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Correlations in Chaotic Eigenfunctions at Large Separation
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An energy eigenfunction in a classically chaotic system is known to have spatial correlatio
which (in the limit of small h̄) are governed by a microcanonical distribution in the classical phase
space. This result is valid, however, only over coordinate distances which are small compa
to any relevant classical distance scales (such as the cyclotron radius for a charged particle
a magnetic field). We derive a modified formula for the correlation function in the regime o
large separation. This then permits a complete description, over all length scales, of the statist
properties of chaotic eigenfunctions in thēh ! 0 limit. Applications to quantum dots are briefly
discussed. [S0031-9007(98)05350-2]

PACS numbers: 05.45.+b, 03.65.Ge, 03.65.Sq, 73.20.Dx
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In a Hamiltonian system which exhibits classical chao
throughout the accessible phase space, the quantum en
eigenvalues and eigenfunctions are known to have cert
universal properties in the limit of small̄h (which, in
practice, is achieved at sufficiently high energy) [1,2
We will be interested in the energy eigenfunctions; the
can be characterized as random variables with a Gauss
probability distribution of the form [3–11]

Psc j Ed ~ exp

∑
2

b

2

Z
dfq1

3
Z

dfq2 cpsq2dKsq2, q1 j Edcsq1d
∏

,

(1)

where f is the number of degrees of freedom. If th
system is time-reversal invariant, the eigenfunctions a
real andb ­ 1; if it is not, they are complex andb ­
2. The measure corresponding to Eq. (1) is the stand
one of Euclidean quantum field theory:D c ­

Q
q dcsqd

for b ­ 1 and D c ­
Q

q d Recsqdd Im csqd for b ­
2. Psc j EdD c represents the probability that the actua
eigenfunction casqd for E ­ Ea (a particular energy
eigenvalue) is betweencsqd and csqd 1 dcsqd for all
coordinatesq. The kernelKsq2, q1 j Ed is the functional
inverse of the two-point correlation function

Csq2, q1 j Ed ;
Z

csq2dcpsq1dPsc j Ed D c . (2)

The explicit formula forCsq2, q1 j Ed which was originally
suggested by Berry [3] assumes a microcanonical pro
bility density in the classical phase space,

Csq2, q1 j Ed ­
1

r̄sEd

Z dfp
s2p h̄df eip?sq22q1dy h̄

3 dfE 2 HW sp, q̄dg , (3)

whereq̄ ; 1
2 sq1 1 q2d, HW sp, qd is the classical Hamil-

tonian (more specifically, it is the Weyl symbol of the
Hamiltonian operator), and̄rsEd is the semiclassical den-
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r̄sEd ­
Z dfp dfq

s2p h̄df dfE 2 HW sp, qdg . (4)

However, Eq. (3) applies only when the separationjq2 2

q1j is sufficiently small [3]. Consider, for example, th
caseH ­ p2y2m 1 V sqd; we would not expect the cor-
relations in an eigenfunction at two pointsq1 and q2 to
depend only on the value of the potential atq̄ if V sq̄d
has a significantly different value than eitherV sq1d or
V sq2d. Our goal, then, is to find the correct formula fo
Csq2, q1 j Ed whenjq2 2 q1j is large.

One way to motivate Eq. (3) is to consider the ener
Green’s function [12,13]

Gsq2, q1 j Ed ;
X
a

casq2dcp
asq1d

E 2 Ea 1 ie
, (5)

wheree ! 01. We then haveX
a

casq2dcp
asq1ddsE 2 Ead ­

1
2pi

fGsq1, q2 j Edp

2 Gsq2, q1 j Edg ,
(6)

and the exact density of states is

rsEd ;
X
a

dsE 2 Ead (7)

­
1

2pi

Z
dfq fGsq, q j Edp 2 Gsq, q j Edg . (8)

While the exact Green’s function clearly has sing
larities wheneverE ­ Ea, its leading approximation
Ḡsq2, q1 j Ed in the small-̄h limit is a smooth function of
its arguments. Given this, Eqs. (2), (6), and (7) make
natural to expect that

Csq2, q1 j Ed ­
1

2pir̄sEd
3 fḠsq1, q2 j Edp 2 Ḡsq2, q1 j Edg . (9)
© 1998 The American Physical Society
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This formula can be derived explicitly [6] in the theory o
disordered metals, where a white-noise random poten
is added to the Hamiltonian. In this case, Eq. (9) hol
with Ḡ standing for the Green’s function averaged ov
the random potential. In the limit that the strength of th
potential is large (which corresponds to theh̄ ! 0 limit for
chaotic systems), Eq. (1) for the eigenfunction probabili
can also be derived explicitly [5–8,10]. Corrections fo
finite potential strength (that is, finitēh) can also be
computed [14], and are complimentary to the calculatio
done here.

Let us now briefly recall the construction ofḠsq2, q1 jEd
in the h̄ ! 0 limit [12,13]. The energy Green’s function
is related to the propagatorkq2je2iHty h̄jq1l via

Gsq2, q1 j Ed ­
1
ih̄

Z `

0
dt eisE1iedty h̄kq2je

2iHty h̄jq1l .

(10)

The propagator can be written as

kq2je
2iHty h̄jq1l ­

Z dfp
s2p h̄df eip?sq22q1dy h̄

3 se2iHty h̄dW sp, q̄d , (11)

where againq̄ ­ 1
2 sq1 1 q2d, and AW sp, q̄d denotes the

Weyl symbol of the operatorA; in fact, Eq. (11) is simply
the Fourier transform of the definition of the Weyl symbo
For sufficiently small times,

se2iHty h̄dW sp, qd . e2iHW sp,qdty h̄. (12)

Inserting Eqs. (11) and (12) into Eq. (10), and performin
the time integral, we get the desired approximation,

Ḡsq2, q1 j Ed ­
Z dfp

s2p h̄df eip?sq22q1dy h̄

3
1

E 2 HW sp, q̄d 1 ie
. (13)

The derivation of this formula is flawed, however, sinc
we integrated over all positive times even though Eq. (1
is valid only for short times. A more careful analysi
shows that Eq. (13) is valid in the limit of small̄h,
provided thatjq2 2 q1j is small enough so that the shortes
classical pathqstd connectingq1 to q2 with energy E
is well approximated by a linear function of time. Not
that this criterion is purely classical;jq2 2 q1j can be
sufficiently small even if it is large compared with the
quantum wavelength̄hyp, wherep ­ jpj is the magnitude
of the classical momentum whenq ­ q̄. With this caveat,
Eq. (13), when inserted into Eq. (9), immediately yield
Eq. (3).

As this derivation shows, however, Eq. (3) is not vali
if jq2 2 q1j is too large. In this case, we must use
different semiclassical formula forGsq2, q1 j Ed, making a
f
tial
ds
er
e

ty
r

ns

l.

g

e
2)
s

t

e

s

d
a

stationary phase approximation both in the Feynman pa
integral representation of the propagator, and in the tim
integral of Eq. (10). The well-known result is [12]

Ḡsq2, q1 j Ed ­
1

ih̄s2pih̄ds f21dy2

3
X

paths

jDpj1y2eiSp y h̄2inppy2. (14)

Here the sum is over all classical paths connectingq1 to
q2 with energyE and action

Sp ­
Z q2

q1

p ? dq . (15)

The index np counts the number of classical foca
points along the path, and the determinantDp of second
derivatives ofSp is given by

Dp ­ det

0B@ ≠2Sp

≠q2≠q1

≠2Sp

≠E≠q1

≠2Sp

≠q2≠E
≠2Sp

≠E2

1CA . (16)

It is Eq. (14) which should be used in Eq. (9) when th
shortest classical path fromq1 to q2 is not (approxi-
mately) a linear function of time.

If the system is time-reversal invariant, then the path
from q2 to q1 have the same set of values ofSp, np , and
Dp as the paths fromq1 to q2. In this case, we have

Csq2, q1 j Ed ­
2

r̄sEd s2p h̄ds f11dy2

X
paths

jDpj1y2

3 cosfSpyh̄ 2 s2np 1 f 2 1dpy4g
(17)

instead of Eq. (3) whenjq2 2 q1j is large.
To illustrate the differences between Eq. (17) an

Eq. (3), let us examine a few special cases. First, we co
sider anf-dimensional billiard in which the straight-line
path fromq1 to q2 is not blocked. In the interior of the
billiard, H ­ p2y2m, and Eq. (3) yields [3]

Csq2, q1 j Ed ­ V 21Gs fy2d
Js f22dy2skLd

skLy2ds f22dy2
, (18)

whereV is thef-dimensional volume of the billiard,̄hk ­
s2mEd1y2, L ­ jq2 2 q1j is the length of the straight-line
path,Gsxd is the Euler gamma function, andJnsxd is an
ordinary Bessel function. In the case at hand, Eq. (18)
valid even for largeL. The reason is that the straight-
line path is a linear function of time, and this is the
condition needed for the validity of Eq. (3). Turning
to Eq. (17), we note that̄rsEd ­ kfVys4pdfy2Gs fy2dE,
and that the straight-line path hasSpyh̄ ­ kL andjDpj ­
m2s2mEds f23dy2yLf21. If q1 and q2 are both far from
any of the billiard’s walls, the straight-line path makes th
1647
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dominant contribution, and we find

Csq2, q1 j Ed ­ V 21Gs fy2d

3
cosfkL 2 s2np 1 f 2 1dpy4g

p1y2skLy2ds f21dy2 ,

(19)

with np ­ 0. Equation (19) is equivalent to Eq. (18)
when kL is large, since in this regime the asymptoti
form of the Bessel function can be invoked. Thus, in th
present case, both Eq. (3) and Eq. (17) are valid for lar
L, and Eq. (3) is valid for smallL (less than a quantum
wavelength,2pyk) as well.

On the other hand, if we consider a billiard in which
the straight-line path fromq1 to q2 is blocked by an
obstacle, such as in Fig. 1, Eq. (18) is not correct, and w
must use Eq. (17). The shortest classical path connect
q1 to q2 makes the dominant contribution; this is given
by Eq. (19), provided we takeL to be the length of the
path, and setnp equal to twice the number of bounces
In most realistic cases of this type, there will be man
other paths with more bounces that are not very mu
longer; these will all contribute toCsq2, q1 j Ed as well.
However, if we attempt to verify Eq. (19) numerically
for a particular eigenfunction of a particular billiard, it
is necessary to average over a range ofq1 andq2 in order
to reduce the variance inCsq2, q1 j Ed which is expected
from the probability distribution (1) [3,4,11]. If this
averaging is carried out with the lengthL of the shortest
classical path held fixed, the other contributing paths w
in general have lengths that vary. If this variation is larg
on the scale of the quantum wavelength2pyk, then the
net contribution of all these other paths to the averag
Csq2, q1 j Ed should be small, rendering Eq. (19) a valid
formula for the averaged correlation function.

As another example we consider a billiard with the add
tion of an isotropic harmonic potentialV sqd ­ 1

2 mv2q2.
This case is of some physical interest forf ­ 2; wave-
function correlations in quantum dots have been studied
suming that the dot is well modeled by a two-dimension
billiard, but in fact there is also a smooth confining po
tential, often approximated as harmonic. For simplicity
we give only the leading corrections in the limit of a wea
potential. The shortest classical path (assuming it is n

FIG. 1. A portion of a Sinai billiard in which the circular
scatterer is off center; the path shown is the shortest class
path between points 1 and 2.
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blocked) has action

Spyh̄ ­ kL

∑
1 1

L2 2 3d2

12R2 1 . . .

∏
, (20)

where h̄k ­ s2mEd1y2 and L ­ jq2 2 q1j as before,
and we have introducedd2 ; q2

1 1 q2
2 and R ;

s2Eymv2d1y2; R is the maximum distance from the origin
which can be reached with energyE. Also, we find

jDpj ­ jDpjv­0

∑
1 1

s f 2 1dL2 2 s f 2 3dd2

4R2 1 . . .

∏
.

(21)

In all but two dimensions, the correction tojDpj is domi-
nated by the correction tōrsEd, which is OsV2yf yR2d,
where V 1yf is the linear size of the billiard. However,
when f ­ 2, r̄sEd is independent ofE, and it is not
changed by the presence of a weak potential. In th
case, Eq. (21) represents the dominant correction to t
amplitude ofCsq2, q1 j Ed.

As a final example with importance for quantum dots
we consider a particle with chargee in a two-dimensional
billiard with a uniform, perpendicular magnetic fieldB.
In the billiard interior we haveH ­ sp 2 eAd2y2m, and
we will work in the gauge in which the vector poten-
tial is A ­ 1

2 B 3 q. This system is not time-reversal
invariant, and so we must use Eqs. (9) and (14) rath
than Eq. (17). We again consider pointsq1 andq2 which
are far from the billiard’s walls. The shortest classica
path is then a circular arc with length,, related to the
separationL ­ jq2 2 q1j and classical cyclotron radius
R ; s2mEd1y2yjeBj via , ­ 2R sin21sLy2Rd. The action
for this path can be divided into a geometric part an
a gauge-dependent part,Sp ­ Sgeom 1 Sgauge. The geo-
metric part is

Sgeom ­ h̄k

µ
, 2

A

R

∂
­ h̄kL

µ
1 2

L2

24R2
1 . . .

∂
, (22)

where againh̄k ­ s2mEd1y2, and A ­ 1
2 R, 2

1
2 R2 3

sins,yRd is the area enclosed by the circular arc and th
straight line connectingq1 to q2. The gauge-dependent
part is energy independent, and changes sign whenq1 and
q2 are exchanged. For our gauge choice,

Sgauge ­
1
2 eB ? sq1 3 q2d . (23)

If we make a gauge transformation

Asqd ! Asqd 1 =Fsqd , (24)

whereFsqd is any smooth function, then

Sgauge ! Sgauge 1 eFsq2d 2 eFsq1d . (25)
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The determinantjDp j, on the other hand, is gauge
invariant,

jDpj ­
m2

h̄kL

µ
1 2

L2

4R2

∂21y2

. (26)

Again there is no correction tōrsEd in two dimensions.
Keeping only the contribution of this path, we find from
Eqs. (9) and (14) that

Csq2, q1 j Ed ­ V 21 expsiSgaugeyh̄d

3
cossSgeomyh̄ 2 py4d

spkLy2d1y2s1 2 L2y4R2d1y4 , (27)

where V is the area of the billiard. Under the gauge
transformation (24), Eq. (25) implies

Csq2, q1 j Ed ! e1iefFsq2d2Fsq1dgy h̄Csq2, q1 j Ed . (28)

That this is correct can be seen by recalling that a wav
functioncsqd transforms as

csqd ! e1ieFsqdy h̄csqd (29)

under (24), and thatCsq2, q1 j Ead is the expected value of
casq2dcp

asq1d. On the other hand, Eq. (3) implies that

Csq2, q1 j Ed ! e1iesq22q1d?=Fsq̄dy h̄Csq2, q1 j Ed , (30)

which again illustrates the fact that Eq. (3) is valid only
whenjq2 2 q1j is sufficiently small.

Finally, we note that our expression forCsq2, q1 j Ed
is needed to resolve a discrepancy between two differe
e

nt

formulas in the literature for the expected values of o
diagonal matrix elements (in the energy-eigenstate ba
of simple, h̄-independent operators in classically chaot
systems. This will be the subject of a separate paper.
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