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Finite-Size Scaling Study of the Surface and Bulk Critical Behavior
in the Random-Bond Eight-State Potts Model
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The self-dual random-bond eight-state Potts model is studied numerically through large-scale M
Carlo simulations using the Swendsen-Wang cluster flipping algorithm. We compute bulk and sur
order parameters and susceptibilities and deduce the corresponding critical exponents at the ra
fixed point using standard finite-size scaling techniques. The scaling laws are suitably satisfied. W
conclusively rule out that the model belongs to the 2D Ising model universality class. The dimens
of the relevant bulk and surface scaling fields are found to beyh ­ 1.849, yt ­ 0.977, andyhs ­ 0.54,
in contrast to their Ising values15y8, 1, and1y2, respectively. [S0031-9007(98)05377-0]

PACS numbers: 64.60.Cn, 05.50.+q, 05.70.Jk, 64.60.Fr
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The understanding of the role played by impurities o
the nature of phase transitions is of great importanc
both from experimental and theoretical perspectives.
is a quite active field of research where the resort
large-scale Monte Carlo simulations is often necessa
[1]. The effect of quenched bond randomness in a syste
which undergoes, in the homogeneous case, a seco
order phase transition has been extensively studied.
is well understood since Harris proposed a relevan
criterion for the fluctuating interactions [2]. Disorde
appears to be a relevant perturbation when the spec
heat exponenta of the pure system is positive. Since in
the two-dimensional Ising model (IM),a vanishes due
to the logarithmic Onsager singularity, this model wa
carefully studied in the 1980s [3].

The analogous situation when the pure system exhib
a first-order transition was less well studied, in spite of th
early work of Imry and Wortis who argued that quenche
disorder could induce a second-order phase transition [
This argument was then rigorously proved by Aizenma
and Wehr, and Hui and Berker [5]. In two dimensions
even an infinitesimal amount of quenched impuritie
changes the transition into a second-order one. The fi
intensive Monte Carlo study of the effect of disorder at
first-order phase transition is due to Chen, Ferrenberg a
Landau (CFL). These authors studied theq ­ eight-state
two-dimensional Potts model, which, in the pure cas
is known to exhibit a first-order phase transition whe
q . 4 [6]. They definitively showed that the transition
becomes second order in the presence of bond randomn
[7], and obtained the critical exponents from a finite
size scaling (FSS) study at the critical point of a sel
dual disordered system [8,9]. Their results, together wi
other related works [10,11], suggested that any tw
dimensional random system should belong to the 2D pu
IM universality class [12]. In a recent paper, Cardy an
Jacobsen (CJ) used a different approach [13], based
a transfer matrix formalism [14], to study random-bon
0031-9007y98y80(8)y1670(4)$15.00
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Potts models for different values ofq. Their estimation
of the critical exponents leads to a continuous variation
bbyn with q. This result is in accordance with previou
theoretical calculations whenq # 4 [15], and, in the
randomness-induced second-order phase transition reg
q . 4, it is quite different from the Ising value of18 ,
and in sharp disagreement with the Monte Carlo resu
of Ref. [8] for q ­ 8.

The surface properties of dilute magnetic systems p
less attention. Quite generally, the scaling laws involvin
surface and/or bulk exponents can be deduced fr
a homogeneity assumption for both surface and bu
singular free energies, e.g.,

fsurfst, h, hsd ­ b2sd21dfsurfsbyt t, byh h, byhs hsd . (1)

All the standard critical exponents can be express
in terms of the anomalous dimensionsyi associated
to the relevant scaling fields [16]. This makes the
determination of great importance in the case of rando
systems. Thes1, 1d surface of the Ising model on a
square lattice has only recently been investigated throu
Monte Carlo simulations by Selkeet al. [17]. The critical
exponentb1 of the surface magnetization was found to b
very close to its value in the pure 2D IM.

In this Letter, we report a FSS study of the bul
and surface critical properties of the eight-state rando
bond Potts model. Although this model has already be
studied by Monte Carlo simulations, our approach is t
first investigation of the surface properties for a rando
system other than Ising-like. It leads furthermore
different results in which concerns the bulk propertie
and our aim is to bring some clear evidence to solve t
discrepancy between the recent results of CJ (Ref. [1
and those of CFL (Ref. [8]).

In the following, we consider the eight-stat
random-bond Potts model on the square lattice. T
Hamiltonian of the system with quenched rando
© 1998 The American Physical Society
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interactions is written

2bH ­
X
si,jd

Kijdsi ,sj , (2)

where the spins take the valuess ­ 1, 2, . . . , q and the
sum goes over nearest-neighbor pairssi, jd. The coupling
strengths are allowed to take two different valuesK1 ­ K
and K2 ­ Kr with probabilities p and 1 2 p, respec-
tively. The ratio K2yK1 is kept to the constant value
r ­ 10 (a strong enough value in order to ensure that t
critical behavior is no longer governed by the pure syste
fixed point) for all the simulations. If both couplings oc
cur with the same probability,p ­ 0.5, the system is, on
average, self-dual, and the critical point is exactly give
by the critical line of the usual anisotropic model [11,18
seKc 2 1d seKcr 2 1d ­ q. At p ­ 0.5, we performed
large-scale simulations ofL 3 L lattices (10 # L # 96)
with periodic boundary conditions in one direction (ver
tical direction) and free boundaries (FBC system) in th
other direction. An equal number of couplings of bot
types is first distributed over all the bonds of the lattic
The couplings are then mixed randomly. This procedu
ensures an exact probabilityp ­ 0.5, and avoids the fluc-
tuations around this value which would result from the u
of a random number generator to build the distribution
of couplings. The multispin coding and the Swendse
Wang cluster flipping method [19] were used, and th
histogram technique allowed us to determine the beha
ior of the different quantities over a range ofK [20].
For each distribution of the couplings, between2 3 105

(smaller lattice sizes) to4 3 105 (larger lattice sizes)
Monte Carlo steps per spin were performed. Althoug
it is smaller than the calculations of Ref. [8], this is a
ways larger than104 times the correlation time, and turns
out to be sufficient in order to produce reliable therm
averages. On the other hand, around 30 disorder real
tions were performed in Ref. [8], but, since the averag
over randomness are still strongly fluctuating (Fig. 1), w
used 500 (10 # L # 32), 330 (40 # L # 64), and 250
(72 # L # 96) disorder realizations. (For smaller lat
tice sizes, the configurational fluctuations of data due

FIG. 1. Fluctuations of the averages over the number
realizations of disorder. Average total magnetization forL ­
56 over up to 330 replicas.
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randomness are more pronounced, and a larger num
of configurations is needed.) These values guarantee
same order of magnitude for the contributions to the st
tistical errors resulting from the thermal average and from
the replica average.

The translational invariance is restored in the vertica
direction by averaging over the disorder realizations. Th
local order parameter for a given replica, writtenmj, is
defined by the majority orientation of the spins at colum
j [21]:

mj ­

µ
qrmaxs jd 2 1

q 2 1

∂
. (3)

Here,rmaxs jd ­ maxsfrss jdg, whererss jd is the den-
sity of spins in the states at column j. The thermal
average over the Monte Carlo iterations, written with
bracketsk· · ·l, is performed and the physical quantities
are then averaged over disorder configurations, for e
ample,mj ; fkmjlg, where f· · ·g denotes the replica av-
erage. The local surface susceptibility is given byx11 ­
KLfkm2

1l 2 km1l2g and similar quantities are defined for
the bulk.

The first part of our analysis was to study the loca
magnetic surface properties. The local surface magn
tization m1 ­ fkm1lg is expected to follow the usual
finite-size scaling behavior at the infinite lattice critica
point: m1sKc, Ld , L2x1 , where the critical dimension
x1 ­ b1yn is deduced from the size dependence ofm1,
fkm2

1lg, andfkm4
1lg (Fig. 2).

A power-law fit of the curve between a given smalle
size Lmin and the maximal valueLmax ­ 96 defines an
effective exponentx1sLmind. The smaller size is then
canceled from the data and the whole procedure is repea

FIG. 2. Log-log plot of fkm1lg (circles), fkm2
1lg1y2 (squares),

and fkm4
1lg1y4 (diamonds) vsL. The slopes over the whole

range of values ofL are, respectively,20.461, 20.456,
and 20.443. The inset shows the effective surface exponen
x1sLmind defined in the text vsL21

min (deduced fromm1) and its
extrapolated value.
1671
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until only the three larger sizes remain. The effectiv
exponent is plotted againstL21

min (inset in Fig. 2), and the
critical exponent follows from the extrapolation at infinite
size in the linear regime. Here the final estimation give

b1

n
­ 0.467 6 0.006 , (4)

where the uncertainty is the standard deviation.
The behavior of the local surface susceptibilityx11 is

more ambiguous, sincex11 seems to exhibit a power-
law behavior with a very small exponent, but als
fits with a logarithmic divergence as is the case fo
the pure IM. From the behaviors ofx11sKcd and
x

max
11 (deduced from histogram reweighting), we obtai

g11yn ­ 0.099 6 0.009 (Fig. 3). It corresponds to a
fit which gives greater place to large sizes. On th
other hand a logarithmic behavior seems also convinci
(Fig. 3). Although this first analysis does not allow
any definitive conclusion, the scaling relation2b1yn 1

g11yn ­ d 2 1 is best satisfied, within error bars, by
the power-law case and is furthermore satisfying with th
value ofx1 which rules out the 2D IM universality class.

Once the local surface properties have been stud
and since they strongly suggest that the model do
not belong to the 2D IM universality class, a carefu
analysis of bulk properties is needed to bring definitiv
conclusions. Bulk properties are furthermore needed
order to compute surface excess magnetization. F
this purpose, we made simulations onL 3 L lattices
with periodic boundary conditions in both directions
(PBC system). The average quantities over the who
system lead to the critical exponents associated to t
bulk magnetization and bulk susceptibility (Fig. 4). Th
determination of the slopes in the log-log plots, and of th
corresponding standard deviations (of the order of 10%
indicates large fluctuations. We then turned back to t

FIG. 3. Local susceptibilityx11sKcd at the critical point vsL
and power-law fit (solid line) or logarithmic fit (dashed line)
The inset shows the effective exponentg11yn.
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“effective exponent” technique presented above to ha
accurate estimations. One thus obtains

bb

n
­ 0.153 6 0.003,

gb

n
­ 1.701 6 0.008 . (5)

The first value is very different from the IM value and
from the result of Ref. [8] (0.126) and closer to the re
sult of Ref. [13] (0.142). The second value satisfies
better than 0.7% the scaling law resulting from Rus
brooke and hyperscaling relations:gbyn ­ d 2 2bbyn.
The correlation length exponentn is deduced from the
deviation of the effective critical coupling (at the maxi
mum of the bulk susceptibilityxmax

b ) from its exact value,
jKcsLd 2 Kcj , L21yn (Fig. 4). It leads to the correla-
tion length exponentn ­ 1.023 6 0.020 (Fig. 4) [22].

Excess surface magnetization can be calculated b
comparison between the FBC and PBC systems:

ms ­
1
2

LX
j­1

smb 2 mjd .
1
2

Lsmb 2 m̄d , (6)

wherem̄ is the average magnetization for the FBC syste
and mb for the PBC one. In Eq. (6), the approximatio
symbol renders the possible difference between the m
jority spin orientation on a layerj and its value for the
whole system. It produces a small difference betwe
mean magnetization and mean profile for the FBC sy
tem but on average the two quantities should scale
same way. The corresponding exponent obtained fro
FSS takes the value

bs

n
­ 20.852 6 0.004 . (7)

It is in accordance with the expected value resulting fro
the scaling lawbsyn ­ bbyn 2 1 ­ 20.847, albeitms,
given by a difference, is subject to strong fluctuations.

FIG. 4. Bulk quantities: Maximum of the susceptibility (x
max
b ,

squares) and its value atKc (xb , circles); average magnetization
(mb , diamonds), deviation of the effective critical coupling from
its exact value (triangles), and surface excess magnetiza
(ms, crosses). The corresponding exponentsgbyn, 2bbyn,
21yn, and2bsyn are given in the text.
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TABLE I. Scaling dimensions of the bulk and surface field
and of the temperature deduced from the values of the critic
exponents.

b1yn g11yn n bbyn gbyn bsyn

yhs 0.533 0.549 · · · · · · · · · · · ·
yt · · · · · · 0.977 · · · · · · · · ·
yh · · · · · · · · · 1.847 1.850 1.852

In this Letter, we reported the results of large-sca
Monte Carlo simulations [23] of the surface and bul
critical behaviors of a randomness-induced second-ord
phase transition in the eight-state Potts model. Conce
ing the bulk critical exponents, there is a clear discrepan
between our results and those of Ref. [8] which were ve
close to the pure IM values. The main difference betwee
our procedure and these previous simulations is due
our use of a larger space of allowed coupling strength
The self-dual conditionp ­ 1y2 was indeed imposed
by these authors in both directions. A possible wea
ening of randomness could result from this choice. W
furthermore generated a number of disorder realizatio
10 times larger, which makes our results reliable. On th
other hand, our value forbbyn is slightly above Cardy
and Jacobsen’s result, while we used the same order
rameter as CFL. The possible explanation suggested
CJ (Ref. [13]) for the disagreement with CFL (nonstan
dard order parameter) has thus to be dismissed.

We have also reported here the first extensive numeric
study of surface critical behavior in a randomness-induc
second-order phase transition. While excess magne
zation offers an alternate determination of the scalin
dimension of thebulkmagnetic field, local surface proper-
ties lead to the scaling dimension of asurfacefield which
is also relevant.

We can summarize all the results in a table of th
anomalous dimensions of the relevant scaling field
(Table I). The independent determinations of these va
ues, very close together, give reliability to the results
The final estimations are the following:yt ­ 0.977,
yh ­ 1.849, andyhs ­ 0.54.

Finally, one has to mention that we also computed pr
files and correlations (details will be published elsewhere
The values ofh ­ 0.29 (correlations PBC system), and
of the critical exponents differencex1 2 xb ­ 0.27 (pro-
file close to the free surfaces, FBC system) lead
results which are slightly too small compared to the pre
vious values ofx1 and xb . Surprisingly, the bulk expo-
nent xb ­ 0.145 is found to be very close to Cardy and
Jacobsen’s result which was deduced from the behavior
correlations as well, but within a strip geometry.

We thank the Ciril and the Centre Charles Hermite i
Nancy for computational facilities.

Note added.—It is a pleasure to thank F. Pázmánd
who drew our attention to a recent work where
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canonical averagefor disordered systems was introduce
to ensure a noise reduction [24].
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