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Macroscopic Quantum Tunneling of a Bose-Einstein Condensate with Attractive Interaction
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A Bose-Einstein condensate with attractive interaction can be metastable if it is spatially confined and
if the number of condensate bosaNg is below a certain critical valu&/’.. By applying a variational
method and the instanton technique to the Gross-Pitaevskii energy functional, we find analytically
the frequency of the collective excitation and the rate of macroscopic quantum tunneling. We show
that near the critical point the tunneling exponent vanishes according te No/N.)*’* and that
macroscopic quantum tunneling can be a dominant decay mechanism of the condensatevdoy
close toN.. [S0031-9007(98)05384-8]

PACS numbers: 03.75.Fi, 05.30.Jp, 32.80.Pj, 73.40.Gk

An explosively increasing amount of research is being At sufficiently low temperatures, a condensate of weakly
carried out on the phenomenon of Bose-Einstein conderinteracting bosons is described by a single wave function
sation (BEC) in gases 6fRb [1], 7Li [2], and Z*Na [3]  W(r), and the interaction between them is described by
atoms. Unlike the other two species, a uniform systenthe s-wave scattering lengtlh. The wave function is
of "Li atoms is usually believed not to form a stable BEC determined so as to minimize the Gross-Pitaevskii energy
state [4] because thewave scattering length is negative  functional [8]
and the attractive interaction between the atoms causes the
condensate to collapse upon itself. When atoms are spg[y :[ dr U*(r)
tially confined, however, they acquire zero-point energies

which, under certain conditions, counterbalance the attrac- h2v2 2w hla

S . ) 2

tive interaction, thereby allowing a metastable condensate X | = + V() + - W ()" |W(r),

to form. (1)
As the number of condensate bosons increases, the at-

tractive interaction becomes strong and the energy baiyheresm is the atomic masg/(r) is a confining potential,
rier that prevents the condensate from collapsing becomegg 27 h2a|W(r)|2/m is the local mean-field interaction
acco_rdlngly low. legn a confllnlng potentla}l which (_i?- energy per particle. The wave functidhis normalized so
termines the zero-point energies, there exists a crltlcqhatf|q,|2 dr is equal to the number of condensate bosons
numberN. of condensate bosons at which the energy bary;; ‘\We assume an axially symmetric confining potential:
rier vanishes. When the number of condensate boAgns V(r) = m(wzlxz + wiyz T wﬁzz)/Z, wherew , andw|

is slightly belowN,, the energy barrier will be so low that 4re  respectively, the frequency of the radial confining
the condensate might undergo macroscopic quantum tUBotential and that of the axial one.

neling (MQT) to a dense state. Kagahal.[5] estimated 1o evaluateE[W], we assume a Gaussian trial wave
the overlap integral between the metastable condensaignction [9]

and the dense state to be proportional to(ex%Wo In £—°)

wherel, is the amplitude of zero-point oscillations of the No X2 4 32 72

trap, andL* ~ 3|a|N,. Shuryak [6] estimated the MQT ~ V(r) = g AT o2 T o2 ) 2)
rate to be proportional to ekp 0.57(N. — No)]. Stoof[7] e + I

wrote down a WKB formula for the MQT rate but did not

explicitly evaluate it near the critical point.
In this Letter we use a variational method and the in-

whered, andd) are variational parameters. Substituting
Eqg. (2) into Eqg. (1), we obtain

stanton technique to show that the tunneling exponent van- AE

ishes faster than found in Refs. [5,6], namely, (ds— flro,m) = Nofi(w2 onl/3

No/N.)’/*, asN, approache#/.. By comparing the MQT ofilwlop)

rate with other possible decay mechanisms, we argue that = 20730 + D)+ ARG+ D)
MQT can be a dominant decay mechanism of the conden- — yrIZr”*l, (3)

sate near the critical point at zero temperature, contrary

to the conclusions of Refs. [5,6]. Since the formulas wewhere r, =d, \Jmw,/h=d,/d,y, and r =
obtain contain no fitting parameters, they can be used a#\/mo| /i = d;/d)o are the radial and axial widths of
stringent tests of the existence of BEC. the condensate normalized by their noninteracting values;
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A = o)/, is the asymmetry parameter of the confining

potential, and
_ 4N() |a|
’y =
V27 (dodyo)'/3

is the dimensionless strength of interaction.

(4)

For an isotropic caser(= 1), we obtainr,. = r|c =
571/4 = 0.669 and y. = 1.07 in agreement with the
results of Refs. [7,10]. Taking experimental data from
the second reference in [2], whewe= —14.5 A, d o =
3.08 um, and A = 0.867, we obtain from Eq. (4) that
N. = 1460. This is 17% greater than the more precise

For a metastable condensate to exist, the functioajue of 1250 which is obtained by numerically solving

f(ry,ry) must have a local minimum which is determined
from conditions

A gy = M )
ar 2(1 — ri) ’

af 2 Y
Lot — 20 6
or| bR = o) ©

the nonlinear Schrodinger equation [11]. In evaluating
the MQT rate, we will use the latter value for the critical
number of condensate bosons.

Figure 1 shows,, r|c, and y. as a function of the
asymmetry parameter. We see that the maximum value
of y. can be attained for the case of an isotropic potential
[12]. Also plotted is the ratia/, . /dj. of the width of the

The metastability of the condensate is determined frongondensate along the radial direction to that along the axial

the curvatures of (r, , rj)) which are calculated to be

92 92 _
IL a0, L _anhi 4ty >0,
2 2 [l
af’l af’”
Vs (7)
e L2230 -y
f = —2yr|| 2 M =0. (8)
ar or| 024l

one. We note that the ratio remains relatively constant for
A < 1, but it grows rapidly forA > 1. In what follows we
will focus on the case of an isotropic confining potential,
and drop the subscripts and||. The functionf can then
be written asf(r) = 3r72 + 3r2 — yr 3.

Collective excitation of the condensateThe conden-
sate undergoes density oscillations around the local mini-
mum. Associated with this collective motion is a kinetic

The condition for a metastable condensate to exist is thaénergyT which we may write as

the curvature of (r, ) at the local minimum is positive
in all directions, that is,
2
(;72) =0

Pf3f
ari arﬁ

It is clear from Egs. (7) and (8) that the condition (9) is

always satisfied at the limit of weak interactign— 0,

but that it is violated at the limit of strong interaction

In between there must be a critical value yof

such that the left-hand side of (9) is zero. Itis given by

. MR = rp)?
¢ rﬁ(l + 3rﬁ) .

_Pf
ar 1 dr||

(9)

Yy — oo,

(10)

For y > y. the local minimum becomes a saddle point
and the condensate becomes unstable, collapsing into
dense state. Substituting Eq. (10) into Eq. (6) gives

A2 = )

rLC = —7
V27 (1 + 3r)

where r|. denotes the value ofj at the critical point.
Substituting Egs. (10) and (11) into Eq. (5) gives
2

4rj.(1 + 3rj.)?
(1 = rf 3@+ 5rj)
We may use Eq. (12) to simplify Eq. (10) somewhat,
_ el + 3r)
MBG +5r0)

For a given asymmetry parametar= o) /w , a real
positive root of Eq. (12) gives).. Substituting this into
Egs. (11) and (13) gives, . andy., respectively.

(11)

(12)

Ye (13)

T = 3{Nomd*> = 3{Nomd3#* = (14)

3 ENolt
w
where/ is a constant to be determined below.
The dynamics of the collective excitation is determined
by the kinetic-energy term (14) and the quadratic part
of the potential energy which is obtained by expanding
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FIG. 1. Critical values of the normalized radii,. =

dic/dio, rjc = dj./dyp, and the dimensionless strength of
interaction y. as a function of the asymmetry parameter
A=w|/w,, whered, = (h/mw )'/? andd, = (ﬁ/ma)”)l/z.
Also plotted is the ratial, . /d|. of the width of the condensate
along the radial direction to that along the axial one. Note that
rie, e, andy. refer to the left scale, whil@,./d|. refers to
the right one.
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f(r) — f(r™n) in powers ofr — rmin, ¢ = 1/4 we obtain
Nohiw f"(r™") S

4 2 h
where r™in is determined fromf/(rmin) = 0. For y  Where the imaginary time has been rescalewas— 7.

slightly below y., r™" is close tor. = 5~'/*: that is, ~The bounce trajectory®(r) is the one that makes

(r = rminy, (15) %3[dﬂ%ﬂ+f0)—fvmﬂ, (20)

ye — v by motion for the bounce trajectory which can be integrated
12 to give (+B)? = %[f(rB) — f(r™™)]. Near the critical
PO (ye — )2 (16) point, it is sufficient to expand the right-hand side of this
2 e TV equation in powers of® — ™" and keep terms up to the
From Egs. (3) and (16)"(+™™) is calculated to b third power,
rom Egs. an 1(rT™) is calculated to be _
S FOP) = £
7 ,miny r f/l(rmin) i (},B _ rmin)B
™) 120nc. 17) :T[(r]g_r )2+m ’
From Egs. (14)—(17) we obtain the frequeney of the (21)
collective mode near the critical point as where rL is the left turning point off(r) such that
f(r¥) = f(r™n). The bounce trajectory is then ob-
we _ |5 or tained as
. (18)
e g Fe min L
r - r

I‘B(T) — rmin

- . . 22
The constant{ can be determined by a variational cosH[y/f"(rmin) /24 7] (22)

method. According to Ref. [13], an upper bound of the - . .
frequency of a collective mode is given by'™™ — Substituting Egs. (21) and (22) into Eq. (20), we obtain

Jm3/my/h, wherem, = (O|[F,[H, F]]10)/2 and m; = sB 2 T min
(0| [}F,%],[H,[H,F]i]lO}/z are the energy-wefghted o ENO 6" (rmim) (r™® = rh)2. (23)

moment and the cubic-energy-weighted moment of the in . e i ) e min ]

dynamic structure factor, withF being an excitation Since r™" — r jin3f (rmm)/f7(r Ir)lin we End from
operator. For the monopole mode the excitation operatdfd- (17) andf (r™t) = 120/r thatr™" — r- = 357,
is given by F = S_\°(x? + y? + z2). Applying this Hence

formula to our Hamiltonian which is given in the square . 3

brackets of Eq. (1), we obtain Eq. (18) with=1/4 and rmt — b= S Vrelve = 7). (24)
w. replaced bywe ™. Stringari [14] has pointed out o . .
that for the case of repulsive interaction this method givesubstituting Egs. (17) and (24) into Eq. (23), we obtain

results in excellent agreement with numerically obtained §B ) 5/4
exact frequencies. We expect that the same is true for the T 4.58N0<1 - —) (25)
case of attractive interaction and identify™™"" with w. ¢

Substituting Eq. (16) into Eq. (18) and using Eq. (4), WeThys if the condensate is formed and its decay is governed

obtain by MQT, the bounce exponent should be proportional to
© N, 1/4 the five-fourths power of — Ny/N..
— = 1601/4(1 — —0) (19) For a quadratic-plus-cubic potential, the prefactor
@ c is given by A = w (1588 /27 1)'/? [15]. Substituting

We thus find that as the number of condensate boafgns Egs. (19) and (25) into this, we obta|n7/8
approaches its critical valu¥., the collective frequency A 1/2<1 No)

w. vanishes as the one-fourth powerlof- Ny/N.. w = 11.8Ny N,

(26)

Rate of macroscopic quantum tunnelirgAt suffi-
ciently low temperature, the thermally activated decay ofThus asN, approachesv., the prefactor vanishes as the
the condensate over the barrier is negligible, and we can eseven-eighths power af — Ny/N.. The crucial observa-
pect MQT to provide a dominant decay mechanism. Whettion here is that the decrease in the prefactoNgs— N,
the barrier is low enough for MQT to occur but still so high is outweighed by the much faster increase in the expo-
that the instanton alpproximation isvalid, the MQT rBtis  nential factor. Because of this rapid growth in the MQT
given byl' = Ae~5"/" 'whereS® is the bounce exponent, rate, MQT can be a dominant decay mechanism of the con-
that is, the value of the imaginary-time actiSrevaluated densate near the critical point for experiments by the Rice
along the bounce trajectom? (7). Using Eq. (14) with  group [2] as we now show.
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A = 3666/s, SB/h =17.58, and I = 1.88/s, and the
MQT rate is therefore significant.
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