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Transition to Phase Synchronization of Chaos
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Phase synchronization of chaos is studied using a modified Réssler system. By employing a lift of
the phase variable (i.e., phase points separateztzbgre not considered as the same), the transition to
phase synchronization is viewed as a boundary crisis mediated by an unstable-unstable pair bifurcation
on a branched manifold, and the accompanying basin boundary structure is found to be of a new type.
[S0031-9007(98)05362-9]

PACS numbers: 05.45.+b, 02.40.Sf

It is well known that two coupled chaotic oscillators canon the real line rather than on the circle, and phase
synchronize so that their evolutions become identical [1]points separated by are not considered as the same).
A distinct, but related chaos synchronization phenomenoin the lifted phase space the phase synchronization-
can be developed in terms of a suitably defined [2]desynchronization transition is an unstable-unstable pair
phase of a chaotic oscillator. For example, in the caseifurcation boundary crisis [9] on a two-dimensional
of the Rdossler oscillator [3], one can introduce an angléoranched manifold, and we find that the accompanying
coordinate as a state space variable and regard it as thasin boundary structure is of a new type, different from
oscillator phase. Although this phase increases steadilhe Weierstrass curve structure [10—12] previously seen
with time, the rate of this increase will typically vary in in unstable-unstable pair bifurcation crises [9]. To our
a chaotic manner. This means that the rate of increadenowledge, this is the first documentation of an unstable-
of the phase variable can be modeled as a mean steadystable pair bifurcation crisis occurring naturally in
drift with a (possibly small) superposed zero mean chaotian ordinary differential equation system, rather than
fluctuation. This chaotic fluctuation leads to diffusion ofin maps designed for the study of such bifurcations
the phase superposed on the steady drift. It has bedh0-12].
shown that this phase diffusion can be eliminatptigse The Rossler system [3] that we start withvis= —(y +
synchronizatioh by the addition of a periodic pacing z),y = x + 0.25y,z = 0.90 + z(x — 6.0), here denoted
signal applied to the oscillator [2,4—7]. Furthermore, if by
Ithe phase Fhffusm_m of the un_paced system is not too dx/dt = R(x). (1)
arge, and if the imposed pacing frequency is close to
matching the mean steady phase drift of the unpacedhe motion on the chaotic attractor of this system is
oscillator, then relatively small amplitudes of the pacingsuch that orbits continually circulate around theaxis.
signal can completely eliminate phase diffusion. In theThus it is convenient to introduce cylindrical coordi-
phase synchronized state, the oscillator remains chaotioates, (x,y,z) — (r, ¢,z), where r = {/x2 + y2 and
but its phase is in step with that of the pacing signal. That) = arcsin(y/r). Here we take the arcsin to be such
is, the phase difference between the pacing signal and thbat ¢ is continuous in time; i.e., it has s jumps as
oscillator remains bounded by some appropriate constamtvaries. With this conventio increases continuously
fraction of 27 for all time. This is in contrast to the with ¢ for orbits on the chaotic attractor. Note that, in
unsynchronized situation where the ensemble averagemlr convention, the initial value o is ambiguous in
diffusive phase spread continually increase(;zaal,t)l/z, that ¢o and ¢9 = 2mm (m = integer) are physically
whereD,, is the phase diffusion coefficient, ands time.  equivalent. (However, we shall find it convenient to
Phase synchronization may, for example, be an importamegard such physically equivalent initial conditions as
consideration in schemes for communication using thelistinct.) Another aspect of the chaotic attractor for this
natural symbolic dynamics of chaos [8]. In particular, RGssler system is that, to a good approximation, it can be
clock timing of information bits is typically a key factor in regarded as lying on a branched manifold. In particular,
communication systems. Hence, the elimination of phaseear ¢ /7 = 2 the attractor lies on a surface that has a
diffusion can be crucial in this application. ribbonlike structure; asp decreases, the ribbon width

In this paper we study the transition of a pacedstretches; asp further decreases, the surface gradually
chaotic oscillator from phase synchronized chaos to phadelds widthwise, returning to its simple ribbon shape near
unsynchronized chaos as the pacing period varies. Th¢é = 0.
mechanism of this transition has previously been treated We modify the system (1) by the multiplication of
in Ref. [6]. Our analysis uses a “lift” of the phase variableits right-hand side by a positive scalar functisi(x, s)
of the paced oscillator (the phase variable is consideredependent on the parametgrwith S(x,0) = 1. Thus,
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the modified paced system becomes oscillator remain locked for all time. For valuesAfand
dx/dt = S(x,5)R(x) + AP(t). ) T Wlt.hln the unsynchronized region, but near thg synchro-
_ o . _ nization boundary, pacer and oscillator experience long
The term AP(z) is the periodic pacing signal, epochs of locking separated by intervals of short dura-

where P(r) = [0,sin(27¢/T),0]. We take S(x,s) = tion in which one of them quickly slips ahead a complete
1 + s(r* — 7?) and choose the parametérto be the cycle. The duration of such locking varies erratically
average value of for s = A = 0. but has a well-defined averagethat diverges [6,9] as

For an unpaced systemi (= 0) the presence of the T — T,, whereT.(A) is the critical value of the pacer pe-
function S(x,s) causes no change in the topologicalriod at the transition.
dynamics. In particular, the direction of the flow is To proceed we conside# = ¢ — 27¢/T, the phase
still given by the direction ofR, so that thepaths difference between the oscillator and the pacer. Note
followed by orbits in the phase space are unalteredthat with our definition of¢, the quantityd (like ¢)
Hence the branched manifold and any Poincaré surfade defined on the real line-~ < # < +o (rather than
of section map are not changed Byx,s). The speed on the circle0 = ¢ =< 27). With this definition phase
at which an orbit point moves along a path, howeversynchronization corresponds to a chaotic attractor whose
is altered in aposition dependennanner. ThusS(x,s)  extent ind is less tham2z. In fact, by the invariance
can substantially change the phase diffusidp of the of the system to the transformatigh— 6 = 27, there
unpaced chaotic system (even though the mean cycle time an infinite array of such attractors spaced Jy in
in ¢ is hardly changed). This is illustrated in Fig. 1 which ¢, For example, if the initial conditiorn§, zo, 8) goes to
shows the averagé¢ — (¢))?) over many orbits on the one attractor, then, zo, 6y + 2m) goes to the attractor
attractor of the unpaced system versus time for several displaced from it by2m7. We now consider two such
values. Notice how the slope (which is by definitBy)  attractors denotedl and R, whereL is located in—7 <
increases for increasing values of Thus, by varying ¢ < 7 andR is located inm < # < 3. To depict these
the parametes we are able to vanD, while keeping attractors we use a stroboscopic surface of section (i.e.,
constant all topological aspects of the dynamics. Weyve examiner,z,6 at time+ = nT with n an integer).
emphasize that, in our numerical experiments, use of thas we shall see, in this surface of section, the paced

multiplier S(x, s) was essential: Because of the extremelysystem attractor lies on a branched manifold similar to the
small value ofDy for Eq. (1) ¢ = 0 in Fig. 1), with

the computer resources available to us, the phenomena

we discuss here were not numerically observable in the (a)
unmodified Réssler equations (1) (although they very 0.008 : :
probably occur). <
While, if A = 0, the topological dynamics is unchanged § 0.006
by S(x,s), this is not the case fat # 0. In particular, 3
the required pacer amplitude to achieve synchronization £ 0.004
is larger for largeD . This is illustrated in Fig. 2 which f
shows regions of4, T') parameter space corresponding to g 0.002
phase synchronized (open circles) and phase unsynchro- & [
nized (filled circles) motions. Notice that thescale in 0.000 . . :
Fig. 2(b) fors = 0.002 is 10 times larger than th& scale 6.0675 6.0708 6.0740 6.0773 6.0805
in Fig. 2(a) fors = 0[13]. ForA andT values within the pacer period T
synchronization region, the pacing signal and the Rdssler (b)
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number of cycles FIG.2. A andT values for synchronized (open circles) and
unsynchronized (filled circles) motion when @y 0 and
FIG. 1. Time evolution of the variance. (b) s = 0.002.
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branched manifold for the unpaced system.AlandT  unstable periodic orbit on the attractor and an unstable
give synchronization, the strobed attractor does not fill theperiodic orbit of the same period on the attractor’s basin
entire branched manifold but is localized n Figure 3  boundary coalesce and annihilate [9].) Past the crisis,
for T = 6.088, s = 0.002, and A = 0.130 shows the an orbit in the region of the formeR attractor initially
attractorsk and L in the stroboscopic surface of section, bounces around in that region for a long time, staying in
t = nT, along with points on the branched manifold thatsynchronism with the pacer. After a while, however, it
are in their respective basins of attraction. The values ofather suddenly moves to the region of the fornieat-
the parameterd’, s, andA for Fig. 3 correspond to the tractor, undergoing a7 phase slip between the oscillator
middle of the synchronization region in Fig. 2(b). Hereand the pacer. It then stays in the region of the former
we obtain our images of the basins Bfand L on the L attractor, before experiencing anott?er phase slip in
branched manifoldy sprinkling points in an appropriate which it moves to the cel-37 < # < —a containing
volume of r,z,0 space and numerically seeing whetheranother remnant attractor to the left of thettractor, etc.
they go to attractoi® or to attractorL. We then plot In conformity with the theory of the unstable-unstable pair
the resulting orbit locations a few cycles forward from thebifurcation crisis [9], and in agreement with the numerical
initial condition (typically four or five), thus allowing the results of the map model in Ref. [6], we numerically find
orbits from the points initially sprinkled in the volume to that the mean time between27 phase slips obeys the
approach the branched manifold. Taking the depidted scaling logr ~ constx |T — T.(A)|~"/2. Figure 5 for
and L basins and attractors together, we can regard Fig. 8 slightly less tharil.(A) shows a plot of an orbit which
as aprojectionof the two-dimensional branched manifold was initialized in the region of the remnaRt attractor.
in (r,z,0) onto(r, ). Examining the branched manifold The sequence of 21 points shown (large dots, and we just
in the full three-dimensional space we find the following.labeled the first 12) correspond to the segment of the or-
Starting, say, ab /7 = 1.9 and decreasing, the ribbon bit around which it moves from the region of the rem-
width stretches, becoming maximum @tf7 = 0.8, and nantR attractor to the region of the remnahtattractor.
then folds widthwise a$ /7 decreases from aboQt5 to  Evidence for the mediating period three unstable-unstable
0.0, returning to its simple ribbon shape. We note that inpair bifurcation is clearly seen in the orbit motion between
the # range of the basin boundary in Fig. 3, overlap dueiterates 548 101 and 548 121 (large dots in Fig. 5) which
to projection of the branched manifold is absent. closely follow period three motion, successively cycling
To illustrate the mechanism of desynchronization conthrough the three regions where the saddle-repeller co-
sider Fig. 4 § = 0.002, A = 0.130). As T decreases alescence has taken place [15].
from a value in the middle of the synchronization tongue The basin boundary structure we observe is illustrated
[T = 6.088, Fig. 4(a)] to values near the sychronizationin Fig. 6 [16] which shows a magnification of the bound-
border [ = 6.022 > 6.021 = T, for Fig. 4(b)], we see ary in Fig. 3. In the original studies of unstable-unstable
that theR attractor and th&. basin approach each other. pair bifurcation crises in Refs. [9], the basin boundary had
At T = T,, the attractor and the basin boundary touchthe character of a fractal Weierstrass curve. In this case
We observe [14] that this happens when a period threall points on the fractal boundary aaecessibldrom both
saddle orbit on the left edge of the attractor coalesces sides: for any point on the boundary, and any point in
with a period three repeller on the basin boundary. Thighe interior ofeither basin, one can construct a connect-
process is called an unstable-unstable pair bifurcation cring finite length curve that does not touch the boundary
sis. (In an unstable-unstable pair bifurcation crisis arexcept at its end point. The structure we see in Fig. 6 is
not of this type. Rather we see regions of the boundary
that are rounded and appear to have many parallel stria-
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FIG.3. L and R attractors 1T = 6.088, A = 0.130, s =
0.002) and points on the branched manifold that are in theirFIG. 4. R attractor and. basin fors = 0.002 andA = 0.130,
respective basins of attraction. with (a) T = 6.088 and (b)T = 6.022.
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jof T T T ated regions that are accessible frbothsides. Thus the
» boundary in Fig. 6 simultaneously incorporates features of
- both the aforementioned previously studied different basin
10 boundary types.
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