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A Bose-Einstein condensate with attractive interaction can be metastable if it is spatially confined and
if the number of condensate bosonsN0 is below a certain critical valueNc. By applying a variational
method and the instanton technique to the Gross-Pitaevskii energy functional, we find analytically
the frequency of the collective excitation and the rate of macroscopic quantum tunneling. We show
that near the critical point the tunneling exponent vanishes according tos1 2 N0yNcd5y4 and that
macroscopic quantum tunneling can be a dominant decay mechanism of the condensate forN0 very
close toNc. [S0031-9007(98)05384-8]
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An explosively increasing amount of research is bein
carried out on the phenomenon of Bose-Einstein conde
sation (BEC) in gases of87Rb [1], 7Li [2], and 23Na [3]
atoms. Unlike the other two species, a uniform syste
of 7Li atoms is usually believed not to form a stable BE
state [4] because thes-wave scattering lengtha is negative
and the attractive interaction between the atoms causes
condensate to collapse upon itself. When atoms are s
tially confined, however, they acquire zero-point energi
which, under certain conditions, counterbalance the attr
tive interaction, thereby allowing a metastable condens
to form.

As the number of condensate bosons increases, the
tractive interaction becomes strong and the energy b
rier that prevents the condensate from collapsing becom
accordingly low. Given a confining potential which de
termines the zero-point energies, there exists a criti
numberNc of condensate bosons at which the energy ba
rier vanishes. When the number of condensate bosonsN0
is slightly belowNc, the energy barrier will be so low that
the condensate might undergo macroscopic quantum t
neling (MQT) to a dense state. Kaganet al. [5] estimated
the overlap integral between the metastable condens
and the dense state to be proportional to exps2 3

2 N0 ln l0

Lp d,
wherel0 is the amplitude of zero-point oscillations of the
trap, andLp , 3jajN0. Shuryak [6] estimated the MQT
rate to be proportional to expf20.57sNc 2 N0dg. Stoof [7]
wrote down a WKB formula for the MQT rate but did no
explicitly evaluate it near the critical point.

In this Letter we use a variational method and the i
stanton technique to show that the tunneling exponent v
ishes faster than found in Refs. [5,6], namely, ass1 2

N0yNcd5y4, asN0 approachesNc. By comparing the MQT
rate with other possible decay mechanisms, we argue t
MQT can be a dominant decay mechanism of the conde
sate near the critical point at zero temperature, contra
to the conclusions of Refs. [5,6]. Since the formulas w
obtain contain no fitting parameters, they can be used
stringent tests of the existence of BEC.
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At sufficiently low temperatures, a condensate of weak
interacting bosons is described by a single wave funct
Csrd, and the interaction between them is described
the s-wave scattering lengtha. The wave function is
determined so as to minimize the Gross-Pitaevskii ene
functional [8]

EfCg ­
Z

dr Cpsrd

3

"
2

h̄2=2

2m
1 V srd 1

2p h̄2a
m

jCsrdj2
#

Csrd ,

(1)

wherem is the atomic mass,V srd is a confining potential,
and 2p h̄2ajCsrdj2ym is the local mean-field interaction
energy per particle. The wave functionC is normalized so
that

R
jCj2 dr is equal to the number of condensate boso

N0. We assume an axially symmetric confining potentia
V srd ­ msv2

'x2 1 v
2
'y2 1 v

2
kz2dy2, wherev' andvk

are, respectively, the frequency of the radial confinin
potential and that of the axial one.

To evaluateEfCg, we assume a Gaussian trial wav
function [9]

Csrd ­

s
N0

p3y2d2
'dk

exp

√
2

x2 1 y2

2d2
'

2
z2

2d2
k

!
, (2)

whered' anddk are variational parameters. Substitutin
Eq. (2) into Eq. (1), we obtain

fsr', rkd ;
4E

N0h̄sv2
'vkd1y3

­ 2l21y3sr2
' 1 r22

' d 1 l2y3sr2
k 1 r22

k d
2 gr22

' r21
k , (3)

where r' ; d'

p
mv'yh̄ ; d'yd'0 and rk ;

dk

p
mvkyh̄ ; dkydk0 are the radial and axial widths o

the condensate normalized by their noninteracting valu
© 1998 The American Physical Society
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l ; vkyv' is the asymmetry parameter of the confinin
potential, and

g ;
4N0p

2p

jaj

sd2
'0dk0d1y3

(4)

is the dimensionless strength of interaction.
For a metastable condensate to exist, the functi

fsr', rkd must have a local minimum which is determine
from conditions

≠f
≠r'

­ 0 ! rk ­
l1y3g

2s1 2 r4
'd

, (5)

≠f
≠rk

­ 0 ! r2
' ­

grk

2l2y3s1 2 r4
k d

. (6)

The metastability of the condensate is determined fro
the curvatures offsr', rkd which are calculated to be

≠2f

≠r2
'

­ 16l21y3 . 0,
≠2f

≠r2
k

­ 2l2y3s3 1 r24
k d . 0 ,

(7)

≠2f
≠r'≠rk

­ 22gr22
k

"
2l2y3s1 2 r4

k d
grk

#3y2

# 0 . (8)

The condition for a metastable condensate to exist is t
the curvature offsr', rkd at the local minimum is positive
in all directions, that is,

≠2f

≠r2
'

≠2f

≠r2
k

2

√
≠2f

≠r'≠rk

!2

. 0 . (9)

It is clear from Eqs. (7) and (8) that the condition (9) i
always satisfied at the limit of weak interactiong ! 0,
but that it is violated at the limit of strong interaction
g ! `. In between there must be a critical value ofg

such that the left-hand side of (9) is zero. It is given by

gc ­
l5y3s1 2 r4

k d3

r3
k s1 1 3r4

k d
. (10)

For g . gc the local minimum becomes a saddle poin
and the condensate becomes unstable, collapsing int
dense state. Substituting Eq. (10) into Eq. (6) gives

r'c ­
l1y2s1 2 r4

kcdq
2r2

kcs1 1 3r4
kcd

, (11)

where rkc denotes the value ofrk at the critical point.
Substituting Eqs. (10) and (11) into Eq. (5) gives

l2 ­
4r4

kcs1 1 3r4
kcd2

s1 2 r4
kcd3s3 1 5r4

kcd
. (12)

We may use Eq. (12) to simplify Eq. (10) somewhat,

gc ­
4rkcs1 1 3r4

kcd
l1y3s3 1 5r4

kcd
. (13)

For a given asymmetry parameterl ; vkyv', a real
positive root of Eq. (12) givesrkc. Substituting this into
Eqs. (11) and (13) givesr'c andgc, respectively.
g
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m

hat
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For an isotropic case (l ­ 1), we obtainr'c ­ rkc ­
521y4 . 0.669 and gc . 1.07 in agreement with the
results of Refs. [7,10]. Taking experimental data fro
the second reference in [2], wherea ­ 214.5 Å, d'0 .
3.08 mm, and l . 0.867, we obtain from Eq. (4) that
Nc . 1460. This is 17% greater than the more precis
value of 1250 which is obtained by numerically solvin
the nonlinear Schrödinger equation [11]. In evaluatin
the MQT rate, we will use the latter value for the critica
number of condensate bosons.

Figure 1 showsr'c, rkc, and gc as a function of the
asymmetry parameterl. We see that the maximum value
of gc can be attained for the case of an isotropic potent
[12]. Also plotted is the ratiod'cydkc of the width of the
condensate along the radial direction to that along the ax
one. We note that the ratio remains relatively constant
l , 1, but it grows rapidly forl . 1. In what follows we
will focus on the case of an isotropic confining potentia
and drop the subscripts' andk. The functionf can then
be written asfsrd ­ 3r22 1 3r2 2 gr23.

Collective excitation of the condensate.—The conden-
sate undergoes density oscillations around the local mi
mum. Associated with this collective motion is a kineti
energyT which we may write as

T ­ 3zN0m Ùd2 ­ 3zN0md2
0 Ùr2 ­ 3

z N0h̄
v

Ùr2, (14)

wherez is a constant to be determined below.
The dynamics of the collective excitation is determine

by the kinetic-energy term (14) and the quadratic pa
of the potential energy which is obtained by expandin

FIG. 1. Critical values of the normalized radiir'c ;
d'cyd'0, rkc ; dkcydk0, and the dimensionless strength o
interaction gc as a function of the asymmetry paramete
l ; vkyv', whered'0 ; sh̄ymv'd1y2 anddk0 ; sh̄ymvkd1y2.
Also plotted is the ratiod'cydkc of the width of the condensate
along the radial direction to that along the axial one. Note th
r'c, rkc, andgc refer to the left scale, whiled'cydkc refers to
the right one.
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fsrd 2 fsrmind in powers ofr 2 rmin,

N0h̄v

4
f 00srmind

2
sr 2 rmind2, (15)

where rmin is determined fromf 0srmind ­ 0. For g

slightly below gc, rmin is close torc ­ 521y4; that is,
rmin ­ rc 1 dr, wheredr is given to leading order in
gc 2 g by

dr .
r

1y2
c

2
sgc 2 gd1y2. (16)

From Eqs. (3) and (16),f 00srmin
' d is calculated to be

f 00srmin
' d . 120

dr
r'c

. (17)

From Eqs. (14)–(17) we obtain the frequencyvc of the
collective mode near the critical point as

vc

v
­

s
5
z

dr
rc

. (18)

The constantz can be determined by a variationa
method. According to Ref. [13], an upper bound of th
frequency of a collective mode is given byv

upper
c ­p

m3ym1yh̄, wherem1 ­ k0j fffF, fH, Fgggg j0ly2 and m3 ­
k0j ffF, Hg, fffH, fH, Fggggg j0ly2 are the energy-weighted
moment and the cubic-energy-weighted moment of th
dynamic structure factor, withF being an excitation
operator. For the monopole mode the excitation opera
is given by F ­

Pi­N0
i­1 sx2

i 1 y2
i 1 z2

i d. Applying this
formula to our Hamiltonian which is given in the squar
brackets of Eq. (1), we obtain Eq. (18) withz ­ 1y4 and
vc replaced byv

upper
c . Stringari [14] has pointed out

that for the case of repulsive interaction this method giv
results in excellent agreement with numerically obtaine
exact frequencies. We expect that the same is true for
case of attractive interaction and identifyv

upper
c with vc.

Substituting Eq. (16) into Eq. (18) and using Eq. (4), w
obtain

vc

v
­ 1601y4

√
1 2

N0

Nc

!1y4

. (19)

We thus find that as the number of condensate bosonsN0

approaches its critical valueNc, the collective frequency
vc vanishes as the one-fourth power of1 2 N0yNc.

Rate of macroscopic quantum tunneling.—At suffi-
ciently low temperature, the thermally activated decay
the condensate over the barrier is negligible, and we can
pect MQT to provide a dominant decay mechanism. Wh
the barrier is low enough for MQT to occur but still so high
that the instanton approximation is valid, the MQT rateG is
given byG ­ Ae2SBy h̄, whereSB is the bounce exponent,
that is, the value of the imaginary-time actionS evaluated
along the bounce trajectoryrBstd. Using Eq. (14) with
1578
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z ­ 1y4 we obtain

S
h̄

­
N0

4

Z
dt f3Ùr2 1 fsrd 2 fsrmindg , (20)

where the imaginary time has been rescaled asvt ! t.
The bounce trajectoryrBstd is the one that makesS
extremal. FromdSydrB ­ 0, we obtain an equation of
motion for the bounce trajectory which can be integrat
to give sÙrBd2 ­

1
3 f fsrBd 2 fsrmindg. Near the critical

point, it is sufficient to expand the right-hand side of th
equation in powers ofrB 2 rmin and keep terms up to the
third power,

fsrBd 2 fsrmind

.
f 00srmind

2

"
srB 2 rmind2 1

srB 2 rmind3

rmin 2 rL

#
,

(21)

where rL is the left turning point offsrd such that
fsrLd ­ fsrmind. The bounce trajectory is then ob
tained as

rBstd ­ rmin 2
rmin 2 rL

cosh2f
p

f 00srmindy24 tg
. (22)

Substituting Eqs. (21) and (22) into Eq. (20), we obtain

SB

h̄
­

2
15

N0

q
6f 00srmind srmin 2 rLd2. (23)

Since rmin 2 rL ­ 3f 00srmindyf 000srmind, we find from
Eq. (17) andf 000srmind . 120yrc that rmin 2 rL ­ 3dr.
Hence

rmin 2 rL .
3
2

q
rcsgc 2 gd . (24)

Substituting Eqs. (17) and (24) into Eq. (23), we obtain

SB

h̄
. 4.58N0

√
1 2

N0

Nc

!5y4

. (25)

Thus if the condensate is formed and its decay is govern
by MQT, the bounce exponent should be proportional
the five-fourths power of1 2 N0yNc.

For a quadratic-plus-cubic potential, the prefactorA
is given by A ­ vcs15SBy2p h̄d1y2 [15]. Substituting
Eqs. (19) and (25) into this, we obtain

A
v

. 11.8N
1y2
0

√
1 2

N0

Nc

!7y8

. (26)

Thus asN0 approachesNc, the prefactor vanishes as th
seven-eighths power of1 2 N0yNc. The crucial observa-
tion here is that the decrease in the prefactor asN0 ! Nc
is outweighed by the much faster increase in the exp
nential factor. Because of this rapid growth in the MQ
rate, MQT can be a dominant decay mechanism of the c
densate near the critical point for experiments by the R
group [2] as we now show.
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Taking the experimental data of the second paper
Ref. [2], we havev ­ svxvyvzd1y3 . 908.4ys, vc .
3231s1 2 N0yNcd1y4, SByh̄ . 4.58N0s1 2 N0yNcd5y4,
and A . 10 720N

1y2
0 s1 2 N0yNcd7y8 with Nc ­ 1250.

For 1 2 N0yNc ­ 1022, we obtainvc . 1022ys, A .
6707ys,SByh̄ . 17.9, andG . 1.12 3 1024ys. For this
N0 MQT is negligible, but ifN0 is a little bit closer toNc,
e.g., for1 2 N0yNc ­ 5 3 1023, we obtainvc . 859ys,
A . 3666ys, SByh̄ . 7.58, and G ­ 1.88ys, and the
MQT rate is therefore significant.

It has sometimes been argued that the decay rate
the condensate due to MQT is much slower than th
due to two-body dipolar and three-body collisions, and
therefore unlikely [16]. The above numerical evaluation
however, shows that near the critical point the MQT ra
is at least comparable to the decay rate due to tho
inelastic collisions evaluated in Refs. [17,18] because ne
the critical point the MQT rate grows at an enormous ra
as numerically illustrated above. Kaganet al. pointed out
yet another interesting decay mechanism due to excha
interaction [5]. This mechanism becomes important whe
the mean-field interaction energy per particle is larg
than the single-particle energy-level spacing. For th
experiments of Ref. [2], these energies are estimated to
1 and 7 nK, respectively, so the condensate is not likely
decay via this mechanism.

In conclusion, we have used a variational method a
the instanton technique to find analytically the frequenc
of the collective mode and the MQT rate of a Bos
condensate with attractive interaction near the critic
point of collapse. The maximum number of condensa
bosons is found to be attained for the case of isotrop
confining potential. By comparing MQT with other deca
mechanisms, we have argued that MQT can be a domin
decay mechanism of the condensate forN0 very close to
Nc. The obtained formulas contain no fitting paramete
and can therefore be used as rather stringent tests for
existence of BEC. The fact that we have demonstrated
tunneling of the condensate to indefinitely low energy t
occur does not necessarily imply that the physical syste
actually collapses, because we have not taken into acco
any effect of higher-order interactions.
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