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Correlations in Chaotic Eigenfunctions at Large Separation
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An energy eigenfunction in a classically chaotic system is known to have spatial correlations
which (in the limit of smallz) are governed by a microcanonical distribution in the classical phase
space. This result is valid, however, only over coordinate distances which are small compared
to any relevant classical distance scales (such as the cyclotron radius for a charged particle in
a magnetic field). We derive a modified formula for the correlation function in the regime of
large separation. This then permits a complete description, over all length scales, of the statistical
properties of chaotic eigenfunctions in tlie— 0 limit. Applications to quantum dots are briefly
discussed. [S0031-9007(98)05350-2]

PACS numbers: 05.45.+b, 03.65.Ge, 03.65.Sq, 73.20.Dx

In a Hamiltonian system which exhibits classical chaossity of states,
throughout the accessible phase space, the quantum energy dlpdl
eigenvalues and eigenfunctions are known to have certain p(E) = ] ereq
universal properties in the limit of smali (which, in @mh)
practice, is achieved at sufficiently high energy) [1,2].However, Eg. (3) applies only when the separafign —

We will be interested in the energy eigenfunctions; thesey, | is sufficiently small [3]. Consider, for example, the
can be characterized as random variables with a GaussigaseH = p?/2m + V(q); we would not expect the cor-

8[E — Hy(p,q)]. (4)

probability distribution of the form [3—11] relations in an eigenfunction at two poings and q; to
B depend only on the value of the potential @tf V(q)
Py |E) o« ex;{— 5 fdfq1 has a significantly different value than eith®fq;) or

V(qz). Our goal, then, is to find the correct formula for
. C(q2,q: | E) when|q, — q] is large.
f
X ] &’ g2 " (42)K (42, a1 |E)¢’(q1)}’ One way to motivate Eq. (3) is to consider the energy
(1) Green'’s function [12,13]

where f is the number of degrees of freedom. If the G(qp,q|E) = Z Yo @) (a) (5)
system is time-reversal invariant, the eigenfunctions are E —Eq + i€’

real andB = 1; if it is not, they are complex an@ = 0+

2. The measure corresponding to Eq. (1) is the standar\gheree 07. We then have

one of Euclidean quantum field theof2 ¢ = [], dy/(q) , _ _ ,
for :8 =1 and D‘r// — l_[qd Relﬁ(q)d |ml,//(q) for IB — %%(m)%(ql)@@ Ea) Yri [G(ql’QZlE)

2. P(y | E)D ¢ represents the probability that the actual — Glqo qi | E)]
eigenfunction ,(q) for E = E, (a particular energy > 6
eigenvalue) is betweerr(q) and ¢(q) + dy(q) for all 6)
coordinatesy. The kernelK(q», q; | E) is the functional and the exact density of states is

inverse of the two-point correlation function

p(E) =D S(E — E,) (7)
Clarail®) = [ wlaw @Pw1DDy. @ “
1
= f *
The explicit formula forC(qa, q; | E) which was originally iy fd q[G(q.q1E)" — G(q,q|E)]. (8)
suggested by Berry [3] assumes a microcanonical proba-
bility density in the classical phase space, While the exact Green’s function clearly has singu-
larities wheneverE = E,, its leading approximation
o |E) = 1 d’p oiP @)/ G(q2.q:1 | E) in the small# limit is a smooth function of
€@ p(E) 2mh)/ its arguments. Given this, Egs. (2), (6), and (7) make it
X S[E — Hy(p,d)] 3) natural to expect that
whereq = 3(qi + q2), Hw(p,q) is the classical Hamil-  C(q,.q, | E) = ﬁ
tonian (more specifically, it is the Weyl symbol of the 7ip(E)
Hamiltonian operator), and(E) is the semiclassical den- X [G(q1,q2 | E)* — G(qa,qi | E)]. (9)

1646 0031-900798/80(8)/1646(4)$15.00 © 1998 The American Physical Society



VOLUME 80, NUMBER 8 PHYSICAL REVIEW LETTERS 23 EBRUARY 1998

This formula can be derived explicitly [6] in the theory of stationary phase approximation both in the Feynman path
disordered metals, where a white-noise random potentid@htegral representation of the propagator, and in the time
is added to the Hamiltonian. In this case, Eq. (9) holdsntegral of Eq. (10). The well-known result is [12]

with G standing for the Green’s function averaged over

the random potential. In the limit that the strength of the G(qa. qi | E) = 1

potential is large (which corresponds to the~ 0 limit for ’ ihQmih) /=12

chaotic systems), Eq. (1) for the eigenfunction probability , ,

can also be derived explicitly [5—8,10]. Corrections for X > |Dy|2eSe/ T2 (14)

finite potential strength (that is, finité) can also be paths

gomplrJ]ted [14], and are complimentary to the calculationsr_|ere the sum is over all classical paths connectjndo
one here. - :
Let us now briefly recall the construction6iq., q; | E) q> with energyE and action

in the s — 0 limit [12,13]. The energy Green’s function Q@

is related to the propagatéy,|e ~#!/%|q;) via Sp = /; p - dq. (15)
G(qr qi | E) = % j;) dt " ETiO (g, |~ HI/ Mg,y The index v, counts the number of classical focal

points along the path, and the determinant of second
(10)  derivatives ofS, is given by

The propagator can be written as 95, a5,
— 942091 9E0aq
_ ar . D, = detl “Ji¢ s |- (16)
—iHt/h — p ip-(q—qi)/ = 5
(q2le lq1) ] Qrh) e 0q20E o>
X (e ™ /MY (p, q). (11) 1tis Eq. (14) which should be used in Eq. (9) when the

shortest classical path fromy; to q, is not (approxi-
mately) a linear function of time.

If the system is time-reversal invariant, then the paths
om q to q; have the same set of values %, »,, and
D, as the paths from; to q,. In this case, we have

where againg = 3(q; + q2), andAw(p,q) denotes the
Weyl symbol of the operatot; in fact, Eq. (11) is simply
the Fourier transform of the definition of the Weyl symbol. fr
For sufficiently small times,

(e /MYy (p, q) = e HwPQOUE, (12) 2 12
Clqrqi | E) = = D, 1"/
p(E)(2mh)(/+D/2 p;s P

X cogSy/h — Qvy + f — D)wr /4]

Inserting Egs. (11) and (12) into Eq. (10), and performing
the time integral, we get the desired approximation,

17)
= _ d'p  o@—an/h . .
G(q2,q1 | E) —j Qmhy P instead of Eq. (3) whefy, — qi| is large.
To illustrate the differences between Eq. (17) and
1 . @13 Eqg. (3), let us examine a few special cases. First, we con-
E — Hy(p,q) + i€ sider anf-dimensional billiard in which the straight-line

L ) ) . _path fromq; to q; is not blocked. In the interior of the
The derivation of this formula is flawed, however, SiNCeyilliard, H = p2/2m, and Eq. (3) yields [3]

we integrated over all positive times even though Eq. (12)
is valid only for short times. A more careful analysis _ Jir=2/2(kL)
shows that Eq. (13) is valid in the limit of smali, ClamlE) =V 1F<f/2>(,j[/ziﬁ, (18)
provided thatq, — qi| is small enough so that the shortest
classical pathq(z) connectingq; to q» with energy E  whereV is thef-dimensional volume of the billiardik =
is well approximated by a linear function of time. Note (2mE)"/?, L = |q, — qi is the length of the straight-line
that this criterion is purely classicalg, — q;| can be path,I'(x) is the Euler gamma function, anfl(x) is an
sufficiently small even if it is large compared with the ordinary Bessel function. In the case at hand, Eq. (18) is
guantum wavelength/p, wherep = |p|isthe magnitude valid even for largeL. The reason is that the straight-
of the classical momentum whgn= q. With this caveat, line path is a linear function of time, and this is the
Eg. (13), when inserted into Eq. (9), immediately yieldscondition needed for the validity of Eq. (3). Turning
Eq. (3). to Eq. (17), we note that(E) = k/V /(47)//*T(f/2)E,

As this derivation shows, however, Eq. (3) is not validand that the straight-line path h&is//# = kL and|D,| =
if g — qi] is too large. In this case, we must use am?(2mE)~3/2/L/=1 If q; and q, are both far from
different semiclassical formula f@ (q,, q1 | E), making a  any of the billiard’s walls, the straight-line path makes the
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dominant contribution, and we find blocked) has action
_ 2 _ 2
C(‘]Zs‘lllE):V lr(f/z) Sp/ﬁ=kL|:l+ﬂ+...:|, (20)
cogkL — v, + f — D) /4] 12R?
w/2(kL/2)/~1/2 ’ where ik = 2mE)Y? and L = |q» — q1| as before,

(19) and we have introducedd? =¢q} +q5 and R =
(2E/mw?)'/?; R is the maximum distance from the origin
with v, = 0. Equation (19) is equivalent to Eq. (18) which can be reached with energy Also, we find
when kL is large, since in this regime the asymptotic
form of the Bessel function can be invoked. Thus, in the ) | = D, | [1 N (f = DL* = (f — 3)d* 4 }
present case, both Eq. (3) and Eq. (17) are valid for Iarg!e P plo=0 4R? T
L, and Eq. (3) is valid for smalL (less than a quantum (21)
wavelength27 /k) as well.
On the other hand, if we consider a billiard in which In all but two dimensions, the correction (D, | is domi-
the straight-line path fromy, to q, is blocked by an nated by the correction t@(E), which is O(V2// /R?),
obstacle, such as in Fig. 1, Eq. (18) is not correct, and wavhere V!// is the linear size of the billiard. However,
must use Eq. (17). The shortest classical path connectinghen f = 2, p(E) is independent off, and it is not
q; to q; makes the dominant contribution; this is given changed by the presence of a weak potential. In this
by Eg. (19), provided we také to be the length of the case, Eq. (21) represents the dominant correction to the
path, and sew, equal to twice the number of bounces. amplitude ofC(qy, q; | E).
In most realistic cases of this type, there will be many As a final example with importance for quantum dots,
other paths with more bounces that are not very muchve consider a particle with chargein a two-dimensional
longer; these will all contribute t@(q2,q; | E) as well.  billiard with a uniform, perpendicular magnetic fieRl.
However, if we attempt to verify Eq. (19) numerically In the billiard interior we haved = (p — eA)?/2m, and
for a particular eigenfunction of a particular billiard, it we will work in the gauge in which the vector poten-
is necessary to average over a rangq0&ndq, in order tial is A = %B X . This system is not time-reversal
to reduce the variance i@(q,,q; | E) which is expected invariant, and so we must use Egs. (9) and (14) rather
from the probability distribution (1) [3,4,11]. If this than Eq. (17). We again consider poigtsandq, which
averaging is carried out with the lengthof the shortest are far from the billiard’s walls. The shortest classical
classical path held fixed, the other contributing paths willpath is then a circular arc with length related to the
in general have lengths that vary. If this variation is largeseparationL. = |q, — q;| and classical cyclotron radius
on the scale of the quantum wavelength/k, then the R = (2mE)'/?/|eB| via¢ = 2R sin"'(L/2R). The action
net contribution of all these other paths to the averageéor this path can be divided into a geometric part and
C(q2.q: | E) should be small, rendering Eq. (19) a valid a gauge-dependent past, = Sgcom + Sgauge- The geo-

formula for the averaged correlation function. metric part is

As another example we consider a billiard with the addi-
tion of an isotropic harmonic potenti&l(q) = 1mw?q>. g _ ﬁk((i _ ﬂ)
This case is of some physical interest for= 2; wave- geom R

function correlations in quantum dots have been studied as- 12
suming that the dot is well modeled by a two-dimensional = ﬁkL(l ~ 5 T ) (22)
billiard, but in fact there is also a smooth confining po- 24R
tential, often approximated as harmonic. For simplicity, , hare againik = (2mE)"?, and A = %R( _ %RZ %

we give only the leading corrections in the limit of a weak gj ¢ /r) is the area enclosed by the circular arc and the
potential. The shortest classical path (assuming it is noétraight line connecting; to q». The gauge-dependent

part is energy independent, and changes sign whemnd

2 q; are exchanged. For our gauge choice,
1\\ /// Seauge = 3¢B - (@1 X q2). (23)
"\ N L7 ’ If we make a gauge transformation
\\, & A(g) — A(g) + VO&(q), (24)

FIG. 1. A portion of a Sinai billiard in which the circular Where®(q) is any smooth function, then
scatterer is off center; the path shown is the shortest classical
path between points 1 and 2. Sgauge = Sgauge T eP(q2) — e®P(q1).  (25)
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The determinant|D,|, on the other hand, is gauge formulas in the literature for the expected values of off-

invariant, diagonal matrix elements (in the energy-eigenstate basis)
) [2\-1/2 of simple, z-independent operators in classically chaotic
ID,| = };"H <1 — W) . (26)  systems. This will be the subject of a separate paper.
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Keeping only the contribution of this path, we find from
Egs. (9) and (14) that
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