If both couplings oc- i = <L> 3)
cur with the same probabilityy = 0.5, the system is, on q—1

average, self-dual, and the critical point is exactly givenHere, pmax (j) = max,[p4( )], wherep,( j) is the den-

by the critical line of the usual anisotropic model [11,18]: sity of spins in the stater at columnj. The thermal
(ef = 1) (ef" — 1) =¢q. At p =05, we performed average over the Monte Carlo iterations, written with
large-scale simulations af X L lattices (0 = L = 96)  brackets(:--), is performed and the physical quantities
with periodic boundary conditions in one direction (ver- are then averaged over disorder configurations, for ex-
tical direction) and free boundaries (FBC system) in theample,m; = [(u;)], where[---] denotes the replica av-
other direction. An equal number of couplings of botherage. The local surface susceptibility is givenay =
types is first distributed over all the bonds of the Iattice.KL[w%) — (u1)?] and similar quantities are defined for
The couplings are then mixed randomly. This procedurghe pulk.

ensures an exact probabiliy = 0.5, and avoids the fluc-  The first part of our analysis was to study the local
tuations around this value which would result from the usenagnetic surface properties. The local surface magne-
of a random number generator to build the distributionsization m, = [{u,)] is expected to follow the usual
of couplings. The multispin coding and the Swendsenfinite-size scaling behavior at the infinite lattice critical
Wang cluster flipping method [19] were used, and thepoint: m;(K.,L) ~ L™, where the critical dimension
histogram technique allowed us to determine the beha\&l = B;/v is deduced from the size dependencengf

ior of the different quantities over a range &f [20].  [(x?)], and[{(x])] (Fig. 2).

For each distribution of the couplings, betwezrx 10° A power-law fit of the curve between a given smaller
(smaller lattice sizes) tat X 10° (larger lattice sizes) sjze L.in and the maximal valud.,.,x = 96 defines an
Monte Carlo steps per spin were performed. Althougheffective exponenty;(Lyi). The smaller size is then

it is smaller than the calculations of Ref. [8], this is al- canceled from the data and the whole procedure is repeated
ways larger thari0* times the correlation time, and turns

out to be sufficient in order to produce reliable thermal
averages. On the other hand, around 30 disorder realiza- 0.6 : :
tions were performed in Ref. [8], but, since the averages
over randomness are still strongly fluctuating (Fig. 1), we
used 500 [0 = L = 32), 330 @0 = L = 64), and 250
(72 = L = 96) disorder realizations. (For smaller lat-
tice sizes, the configurational fluctuations of data due to
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01, 100 200 300 FIG. 2. Log-log plot of [(u1)] (circles), [(u1)]"? (squares),
Disorder configurations and [(u1)]'/* (diamonds) vsL. The slopes over the whole

range of values ofL are, respectively,—0.461, —0.456,
FIG. 1. Fluctuations of the averages over the number ofind —0.443. The inset shows the effective surface exponent
realizations of disorder. Average total magnetization for x1(Lmin) defined in the text vsLn:iln (deduced fromm,) and its
56 over up to 330 replicas. extrapolated value.
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until only the three larger sizes remain. The effectiveeffective exponent” technique presented above to have
exponent is plotted against,}, (inset in Fig. 2), and the accurate estimations. One thus obtains
critical exponent follows from the extrapolation at infinite g,

Vb
size in the linear regime. Here the final estimation gives ~—~ = 0.153 * 0.003, -, — L1701 £ 0.008. (5)

B _ The first value is very different from the IM value and
v 0467 = 0.006, 4) from the result of Ref. [8] (0.126) and closer to the re-

where the uncertainty is the standard deviation. sult of Ref. [13] (0.142). The second value satisfies to
The behavior of the local surface susceptibiliy; is  Petter than 0.7% the scaling law resulting from Rush-
more ambiguous, since; seems to exhibit a power- brooke and hyperscaling relationg; /v = d — 28, /v.
law behavior with a very small exponent, but alsoThe correlation length exponent is deduced from the
fits with a logarithmic divergence as is the case fordeviation of the effective critical coupling (at the maxi-
the pure IM. From the behaviors of(K,) and Mmum of the bulk suscept|bll|tyg,§“ax) from its exact value,
Y™ (deduced from histogram reweighting), we obtain!Kc(L) — K| ~ L~'/* (Fig. 4). It leads to the correla-
yi1/v = 0.099 * 0.009 (Fig. 3). It corresponds to a ton length exponent = 1.023 = 0.020 (Fig. 4) [22].
fit which gives greater place to large sizes. On the Excegs surface magnetization can be calculated by a
other hand a logarithmic behavior seems also convincin§omparison betvxzeen the FBC and PBC systems:
(Fig. 3). Although this first analysis does not allow 1 1 _
any definitive conclusion, the scaling relatiaB,/» + s =% Z(mb —mj) = > Lmy, = m),  (6)
yi/v =d — 1 is best satisfied, within error bars, by _ = o
the power-law case and is furthermore satisfying with thevherem is the average magnetization for the FBC system
value ofx; which rules out the 2D IM universality class. andm, for the PBC one. In Eg. (6), the approximation
Once the local surface properties have been studiedymbol renders the possible difference between the ma-
and since they strongly suggest that the model doel'ity Spin orientation on a layey and its value for the
not belong to the 2D IM universality class, a careful Whole system. It produces a small_ difference between
analysis of bulk properties is needed to bring definitive™&an magnetization and mean profile for the FBC sys-
conclusions. Bulk properties are furthermore needed if€M but on average the two quantities should scale the
order to compute surface excess magnetization. Fotame way. The corresponding exponent obtained from
this purpose, we made simulations dnx L lattices FSS takes the value
with periodic boundary conditions in both directions Bs
(PBC system). The average quantities over the whole v —0.852 = 0.004. ™

system lead to the critical exponents associated to thg js in accordance with the expected value resulting from
bulk magnetization and bulk susceptibility (Fig. 4). Thethe scaling laws,/» = B,/v — 1 = —0.847, albeitm,,

determination of the slopes in the log-log plots, and of theyiven by a difference, is subject to strong fluctuations.
corresponding standard deviations (of the order of 10%),

indicates large fluctuations. We then turned back to the o
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02 - - - - o0 FIG. 4. Bulk quantities: Maximum of the susceptibility ™,
L squares) and its value &t (x», circles); average magnetization

(m;, diamonds), deviation of the effective critical coupling from
FIG. 3. Local susceptibilityy;;(K.) at the critical point vs. its exact value (triangles), and surface excess magnetization
and power-law fit (solid line) or logarithmic fit (dashed line). (m,, crosses). The corresponding exponepisv, —B,/v,
The inset shows the effective exponent/v. —1/v, and—8,/v are given in the text.
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TABLE I. Scaling dimensions of the bulk and surface fields canonical averagdor disordered systems was introduced
and of the temperature deduced from the values of the criticalo ensure a noise reduction [24].
exponents.

Bi/v  yu/v v By/v  yu/v  Bs/v
y,, 0533 0.549
Yt 0.977 *To whom all correspondence should be addressed.

Vi 1.847 1850 1.852 Electronic address: berche@Ips.u-nancy.fr
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