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Phase synchronization of chaos is studied using a modified Rössler system. By employing a li
the phase variable (i.e., phase points separated by2p are not considered as the same), the transition t
phase synchronization is viewed as a boundary crisis mediated by an unstable-unstable pair bifurc
on a branched manifold, and the accompanying basin boundary structure is found to be of a new
[S0031-9007(98)05362-9]
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It is well known that two coupled chaotic oscillators ca
synchronize so that their evolutions become identical [1
A distinct, but related chaos synchronization phenomen
can be developed in terms of a suitably defined [2
phase of a chaotic oscillator. For example, in the ca
of the Rössler oscillator [3], one can introduce an ang
coordinate as a state space variable and regard it as
oscillator phase. Although this phase increases stead
with time, the rate of this increase will typically vary in
a chaotic manner. This means that the rate of increa
of the phase variable can be modeled as a mean ste
drift with a (possibly small) superposed zero mean chao
fluctuation. This chaotic fluctuation leads to diffusion o
the phase superposed on the steady drift. It has be
shown that this phase diffusion can be eliminated (phase
synchronization) by the addition of a periodic pacing
signal applied to the oscillator [2,4–7]. Furthermore,
the phase diffusion of the unpaced system is not to
large, and if the imposed pacing frequency is close
matching the mean steady phase drift of the unpac
oscillator, then relatively small amplitudes of the pacin
signal can completely eliminate phase diffusion. In th
phase synchronized state, the oscillator remains chao
but its phase is in step with that of the pacing signal. Th
is, the phase difference between the pacing signal and
oscillator remains bounded by some appropriate const
fraction of 2p for all time. This is in contrast to the
unsynchronized situation where the ensemble averag
diffusive phase spread continually increases ass2Dftd1y2,
whereDf is the phase diffusion coefficient, andt is time.
Phase synchronization may, for example, be an importa
consideration in schemes for communication using th
natural symbolic dynamics of chaos [8]. In particular
clock timing of information bits is typically a key factor in
communication systems. Hence, the elimination of pha
diffusion can be crucial in this application.

In this paper we study the transition of a pace
chaotic oscillator from phase synchronized chaos to pha
unsynchronized chaos as the pacing period varies. T
mechanism of this transition has previously been treat
in Ref. [6]. Our analysis uses a “lift” of the phase variabl
of the paced oscillator (the phase variable is consider
0031-9007y98y80(8)y1642(4)$15.00
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on the real line rather than on the circle, and pha
points separated by2p are not considered as the same
In the lifted phase space the phase synchronizati
desynchronization transition is an unstable-unstable p
bifurcation boundary crisis [9] on a two-dimensiona
branched manifold, and we find that the accompanyi
basin boundary structure is of a new type, different fro
the Weierstrass curve structure [10–12] previously se
in unstable-unstable pair bifurcation crises [9]. To o
knowledge, this is the first documentation of an unstab
unstable pair bifurcation crisis occurring naturally i
an ordinary differential equation system, rather tha
in maps designed for the study of such bifurcatio
[10–12].

The Rössler system [3] that we start with isÙx ­ 2sy 1

zd, Ùy ­ x 1 0.25y, Ùz ­ 0.90 1 zsx 2 6.0d, here denoted
by

dxydt ­ Rsxd . (1)

The motion on the chaotic attractor of this system
such that orbits continually circulate around thez axis.
Thus it is convenient to introduce cylindrical coord
nates, sx, y, zd ! sr , f, zd, where r ­

p
x2 1 y2 and

f ­ arcsinsyyrd. Here we take the arcsin to be suc
that f is continuous in time; i.e., it has no2p jumps as
t varies. With this conventionf increases continuously
with t for orbits on the chaotic attractor. Note that, i
our convention, the initial value off is ambiguous in
that f0 and f0 6 2mp (m ­ integer) are physically
equivalent. (However, we shall find it convenient t
regard such physically equivalent initial conditions a
distinct.) Another aspect of the chaotic attractor for th
Rössler system is that, to a good approximation, it can
regarded as lying on a branched manifold. In particul
near fyp ø 2 the attractor lies on a surface that has
ribbonlike structure; asf decreases, the ribbon width
stretches; asf further decreases, the surface gradua
folds widthwise, returning to its simple ribbon shape ne
f ø 0.

We modify the system (1) by the multiplication o
its right-hand side by a positive scalar functionSsx, sd
dependent on the parameters, with Ssx, 0d ; 1. Thus,
© 1998 The American Physical Society
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the modified paced system becomes

dxydt ­ Ssx, sdRsxd 1 APstd . (2)

The term APstd is the periodic pacing signal,
where Pstd ­ f0, sins2ptyT d, 0g. We take Ssx, sd ­
1 1 ssr2 2 r̄2d and choose the parameterr̄ to be the
average value ofr for s ­ A ­ 0.

For an unpaced system (A ­ 0) the presence of the
function Ssx, sd causes no change in the topologica
dynamics. In particular, the direction of the flow is
still given by the direction ofR, so that thepaths
followed by orbits in the phase space are unaltere
Hence the branched manifold and any Poincaré surfa
of section map are not changed bySsx, sd. The speed
at which an orbit point moves along a path, howeve
is altered in aposition dependentmanner. Thus,Ssx, sd
can substantially change the phase diffusionDf of the
unpaced chaotic system (even though the mean cycle t
in f is hardly changed). This is illustrated in Fig. 1 whic
shows the averageksf 2 kfld2l over many orbits on the
attractor of the unpaced system versus time for severas
values. Notice how the slope (which is by definition2Df)
increases for increasing values ofs. Thus, by varying
the parameters we are able to varyDf while keeping
constant all topological aspects of the dynamics. W
emphasize that, in our numerical experiments, use of
multiplier Ssx, sd was essential: Because of the extreme
small value ofDf for Eq. (1) (s ­ 0 in Fig. 1), with
the computer resources available to us, the phenom
we discuss here were not numerically observable in t
unmodified Rössler equations (1) (although they ve
probably occur).

While, if A ­ 0, the topological dynamics is unchange
by Ssx, sd, this is not the case forA fi 0. In particular,
the required pacer amplitude to achieve synchronizati
is larger for largerDf. This is illustrated in Fig. 2 which
shows regions of (A, T ) parameter space corresponding t
phase synchronized (open circles) and phase unsynch
nized (filled circles) motions. Notice that theA scale in
Fig. 2(b) fors ­ 0.002 is 10 times larger than theA scale
in Fig. 2(a) fors ­ 0 [13]. ForA andT values within the
synchronization region, the pacing signal and the Röss

FIG. 1. Time evolution of the variance.
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oscillator remain locked for all time. For values ofA and
T within the unsynchronized region, but near the synchro
nization boundary, pacer and oscillator experience lon
epochs of locking separated by intervals of short dura
tion in which one of them quickly slips ahead a complete
cycle. The duration of such locking varies erratically
but has a well-defined averaget that diverges [6,9] as
T ! Tc, whereTcsAd is the critical value of the pacer pe-
riod at the transition.

To proceed we consideru ­ f 2 2ptyT , the phase
difference between the oscillator and the pacer. Not
that with our definition off, the quantityu (like f)
is defined on the real line2` , u , 1` (rather than
on the circle0 # u # 2p). With this definition phase
synchronization corresponds to a chaotic attractor whos
extent in u is less than2p. In fact, by the invariance
of the system to the transformationu ! u 6 2p, there
is an infinite array of such attractors spaced by2p in
u. For example, if the initial condition (r0, z0, u0) goes to
one attractor, then (r0, z0, u0 1 2mp) goes to the attractor
displaced from it by2mp . We now consider two such
attractors denotedL andR, whereL is located in2p ,

u , p andR is located inp , u , 3p. To depict these
attractors we use a stroboscopic surface of section (i.e
we examiner , z, u at time t ­ nT with n an integer).
As we shall see, in this surface of section, the pace
system attractor lies on a branched manifold similar to th

FIG. 2. A and T values for synchronized (open circles) and
unsynchronized (filled circles) motion when (a)s ­ 0 and
(b) s ­ 0.002.
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branched manifold for the unpaced system. IfA and T
give synchronization, the strobed attractor does not fill
entire branched manifold but is localized inu. Figure 3
for T ­ 6.088, s ­ 0.002, and A ­ 0.130 shows the
attractorsR andL in the stroboscopic surface of sectio
t ­ nT , along with points on the branched manifold th
are in their respective basins of attraction. The values
the parametersT , s, and A for Fig. 3 correspond to the
middle of the synchronization region in Fig. 2(b). He
we obtain our images of the basins ofR and L on the
branched manifoldby sprinkling points in an appropriate
volume of r , z, u space and numerically seeing wheth
they go to attractorR or to attractorL. We then plot
the resulting orbit locations a few cycles forward from th
initial condition (typically four or five), thus allowing the
orbits from the points initially sprinkled in the volume t
approach the branched manifold. Taking the depictedR
andL basins and attractors together, we can regard Fig
as aprojectionof the two-dimensional branched manifol
in sr , z, ud onto sr , ud. Examining the branched manifol
in the full three-dimensional space we find the followin
Starting, say, atuyp ­ 1.9 and decreasingu, the ribbon
width stretches, becoming maximum atuyp ­ 0.8, and
then folds widthwise asuyp decreases from about0.5 to
0.0, returning to its simple ribbon shape. We note that
the u range of the basin boundary in Fig. 3, overlap d
to projection of the branched manifold is absent.

To illustrate the mechanism of desynchronization co
sider Fig. 4 (s ­ 0.002, A ­ 0.130). As T decreases
from a value in the middle of the synchronization tong
[T ­ 6.088, Fig. 4(a)] to values near the sychronizatio
border [T ­ 6.022 . 6.021 ø Tc for Fig. 4(b)], we see
that theR attractor and theL basin approach each othe
At T ­ Tc, the attractor and the basin boundary touc
We observe [14] that this happens when a period th
saddle orbit on the left edge of theR attractor coalesces
with a period three repeller on the basin boundary. T
process is called an unstable-unstable pair bifurcation
sis. (In an unstable-unstable pair bifurcation crisis

FIG. 3. L and R attractors (T ­ 6.088, A ­ 0.130, s ­
0.002) and points on the branched manifold that are in th
respective basins of attraction.
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unstable periodic orbit on the attractor and an unsta
periodic orbit of the same period on the attractor’s ba
boundary coalesce and annihilate [9].) Past the cri
an orbit in the region of the formerR attractor initially
bounces around in that region for a long time, staying
synchronism with the pacer. After a while, however,
rather suddenly moves to the region of the formerL at-
tractor, undergoing a2p phase slip between the oscillato
and the pacer. It then stays in the region of the form
L attractor, before experiencing another2p phase slip in
which it moves to the cell23p , u , 2p containing
another remnant attractor to the left of theL attractor, etc.
In conformity with the theory of the unstable-unstable pa
bifurcation crisis [9], and in agreement with the numeric
results of the map model in Ref. [6], we numerically fin
that the mean timet between2p phase slips obeys the
scaling logt , const3 jT 2 TcsAdj21y2. Figure 5 for
T slightly less thanTcsAd shows a plot of an orbit which
was initialized in the region of the remnantR attractor.
The sequence of 21 points shown (large dots, and we
labeled the first 12) correspond to the segment of the
bit around which it moves from the region of the rem
nantR attractor to the region of the remnantL attractor.
Evidence for the mediating period three unstable-unsta
pair bifurcation is clearly seen in the orbit motion betwe
iterates 548 101 and 548 121 (large dots in Fig. 5) wh
closely follow period three motion, successively cyclin
through the three regions where the saddle-repeller
alescence has taken place [15].

The basin boundary structure we observe is illustra
in Fig. 6 [16] which shows a magnification of the bound
ary in Fig. 3. In the original studies of unstable-unstab
pair bifurcation crises in Refs. [9], the basin boundary h
the character of a fractal Weierstrass curve. In this c
all points on the fractal boundary areaccessiblefrom both
sides: for any point on the boundary, and any point
the interior ofeither basin, one can construct a connec
ing finite length curve that does not touch the bounda
except at its end point. The structure we see in Fig. 6
not of this type. Rather we see regions of the bounda
that are rounded and appear to have many parallel s
tions. Further examination suggests that these striati

FIG. 4. R attractor andL basin fors ­ 0.002 andA ­ 0.130,
with (a) T ­ 6.088 and (b)T ­ 6.022.
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FIG. 5. Orbit initialized in the region of the remnantR
attractor (T slightly less thanTc).

result from parts of the boundary that are essentia
formed by a Cantor set of roughly parallel lines. Thu
there are points on the boundary (in fact, in an a
propriate sense, most points) that are inaccessible f
either basin, being “buried” under an infinite alternatin
sequence of ever narrower long basin strips accumu
ing on the boundary point from both sides. Such stru
tures are commonly observed for fractal basin bounda
of two-dimensional invertible maps (e.g., the Hénon ma
[11]. On the other hand, the fractal boundary in Fig. 6
also fundamentally different from fractal basin boundar
observed for two-dimensional invertible maps [10,17].
particular, for fractal basin boundaries of two-dimension
invertible maps there are typically no boundary points a
cessible from both sides. In contrast, in a future public
tion [14] we provide explicit examples of boundaries th
are similar to the Fig. 6 boundary, and for these examp
we can show that the boundary has an infinite fractal
of points (fractal dimension, 1) not in the rounded stri-

FIG. 6. Magnification of the basin boundary in Fig. 3.
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ated regions that are accessible frombothsides. Thus the
boundary in Fig. 6 simultaneously incorporates features
both the aforementioned previously studied different bas
boundary types.
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