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Charge- Versus Spin-Driven Stripe Order: Role of Transversal Spin Fluctuations
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The separation of the charge- and spin-ordering temperatures of the stripe phase in cuprate supercon-
ductors has been used to argue that the striped phase is charge driven. Scaling analysis of a nonlinear
sigma model shows that the effect of spatial anisotropy on the transversal spin fluctuations is much more
drastic at finite temperatures than at zero temperature. These results suggest that the spin fluctuations
prohibit the spin system to condense at the charge-ordering temperature, despite a possible dominance
of charge-spin coupling in the longitudinal channel. [S0031-9007(97)05247-2]

PACS numbers: 74.20.Mn, 71.27.+a, 74.72.-h

The observation of a novel type of electronic order inFollowing Castro Neto and Hone (CH) [5] we assume
cuprate superconductors and other doped antiferromagnédtsat the exchange coupling between spins separated by a
has attracted considerable attention recently. In this stripeharge stripe is weaker than the interdomain exchange,
phase, the carriers are confined to lines which are at theo that the collective spin fluctuations are described
same time Ising domain walls in the Néel backgroundby a spatially anisotropi©(3) quantum nonlinear sigma
[1]. Substantial evidence exists that dynamical stripglAQNLS) model. From our scaling analysis we find
correlations persist in the normal- and superconductinghat a moderate anisotropy (a factor o# difference in
states of the cuprates [2]. spin wave velocities) can explain a reduction of the Néel

A further characterization of the fluctuation modes oftemperature by an order of magnitude, while the= 0
the stripe phase is needed. In this regard, the finite terstaggered magnetization is reduced only by a factor of 2
perature evolution of the static stripe phase might offer drom its isotropic value. The reason can be inferred from
clue. Both in cuprates [1] and in nickelates [3], the chargdhe crossover diagram (Fig. 1). As a function of increasing
orders at a higher temperature than the spin, and botanisotropy, theT = 0 transition between the renormal-
transitions appear to be of second order. Zachar, Emeryzed classical (RC) and quantum disordered (QD) states
and Kivelson [4] argue on the basis of a Landau freescales to smaller coupling constant, but the dimensionless
energy that the stripe instability isharge driven:if the  temperature associated with the crossover renormalized
coupling between the charge and longitudinal spin mode
would dominate, charge and spin would order simultane- 1
ously in a first order transition. This is a mean-field analy-
sis, and fluctuations can change the picture drastically.

For instance, at length scales larger than the interstripe
distance the spin system remaining after the charge has
ordered is just a quantum Heisenberg antiferromagnet in

2 + 1 dimensions which cannot order at finite tempera- t/?n
tures according to the Mermin-Wagner theorem. Zachar
et al. argue that the orientational (“transversal”) fluctua-
tions of the spin system can be neglected at the tempera- ! Quant. Crit.
tures of interest, because it appears that the spin system
left behind after the charge has ordered is not radi-
cally different from the antiferromagnet in the half-filled
cuprates, exhibiting a Néel temperature of order 300 K,

05 [~

an order of magnitude larger than that in the stripe phase. \ ‘

An important constraint is that th& = 0 staggered o Ren. Class™) Q/, Quent-Pis
magnetization in the stripe phase appears to be compa- 0 05 1 15 2
rable to that at half filling [2]. If the transversal fluctua- &o/4m

tions are responsible for the charge and spin transitions;IG. 1. Crossover diagram for the anisotropic QNLS. The

it has to be demonstrated that the additional thermdines are fora =1, 0.4, 0.1, and 0.025 from top to bottom.

fluctuations due to the presence of stripes have a muq]:pe end points of the quantum-critical to quantum-disordered
in

P es map onto(g, ;) = (87,27). Notice that wheny, be-
greater effect on the Neel state than the= 0 quan- comes larger than the crossover temperature from renormalized

tum fluctuations. To investigate this, we consider thegjassical to quantum critical &, = 0 one dimensional fluctu-
simplest possible source of stripe induced spin disordemtions are dominating for all values of.
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classical to quantum critical scales down much fasterrenormalization [6]) by neglecting the dispersions in the
Alternatively, we find that the behavior found by x direction entirely. This causes the anisotropy parameter
Chakravarty, Nelson, and Halperin (CNH) [6] for the « to become a running variable as well, which is always
correlation length in the RC regime of the isotropic modelrelevant. When the renormalized = 1, the model has
can be directly generalized to the anisotropic case: the exsecome isotropic, albeit with renormalized bare coupling
pression for the classicahisotropicmodel remains valid constants.
when the bare stiffness is replaced by the renormalized Writing # = (7, o), where o is the component ofi
stiffness. It is suspected that this holds more generallyin the direction of ordering, we expand to one-loop order
If so, the strong disordering influence of temperature asn 7. Subsequently, we Fourier transform tkiefields
compared to the quantum fluctuation might be genericaccording to
whatever the disordering influence of the stripes is, it ex- o 5
o . . ; . .. d*k . - -

erts it in an effectively three dimensional classical system 7, 1) = Z 7k, n)e* i (2)
at zero temperature and in a two dimensional system in W) Q2m)?
the f_|n|te temperature reno/rmahzed classical regime. _wherew, = 27n/u are the Matsubara frequencies. The

It is assumed that the Néel order parameter fluctuations . ; .
. ; momentak are rescaled witl\ to become dimensionless.
in the charge ordered stripe phase are governed by &, - ating the fields according to
AQNLS model [5,7], parating 9

“ - Fo(k,n); el <|k| <1
_ 1 2 alk,n) = 7T>(-)’ ’ ) ’ 3
SAQNLS = 220 ]0 d’ff d°x (k. n) m<(k,n); 0 <k <el, )

% R 2 2 R where [ is small, we integrate out the fields-, using
@(9:7)7 + (8,)" + 1+ «a (077)° ). a square Brillouin zone for convenience. Rescaliyg
(1) <, u, g, and «, we find that the model scales to larger

. , a (smaller anisotropy). We obtain the following flow
where the bare coupling constagg and the spin-wave equations:

velocity ¢ are those of the isotropic system, white

parametrizes the anisotropy. In the classical limit, this de- a = age?, 4)
scribes spin waves with velocity,(a) = c¢/(1 + a)/2

andc,(a) = /a ¢y(a) in they andx directions, respec- dg @ )

tively. The slab thickness in the imaginary time direc- 2 T Ixad el (5)

tion u is given by BhicA, where A is the cutoff of our

spherical Brillouin zone. This model is derived by tak- ar + tol 6
ing the naive continuum limit of a Heisenberg model with ol rogh, 6)
exchange couplingg and aJ in the y andx directions,

: where
respectively.

The renormalization of this model has received someI NI j‘l " coth(3 \/HTa\/akf + 1)
attention recently [5,8]. We adopt here a variation on a2 ) JakZz + 1 ’
the procedure as proposed by Affleck [8]. The central
observation is that this model contains two ultraviolet i i i (7)
cutoffs. As a ramification of the anisotropy, the highest2nd V\{)heret is the dimensionless temperaturs, =
momentum states in the direction will have an energy *87/ps- From Egs. (5) and (6), we find for the slab
E™> which is a factor of/a smaller than that of the thicknessu = g/

highest momentum states in thedirection. Therefore, 1+ ay

the initial renormalization flow fronE™* down to EM* W=\ T ¢ (8)

is governed by one dimensional fluctuations. At the

resulting model can be rescaled to become isotropic, albeit From Eq. (4) it follows thate = 1 corresponds with

with “bare” parameters which are dressed up by the oné = [; = —In /ay. The bare coupling constant (At=
dimensional high energy fluctuations. 0) and bare slab thickness of the effective isotropic model

Keeping the full model Eq. (1), the one dimensionalfollow by integrating Egs. (5) and (6) down tg [g, =
fluctuations are integrated out (using momentum-shelg(ll), t = t(ly)],

g1 = &0 /[ 2 %{arsinf(\/a_o)/\/a_o + In(1 + V1 + ag) — In[{/ap (1 + \/5)2]}] 9)

1+a0

g1/t = (go/to]ao(l + a0)/2. (10)
Except for these altered bare quantities, the isotropic model is analyzed in the standard way [6].
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Puttingg, = g. = 47 and solvinggg, we find the critical bare coupling for the anisotropic model

gclag) = 4771/1 +2 /[1 + g{arsinr(\/oz_o)/\/oz_o +In(1 + V1 + ag) — In[\/ag (1 + \/5)2]}] (11)
(o 4)) aw

We find this result to be the same within a couple lofuse the one for thanisotropic classical model Using
percents as the outcome of laryemean-field theory [5], the same procedure as for the quantum model, it is
while the difference originates in an inaccuracy in oureasy to demonstrate that the correlation length of the
calculation related to the switch from the squareKat-  anisotropic classicaD(3) model in 2D behaves a& ~
E%,,) to the spherical Brillouin zone of the effectively exp(,/ag p?/ksT), and this explains the occurrence of the
isotropic model. additional/a, factor [10].

For ay = 1, the one-loop crossover lines between the The finiteness of the Néel temperature is caused by
guantum-critical (QC) and the RQD regime are given small intraplanar spin anisotropies and interplanar cou-
by r = =27 (1 — g/47). Taking(gi, ) to lie on these plings. Keimeret al.[11] have shown that in L&uQ,
lines and iterating the flow equations backwards, wehe former dominate, and these can be lumped together
obtain the crossover diagram for the anisotropic modelin a single terma.¢; Which plays the role of an effective
shown in Fig. 1. Note that the anisotropy has a strongestaggered field. The Néel temperature can be estimated
effect on ther dependence of the RC to QC line than onby comparing the thermal energyTy to the energy cost
its ¢ dependence. This already indicates thatZhe= 0  of flipping all spins in a region the size of the correlation
properties will be less affected by the anisotropy tharength in the presence of the effective staggered field.
those at finite temperatures. £(Ty.a) M, \2

The one-loop mapping to an isotropic QNLS provides kgTy(a) = Jaeff<$ —Y> )
a simple way of calculating the correlation length in Mo
the anisotropic model. Noting that the correlation lengthBecause it is not expected that stripes will influence the
in the y direction scales ag = &e ! under Eqg. (3), spin anisotropies strongly, we can use the estimatefgr
it immediately follows thaté(go,f) = e ison(g1,11).  as determined for the half-filled systery; = 6.5 X
Inserting the one-loop expression f@t,, in the RC  107* [11]. For our estimate offy, we will use spin-
regime [6] and using Egs. (9) and (10) [the use of thewave results for the renormalized stiffness, susceptibility,
T = 0 expression fog; Eq. (9) is a good approximation and spin-wave velocity [12]. FoS = 1/2, they are

(14)

if g1/t1 > 1], fic = 0.5897\/8Ja, x.(0) = 0.51454%/8Ja%, and p, =
09 g g1 c2x.(0). The bare coupling constant is obtained from
(g0, 10) = Jas z—tlexl{<1 - E) / ’1} go/4m = 1/(1 + 47y, c/KA) [6], which yields gy =
9.107 for Aa = 2./ar. We notice that the one-loop result
. 8 |1+ ag — for the prefactor is not correct, but this factor is not very
=09 2t 2 extvao ps(0)/ksT1, important as far as the reduction of the Néel temperature
(12) is concerned.
where the renormalizel = 0 stiffness is given by Since ourT = 0 results coincide with those obtained
by CH [5], we use their expression for the zero tempera-
ps(0) = p?(l - fo )>. (13) ture staggered magnetization [13],
8l
Equations (12) qnd (13) are our central res_ult. It shqws Mya)  [1 - go/gcla)
that the correlation length in the renormalized classical = , (15)
Ms(l) 1 - g0/47T

regime has a twofoldexponentialdependence on the
anisotropy, both originating in the high frequency oneand its anisotropy dependence is shown together with the
dimensional fluctuations. As already pointed out by CHresults for the Néel temperature in the inset in Fig. 2.
[5], the anisotropy causeg. to decrease (e.g., Fig. 1), To illustrate the effects of a different.¢ in the stripe
leading to a reduction of¢ at a given temperature. phase (e.g./,. may be much reduced due to frustration)
However, we find an additional/a in the exponent we have also plotted the results far. (e < 1) =
which has been overlooked by CH, although it is includedlOa.ss (@« = 1) (upper dashed line) and fof.s(a <

in the paper of Wang [9]. This is the specific way in 1) = 0.1aess (@ = 1) (lower dashed line). In Fig. Zy
which the greater effect of the thermal fluctuations, whichis plotted versusM;. As expected, the dependence of
we noted earlier, shows up in the renormalized classical’y on anisotropy is considerably stronger than that of
regime. In fact, it shows that the basic invention of CNHM,. A reduction of M, by a factor of 2 due to a spin-
[6] is straightforwardly extended to the anisotropic casewave anisotropy of-./a ~ 1/4 order is accompanied by
The correlation length is given by the expression for thea suppression dfy by roughly an order of magnitude.
classical system, and quantum mechanics enters only in In the above we relate different experimentally acces-
the form of a redefinition of the stiffness. However, sible quantities (spatial and spin anisotropies, Néel tem-
for the classical correlation length expression one shoulgerature,7 = 0 staggered order, correlation length) and
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