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Elasticity Model of a Supercoiled DNA Molecule

C. Bouchiat and M. Mézard
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(Received 5 June 1997)

Within a simple elastic theory, we study the elongation versus force characteristics of a supercoiled
DNA molecule at thermal equilibrium in the regime of small supercoiling. The partition function is
mapped to the path integral representation for a quantum charged particle in the field of a magnetic
monopole with unquantized charge. We show that the theory is singular in the continuum limit and
must be regularized at an intermediate length scale. We find good agreement with existing experimental
data, and point out how to measure the twist rigidity accurately. [S0031-9007(98)05334-4]
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The measurements on single DNA molecules, besi
their possible biological interest, provide a wonderfu
laboratory for the physical studies of a single polyme
chain. For instance, recent experiments have shown t
the elongation versus force characteristics of a sing
DNA molecule [1] is very well fitted [2] by the well
known wormlike chain (WLC) [3] which describes a chain
by an elastic continuous curve at thermal equilibrium
with a single elastic constant, the persistence lengthA
characterizing the bending energy. The WLC can b
solved analytically by mapping it to a quantum mechanic
problem. Its partition function is nothing but a Euclidea
path integral for a quantum dumbbell, which can b
computed, in the relevant limit of long chains, by finding
the ground state of the corresponding Hamiltonian.

Our work is motivated by the more recent experimen
which have measured the elongation versus force char
teristics of a supercoiled DNA molecule [4]. We use th
simplest generalization of the WLC with twist rigidity,
which is supposed to work at small supercoiling angle
The DNA molecule is described by a thin elastic rod in
volving a new elastic constant, the twist rigidityC. The
stress imposed by twisting the end point of an open ro
can be absorbed both in some twist (if the axis of th
rod is a straight line), and in some deformation of th
rod’s axis. This decomposition is well known in the cas
of closed rods, for which the experimental constraint is
topological invariant [5]. It results in a subtle competition
involving the creation of plectonemes which has receive
quite a lot of attention, both for the study of the groun
state, and also taking care phenomenologically of therm
fluctuations around some low energy configurations [6
8]. In contrast, we keep here to the simplest regime
small supercoiling and we neglect self-avoidance, but w
provide a full analytic and numerical study of the twiste
open rod at thermal equilibrium at a finite temperatur
extending thus the standard WLC analysis to this cas
While it has been known for some time that the elast
thin rod model agrees qualitatively with experimental re
sults on DNA, this knowledge was based only on som
Monte Carlo simulations [12,13]. Our analytic study o
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this wormlike rod chain (WLRC) shows very good quan
titative agreement with the experimental data at small s
percoiling and allows for a precise determination of th
ratio CyA, which was poorly known so far.

We shall show that beside the two elastic constan
describing the bending and twisting rigidity, one need
to introduce an intermediate length scaleb between the
microscopic interbasepair distance and the persisten
length, which plays the role of a short distance cutof
Obviously, the rod description cannot hold below a cuto
length scaleb which is at least of the order of the double
helix pitch p . 3.4 nm, since our description averages
over these periodic oscillations. In our formulation, whic
deals with an open, elongated chain and neglects se
avoidance, the WLRC continuous limit is singular an
shows properties qualitatively very different from any
discretized version of the chain. So the existence of
cutoff, which is expected on physical ground, is crucia
but the final results turn out to be fairly independen
of its precise value, within a reasonable range aroun
0.5 nm. Similar singularities of the continuous limit are
well known in the winding properties of pure random
walks [9]. Their appearance here is not fortuitous sinc
the WLRC is related to random walks in rotation spac
[10]. Another approach, developed very recently [17], i
to keep to a perturbative study of the limit of large forces
in which case the singularity, though present, is never se
to any finite order in the perturbative series.

The WLRC, already studied in [7,8,12,13], is describe
in the continuous limit by the orthonormal triedron
htssd, ussd, nssdj where s is the arc length along the
molecule,t is the unit vector tangent to the chain, and
n describes the orientation of the rod. For describin
DNA, this triedron is obtained by applying a rotation
Rssd to a reference triedron which characterizes th
natural helical structure of the molecule. The rotatio
Rssd is parametrized by the usual three Euler angle
ussd, fssd, cssd, and the reference triedron is such tha
ussd ­ 0, fssd 1 cssd ­ v0s, wherev0 is the rotation
per unit length of the base axis in a relaxed rectilinea
DNA molecule. With the above definition, the set o
© 1998 The American Physical Society
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s dependent Euler anglesussd, fssd, cssd describes the
general deformations of the DNA molecule with respe
to the relaxed rectilinear configuration. The energy of
chain of lengthL is purely elastic: Eel ­

RL
0 dsseb 1

etd, with the bend and twist energy densities given by

eb ­
A
2

Ç
dtssd

ds

Ç2
­

A
2

s Ùf2 sin2 u 1 Ùu2d ,

et ­
C
2

Ç
tssd 3 nssd ?

dnssd
ds

2 v0

Ç2
(1)

­
C
2

s Ùc 1 Ùf cosud2,

where the dot stands for thes derivative. We work in
units where the temperaturekBT ­ 1, so thatA and C
have dimension of a length. The discretized version
defined by quantifyings as an integer multiple of an
elementary length scaleb, and approximating integrals
and derivatives by sums and differences, while keepi
the periodicity. We study the equilibrium properties o
such a rod pulled by a forceF ­ Fz. The total energy is
thusE ­ Eel 2 F

RL
0 ds cosussd.

The partition function of the elastic chain describe
by Eq. (1) is nothing but the Euclidean path integral fo
a quantum symmetric top, with the important differenc
that the eigenfunctions are not periodic in the angle
c and f. Therefore the momenta conjugate to thes
angles will not be quantized. In our analytical work, w
suppose for simplicity that the boundary values of th
Euler angles areus0d ­ usLd ­ 0, and we definefs0d ­
cs0d ­ 0. Then the experimentally imposed supercoilin
angle x amounts to fixing:csLd 1 fsLd ­ x. In the
open DNA chain the continuous anglex replaces the
topological linking numberLk. We shall limit ourselves
to configurations where the Euler angles are regul
enough, such thatx can be written as the integralRL

0 dss Ùc 1 Ùfd. It is convenient to introduce the rod twist
Tw ­

RL
0 dss Ùc 1 Ùf cosud, which appears as a Gaussia

variable in the partition function. We nowdefine a
“local writhe” contribution to the supercoiling angle
xW asxW ­ x 2 Tw ­

RL
0 ds Ùfs1 2 cosud. The above

decomposition, which is a trivial notation, is reminiscen
[7] of the decomposition of the linking number into twis
and writhe for closed chains [11].

The partition function for a fixed value ofx is given by
the path integral in the space of Euler angles:

Z ­
Z

dfcosu, f, cgd

"
x 2

Z L

0
dss Ùf 1 Ùcd

#
e2E .

(2)
After introducing an integral representation of thed

function which fixesx, one can perform the Gaussian
path integral on the anglec . Z is then expressed as a path
integral on the two angles cosu andf, with an effective
energy:

E ­
Z L

0
dsseb 2 F cosud 1

C
2L

sx 2 xW d2. (3)
ct
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This form (3) is useful for numerical simulations [12
after a proper discretization, but not for analytic comput
tion, due to its nonlocal character. Alternatively, we ca
compute thex Fourier transform̃Z ­

R
dxZ exps2ikxd,

which is again given by a path integral on the two angl
cosu andf, with the effective energy

Ẽ skd ­
k2L
2C

1
Z L

0
dsfeb 2 F cosu 1 ik Ùfs1 2 cosudg .

(4)

This last form has an appealing quantum mechanical
terpretation: If one analytically continues thes integral
towards the imaginary axis, one recognizes the acti
integral of a particle with unit charge moving on th
unit sphere under the joint action of the electric fieldF
and the magnetic fieldAf ­ k s1 2 cosud of a magnetic
monopole of chargek. One easily deduces the corre
sponding HamiltonianH, by substitutingpf ­ 2i

≠

≠ f by
pf 2 Af in the WLC Hamiltonian (which corresponds
to Af ­ 0). Because of the averaging over the fina
f ­ fsLd, only the eigenvaluem ­ 0 of pf contributes
and we can setpf ­ 0 in H. We work with the dimen-
sionless quantitieŝH ­ MyA and a ; AF, in terms of
which we get

Ĥ ­ 2
1

2 sinu

≠

≠ u
sinu

≠

≠u
2 a cosu

1
k2

2
1 2 cosu

1 1 cosu
. (5)

Let us stress that the form of this Hamiltonian is
straightforward consequence of the expression for t
elastic energy (1) and our expression forx in terms of
the Euler angles, assumed to be continuous functions
s. Introducing the eigenstates and the eigenvalues ofĤ,
ĤCnsk, ud ­ ensk2, adCnsk, ud, the Fourier transformed
partition functionZ̃ can be written as the sum

Z̃ ­
X
n

jCnsk, 0dj2 exp

∑
2

L
A

µ
ensk2, ad 1

k2A
2C

∂∏
.

(6)

In the large L limit, the sum over the eigenstates i
dominated by the one with lowest energye0sa, k2d, if
LyA ¿ De where De is the energy gap between the
ground state and the nearest excited state ofĤ. This gives
the approximate expression for the partition functionZ:

Z .
Z

dk exp

∑
2

L
A

µ
e0sk2, ad 1

k2A
2C

∂
1 ikx

∏
. (7)

Therefore one can deduce, from the ground state ene
e0sa, k2d of the HamiltonianĤ, the observable properties
of a long WLRC, of which we now discuss two importan
ones. The relative extension of the chain in the directi
of the force is given bykzlyL ­ sAyLd ≠ ln Z

≠a . If instead of
1557
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constrainingx one measures its thermal fluctuations, the
probability distribution is justPsxd ~ Z. For instance,
the second moment is given by

k x2 l ­
L
C

1
2 L
A

lim
k2°!0

≠e0sk2, ad
≠ k2

. (8)

This expression shows that the WLRC is pathologic
because of “giant” fluctuations ofxW . The contribution
to kx2l from the twist fluctuations,LC , scales linearly in
L, as one expects in a one dimension statistical mech
ics system with a finite correlation length. In contras
the second piece of (8) giving the contribution fromkx2

W l
is divergent: evaluatinge0sk2, ad at smallk2 from stan-
dard perturbation theory, we findkx2

W l ­ sLyAd k s1 2

cosudys1 1 cosud l0, wherek l0 is the quantum average
taken on the ground stateF0sud of the WLC Hamilton-
ian (which isĤ at k ­ 0). As F0spd fi 0 (for any finite
force), we get a logarithmically divergent result. One ca
show thatesa, k2d , esa, 0d 1 jkjF0spd2. HencePsxd
has a Cauchy tail, and thus a diverging second mome
The Cauchy distribution has been verified in the limit o
a vanishing forcea ­ 0, where the eigenfunctions can
be found exactly in terms of Jacobi polynomials. A re
lated consequence is that the extensive part of the av
age extension is unchanged by the supercoiling anglex at
small forces:kzlyL . 2ay3 independently ofF, in strik-
ing contradiction to experiment.

In contrast to the WLC, the continuous limit of the
WLRC is singular. This singular behavior could have be
anticipated sincêH describes the motion of a charged pa
ticle in a magnetic monopole with anunquantizedmag-
netic charge, a notoriously ill defined problem if no cuto
is provided nearu ­ p . As we have argued previously
the WLRC model is not expected to give a good descr
tion of supercoiled DNA unless one introduces the cuto
length scaleb. The nontrivial fact is that this existence o
a cutoff affects the “macroscopic” properties taking pla
on the length scale of the whole molecule.

In order to validate the discretized WLRC, we hav
performed a Monte Carlo simulation, mostly using th
discretized version of (3). Such simulations are know
to account well for the observed behavior of circula
DNA [12], and have been used recently for the stud
of chains elongated with large supercoiling angles [13
With respect to these works, we have discarded the s
avoidance, since our aim is to test the discretized WLR
without self-avoidance. We have discretized the cha
with elementary rods of lengthb ­ Ay10, and simulated
mostly chains of lengthL ­ 30A. In order to facilitate
the thermalization, we have relaxed in the simulatio
the constraintusLd ­ 0, which should not affect the
extensive quantities. The elementary moves which
used was to scan sequentially each pointi ­ 1, . . . , N ­
Lyb in the chain, and propose a global rotation of th
tangent vectorstj , j ­ i, . . . , N around a random axis
with an angleg taken with a flat distribution inf2g0, g0g,
1558
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whereg0 is chosen such that the acceptance rate of t
moves is of order0.5. These rotations of a fraction of
the chain were the best we found for insuring a relative
fast thermalization [14]. The results presented in Fig.
obtained withCyA ­ 1.4, show that the elongation versus
x characteristics reproduces well the experimental valu
at small enoughx .

The regularization in the discrete model comes from
the fact that the anglef 2 f0 is defined modulo2p.
The computation ofkx2

W l can be done explicitly at
x ­ 0, and one finds that the continuum expressio
LyAks1 2 cosudys1 1 cosudl must be substituted by
LyAks1 2 cosudys1 1 cosudRssin2 uAybdl, where the
regularization function is given in terms of Besse
functions by Rsxd ­ I1sxdyI0sxd. It is reasonable to
assume that the discrete model is well approximated
the HamiltonianĤr which is obtained fromĤ by this
same substitution. We have computed the elongati
properties of the WLRC from the ground state energy o
the corresponding regularized rod HamiltonianĤ. The
variations of kzl

L with x now scale as a function ofxyL,
as in experiments. We introduce the intensive linkin
variableh ­ xAyL (related to the experimentalists’s by
s ­ hyv0A). The partition function in (7) can be com-
puted by the saddle point method in the limitLyA ¿ 1
with h kept fixed. The saddle point is imaginary
k ­ iksad, and from its value one easily deduces th

FIG. 1. The elongation versus reduced supercoiling ang
h ­ xAyL for forcesF ­ 0.116, 0.197, 0.328 pN, from bot-
tom to top. x is taken directly from experiment andh has been
computed withA ­ 51.35 nm and L ­ 15.61 mm. The ex-
perimentalist”ss is related toh by h ­ v0As ­ 2p

A
p ­

94.8s. The smaller points are the experimental results, th
bigger points on the lowest curve are from Monte Carlo simu
lations, the full lines is the analytic study of the WLRC through
the parametric representation (9) with the valuesCyA given in
the text.
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elongation of the chain using the general formulas give
above. We obtain in this way the following parametri
representation of the bell shaped curves givingkzl

L versus
h, for a fixed value of the forcea:

A
C

1 2
≠e0

≠k2
sa, 2k2d ­

h

k
;

kzl
L

­ 2
≠e0

≠a
sa, 2k2d .

(9)

An alternative to solving the wave equation associate
with the regularized Hamiltonian̂Hr is to work directly
with the discretized version of the effective energy (4
using standard transfer matrix methods. We have check
that these two procedures give results fore0sa, 2k2d
which are in very good agreement. Using interpola
tion techniques, one can eliminatek in (9) in order to
obtain the ratioCyA in terms of h, kzlyL, and byA.
For various values of the force and ofbyA, we have
computed the empirical value ofCyA obtained from
each experimental pointh, kzlyL. With byA ­ 0.12 all
these values cluster nicely, allowing for a rather preci
determination ofCyA. For three values of the force,
F ­ 0.116, 0.197, and0.328 pN, we find, respectively,
CyA ­ 1.67 6 0.12, 1.66 6 0.10, and1.71 6 0.09 (in
this analysis we have restricted to the range of sm
enough supercoiling: jhj # 1.5 for F ­ 0.197 and
0.328 pN, and jhj # 2.2 for F ­ 0.116 pN). For
each force, the value ofCyA is the result of a statistical
weighted average and the quoted error is just the root me
square deviation, read off directly from the data. The
three results agree and indicate a value ofCyA . 1.68.
However, it should be stressed that the experimental poi
used here are preliminary and the study of systema
errors in the experiment is not yet completed, so th
value ofCyA is not yet definitive [15]. The bell shaped
curves, computed for each force with the correspondi
value of CyA, are compared to the experimental point
in Fig. 1. The agreement looks very satisfactory, ind
cating an overall consistency of the procedure. We ha
performed the same analysis withbyA ­ 0.05 and 0.2.
With byA ­ 0.2 the agreement remains fairly good, bu
the valueCyA for the three values of the forces exhibit
fluctuations around 1.68 which can reach20%. The value
byA ­ 0.05 appears to be excluded.

Another possible method to get the ratioCyA could be
to measure the curvature of the bell shaped curve,Gh ­
≠2skzlyLdy≠h2, at its maximum, which can be related to
a1sad ­ 2f ≠

≠ k2 e0sk2, adgk­0 through perturbation theory.
The AyC is given in terms of the known functiona1sad
[14] as

A
C

­ 2a1sad 1

s
≠a1y≠a

Gh

. (10)

At the moment, the measurements ofGh are, however, not
precise enough for a good determination with this metho

We have shown that the WLRC must be regularize
at a small length scale. The corresponding model can
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solved analytically, and it accounts well for experimen
tal results at small supercoiling, giving a good metho
to determine the elastic constants ratioCyA. Obviously,
our theory is limited to the small force–small supercoilin
regime. For instance, the experiments show that forF .

0.45 pN the extension is not symmetric forx °! 2x.
This kind of effect is totally beyond our simple elasti
model, which is intrinsically symmetric. Extending it re
quires the introduction of self-avoidance to treat proper
the plectoneme formation. The self-avoidance will als
naturally provide a cutoff length scale. However, takin
it into account properly is a major challenge [16].

We wish to thank J.-F. Allemand, D. Bensimon
V. Croquette, and T. R. Strick for numerous exchange
as well as J.-P. Bouchaud, A. Comtet, and C. Month
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dom walks.
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