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Dynamical Scaling at the Quantum Hall Transition: Coulomb Blockade versus Phase Breaking
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We argue that the finite-temperature dynamics of the integer quantum Hall system is governed
by two independent length scales. The consistent scaling description of the transition makes crucial
use of two temperature-critical exponents, reflecting the interplay between charging effects and
interaction-induced dephasing. Experimental implications of the two-scale picture are discussed.
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Scaling treatment of the Anderson metal-to-insulatorany singular behavior when the Coulomb interaction is
transition is central to understanding of the integer quanturned on, and we assume that the critical conductigity
tum Hall (QH) effect [1]. The plateau transitions are un-also remains finite [5]. Likewise, the screening properties
derstood as isolated critical points separating two localizedf the integer QH metal can be described in terms of the
phases, so that the localization lendtlliverges only at a usual random-phase approximation response. In fact, the
discrete set of the critical energigs. While a reliable only peculiarity of the QH metallic phase, as compared
analytical theory is sorely missing, the scaling ideas havéo a weakly disordered conventional metal, is a fractal
long served to correlate the results of experiment and ofiispersion of the diffusion coefficient at largé/w [4].
numerical simulation. The observelynamicalscaling, Thus the attempt to explain the cutdff, « 7!/ by intro-
however, still presents puzzlewhich has defied a con- ducingr ~ T~! and settingz = 1 [3] is confronted by
vincing explanation for almost a decade, starting from thehe fact that electron dynamics at the critical point is dif-
very first experiments [2]. On the experimental side, thefusive (z = 2).
scaling has been probed by tuning through the transition at Another recent attempt to substantiate the observed
different temperatures (by varying the Landau level fillingdynamical scaling relates [6] the apparent degradation
factor) and observing how fast the critical singularities arez = 2 — z = 1 to the linear vanishing of the one-
rounded off with increasin@. The experimental data tell particle DOS p;(w) « |w| at the Fermi level(w =
us that the long-distance cutdff, scales ag ~!/z withthe ~ 0). This fault with dimension counting underlines the
dynamical critical exponent = 1. Specifically, the dissi- common misconception of the problem once more. First,
pative dc conductivity (in units ofe?/h) has the scaling it is misleading to insert the one-particle DOS in the
form g = g.F(L,/¢), where F(0) = 1, F() = 0, and renormalization group machinery in place éh/ou.
gc ~ 1. The traditional use of in this context is related Moreover, there is every reason to question the very
to the common belief [3] that at criticality the only relevant assumption thap; « |w| at the metallic critical point.

temporal scale is ~ T~ We argue below that in actual fapt(w) vanishes at the
It can be readily seen, however, that despite the simQH transition faster than any power of.
plicity of this experimental picture, it implies theade- Apart from the purely scaling arguments, there is

quacy,in describing the QH critical point, of the usual controversy about the physical mechanism of the cutoff.
theoretical framework [3] based on the assumption thafgain, if one follows [3] and identifies the cutoff with the
the system at criticality can be characterized by just onénteraction-induced dephasing length, one encounters
temporal scaler ~!. Indeed, the peculiarity of the An- the difficulty in trying to connect th&~! behavior of
derson transition in two dimensions—the nonvanishinglL, with the usual dependende; o 7'/, which merely
gc—means that the QH system at the critical point isreflects the diffusive character of transport of interacting
diffusive, so that the irreducible dynamical susceptibility particles and should be valid at the QH critical point as
is a function of w/g* with z = 2 [4]. It follows that well. Hence the concept [3] of the quantum-classical
if there are only two scalesL{ and 7 =« Lj) at play, crossover controlled by the dephasing length appears to
they must be related via the diffusion law € 2). It  be inadequate to the physics of the QH transition. Note,
has become customary to refer to the Coulomb interachowever, that the discarding df, is not quite trivial
tion between electrons as the source of the “anomaloussinceLy < L, in the low-T limit, which means that the

z = 1. However, the long wavelength diffusion coeffi- shorterof the two length scales is irrelevant.

cientD = h~'g./(dn/dw) is finite in the interacting QH In this paper, we attempt to sort out the problem
system as well, since for disordered electrons the thermaf the dynamical scaling. Our findings are as follows:
dynamic density of states (DO8}):/du does not exhibit The scaling description of the integer QH transition
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for interacting electrons includeswo independent length in the literature. The diffusion propagatdp ;s for in-
scales,L, « T~! and L « T-12. They govern the teracting electrons is a function of two frequencies—
temperature driven scaling outwards and towards thenly in the absence of interactior® ;% « §(wo). It is
unstable fixed point [7], respectively (Fig. 1). Both areconvenient to choose the mixed representatidp, B

related to the corresponding temporal scatgsand 7, [ 4« exp(—iwoto) D2 and regard the delay timg as

. . . _ 2
via the diffusion law § = 2): 7 ~ DL, =T and  a parameter. The Dyson's equation assumes then the al-
g¢ ~ DL(,?1 o Tflr.1 Thed Coulomtl) interactiop therefore gebraic forn{Digq]—l = [DEf,’()I]_l — Eiﬂqa where the bare
oesnot change tharue dynamical exponent from 2 to ropagator ) = 1/(—iw + Da?). We define thedif-
1; instead, it leads to the emergence of the two differenE pag Iﬁjq /e )
scales. It is only if one uses the usual representatio
of the length scales in the formh, o T2 and Ly

T~!/2 that there appears the dynamical expongnt 1,

uson decay ratel/rg(to) = —ReXp, as a function of
to (assuming that the weak interaction does not renormal-
ize Dy, on the microscopic scale). Particle number con-

whereasz, remains equal to 2 [8]. The typical energy S€rvation dictates thatt/¢ (0) = 0, since the dynamical
transfer is7 and the phase-breaking ratg' is also part of the dens.|ty-den5|%correlatOm}wq.|s expressed
of order T; however, the scattering rate; ' behaves N terms of thg_lntegravz—;Dg’;. Thus, in contrast to
as T2. The corresponding cutoff, has nothing to do the more familiar CooperonD;y cannot be character-
with the phase breaking: the temperature smearing df€d by asinglephase-breaking time (this should also be
the transition is controlled by charging effects similar tocontrasted with th% cutoff of the full diffusion propaga-
those in the Coulomb blockade regime. The shape df°r by & constanty, cf. [10]). To calculatel /74 (10),
the Coulomb gap in the one-particle DOS at the critical’V® Use the method [11], within the framework of which
point has no direct relation to either of the dynamicalthe ele_ctron-electron !nteracnon is mediated by thermal
exponentsz; or z;. Separately, we argue that; (o) flgctuatlons of a classicak < T) electromagnetic field
vanishes as efp-a In*(T./|w])], wherea ~ 1 and7,  With the correzlator<V‘_/>a,q = dme’vT/e(w® + vig),
is a characteristic width of the gap. wherev;, = (e /s_ﬁ)g is the charge-gpreadmg velocity,
Our basic point in the description of the dynamical scalthe bare dielectric constant (Nyquist noise). We trans-
ing is that the QH system at the critical point is metal-form to real space by writing the equation for the diffuson
lic (in contrast to the critical system at a conventionalin the form
Anderson transition in three dimensions) and it makes| 9 92 i to
perfect sense to treat it as an ordinary dirty metal with] 5, — D@ + N Virt - N
g ~ 1. We therefore begin with the effect of electron-
electron scattering on the quantum interference of dif- fo fo _
fusons [9] in aweakly disordered metal § > 1) with V(r’t * 2)]][) (r1) = (e, (1)

completely broken time-reversal symmetry. To the best

of our knowledge, this has not been spelled out clearl)f\lo"ice the crucial difference b_etween this equation_ and
that for the Cooperon (cf. [11]): in the latter case the times

t andt, are interchanged in the argument of the effective
potential; as a result;, becomes a “mute variable”—
the averaged Cooperon does not dependyamnd this is
why it is characterized by the single timré. Calculating
the correlator of the potential in Eq. (1), we observe that
V Tg(l‘o) can be obtained similarly ta; by introducing
the effective interactiofVv)?, = (VV),.(1 — coswty).

It follows immediately that in the limitzy > Tg(l‘o),
where the oscillating term caesr, can be safely ignored,
-4 4 - Zl=1 the particle-hole and particle-particle propagators decay
in the same Way:rg(oo) = Tg. The difference shows
up at smallers,: one gets with logarithmic accuracy
the equation for the decay rate ofsp 1/74 (1) =

8xx 2p=2

A 2[5271‘)2 [32(VV)s +qReDS. Solving it, we obtain the
compact expression
1 T T
= —1In . (2
8xy T5(to) & DmaxXq? (Dto) !, [v,7y (10)]72}

. _ D \1-1/2 whi

FIG. 1. Scaling with lowering’ outwards and towards the 1hiS formula tells us that fog [D74(10)]7"/%, which
unstable fixed point is governed by different length scales witfre relevant in the calculation of the CondUCUB/'ty, the
temperature exponents = 1 andz, = 2, respectively. decay rate starts to fall off as (Ifry) at 1o = 74(=).
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In the extreme of smallly < T~! the quasiclassical Notice that when the Fermi energy coincides with the
treatment is no longer accurate, but an estimate can Hecalization effects can be neglected atallk T, since
readily obtained by cutting off the frequency integration& > (D/w)"'/? within the energy band of widt around
at o ~ T—it follows that the dephasing rate vanishesE.. In sum, the scale on which the dephasing occurs at
algebraically at zeray: l/rg(to) ~ (T /g) (Tty)>. the critical point is certainlyD/T)'/? < L,. We are
Now let us look at the effect of the interaction on theled to conclude that while the phase breaking controls the
quantum interference of diffusons. In the unitary limit, temperature scaling @f. right at the critical point, it does
the leading weak-localization correction is given by thenot control the observed metal-insulator crossover.
familiar expressiod gP ~ ¢~ 'In(L/1) [9], wherel is the The reason for the strong increase of the culgffas
mean free path (or the Larmor radius, when it is smaller)compared td_, is that away from the critical point trans-
L an inelastic scattering length. However, the mechanisrport is governed by charging effects: the Coulomb block-
of the infrared cutoff in the higl® limit deserves com- ade on the scale of drastically narrows the crossover
ment, since the dephasing timeg (7p) tends to infinity as region. Indeed, one can identify two characteristic ener-
to — 0. The quasiclassical treatment of the Coulomb in-gies on the scale of: the charging energ¥. ~ ¢*/sé¢
teraction allows one to calculate first the contributiorzto and the “on-site” energy spacing ~ 1/(dn/du)é&>.
from diffusons D (r, r) moving in a given (as if externally Near the transition/, > A. The naive description of
applied) Nyquist potential. The Gaussian average ovescaling in terms ofL4/¢ amounts to the assumption that
the thermal electromagnetic fluctuatiods. () below) can the QH system shows crossover@tA ~ 1. It is evi-
then be safely performed. For the leading correction, thislent, however, that the system behaves as a metal only if
gives 6gP = g7! [, di{A(r)), whereA = A, + A; is a T exceeds/.—otherwise the scattering is blocked as in
sum of two- and three-diffuson terms [9] (a proper cutoffthe usual Coulomb blockade regime. The QH system at
on the ballistic scale is assumed). Consider the simplegfiven Er can thus be modeled as a dense array of quan-
two-diffuson contribution tum dots of sizef coupled via the tunneling integratA.

t .
A1) = 2D2f dt’D”"(O,t’)D"(O,t . @) The scaling form of then reads
0

which already reveals the peculiarity of the dephasing g = 8FW/T). )
in the unitary case. Though one could have expectedr, equivalently,g = g.F(L,/&) with L, ~ ¢?/eT, so
that (A,(¢)) would decay exponentially at> T(]Z(OO), it thatz; = 1 (these arguments parallel those in [13], where
can be readily seen from Eq. (3) th&,(r)) remains F(x) was argued to fall off ak — « as InF ~ —x!/?).
singular on the scale o’f-('/?(oo). The phase coherence Hence, the scaling around the unstable fixed point indeed
is preserved because of the vanishing of the dephasimecessitates dealing witivo scales,L, and Ly (Fig. 1).
rate at7’ = 0 and ¢/ = ¢r. A similar “breakdown” of Also, while the typical energy transfer and the dephasing
the dephasing occurs if45(z)). However, adding all rate are both-T, the scattering rate, ' ~ DL;? is much
the pieces, we filr;d that the total contribution &gP,  smaller:
(A(t)) o« exd —t/74 ()], decays on the scale of the 2 4,2
shortest dephasindé time. This proves that the interaction- Vrw ~T°/Te, Te~¢'/e'D. )
induced cutoff forsgP is given by the phase-breaking To test the two-scale picture with; # z, experi-
length related tOr('Z(oo) (which contrasts with the result mentally, we suggest to measure the temperature de-
of Ref.[12], where the inelastic cutoff of the weak pendent correction to the critical conductivigyg.(T).
localization in the unitary limit was identified with a much Specifically, according to numerical simulations [1,14],
longer energy-relaxation length). the finite-size correction tg. scales ad.™> with y =

We turn now to the interaction-induced dephasing at th®.4-0.5 (in fact, it can be shown analytically [15] that
integer QH transition. We assume that the interaction i is not an independent exponent; namely, there exists
weak enough not to break down the integer QH effectthe nontrivial relationy = 5, wheren = 0.4 is the usual
i.e., ¢2/eA < T, where A is the magnetic length"  critical exponent of eigenfunction correlations [4]). We
the width of the disorder-broadened Landau level. It ispredict that, while the smearing of the transition is con-
then legitimate to repeat the above analysis of the phadeolled by L, (z; = 1), the critical conductivity scales
breaking right at the QH metallic point by endowing with L (z = 2), i.e.,8g. = T*/2. Another possible test
the diffusion coefficient with a strong dispersion atis based on the fact that, < L,. Naively, one may
Dq¢’/w =1 [4]. The power-law dispersion at large well think that whenL, becomes larger, a6 — 0, than
g*/w signals that the QH metal starts to develop thethe system sizd., there must appear strong mesoscopic
critical eigenfunction correlations. However, as follows fluctuations (say of the height of the conductivity peak).
from the calculation with constanD, this does not However, our approach suggests that this is not true, since
change the dependence bf, on T, since the relevant in the rangeL, < L < L, the width of the critical re-
Dq?/w are of order unity. Specifically, an estimate gion is alreadyr’ independent but the mesoscopic fluctua-
can be readily obtained by setting ~ 1 in Eq. (2), tions are still suppressed (a;l ~ T, the only parameter
which givesTrg(oo) ~1landLy ~ (D/T)"/? (z = 2). that governs the amplitude of the fluctuationd.ig" /D).
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The absence of the fluctuationslat = L would give a whereas the interaction-induced phase breaking= 2)

strong experimental support to the two-scale picture. is responsible for corrections to the critical conductivity.
Finally, we discuss briefly the behavior of the one-We suggested experimental tests of the two-scale picture.
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