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Dynamical Scaling at the Quantum Hall Transition: Coulomb Blockade versus Phase Breaking
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We argue that the finite-temperature dynamics of the integer quantum Hall system is governed
by two independent length scales. The consistent scaling description of the transition makes crucial
use of two temperature-critical exponents, reflecting the interplay between charging effects and
interaction-induced dephasing. Experimental implications of the two-scale picture are discussed.
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Scaling treatment of the Anderson metal-to-insulato
transition is central to understanding of the integer qua
tum Hall (QH) effect [1]. The plateau transitions are un
derstood as isolated critical points separating two localiz
phases, so that the localization lengthj diverges only at a
discrete set of the critical energiesEc. While a reliable
analytical theory is sorely missing, the scaling ideas ha
long served to correlate the results of experiment and
numerical simulation. The observeddynamicalscaling,
however, still presents apuzzlewhich has defied a con-
vincing explanation for almost a decade, starting from th
very first experiments [2]. On the experimental side, th
scaling has been probed by tuning through the transition
different temperatures (by varying the Landau level fillin
factor) and observing how fast the critical singularities a
rounded off with increasingT . The experimental data tell
us that the long-distance cutoffLh scales asT 21yz with the
dynamical critical exponentz ­ 1. Specifically, the dissi-
pative dc conductivityg (in units ofe2yh) has the scaling
form g ­ gcFsLhyjd, where Fs0d ­ 1, Fs`d ­ 0, and
gc , 1. The traditional use ofz in this context is related
to the common belief [3] that at criticality the only relevan
temporal scale ist , T21.

It can be readily seen, however, that despite the sim
plicity of this experimental picture, it implies theinade-
quacy, in describing the QH critical point, of the usua
theoretical framework [3] based on the assumption th
the system at criticality can be characterized by just o
temporal scaleT21. Indeed, the peculiarity of the An-
derson transition in two dimensions—the nonvanishin
gc —means that the QH system at the critical point
diffusive,so that the irreducible dynamical susceptibility
is a function of vyqz with z ­ 2 [4]. It follows that
if there are only two scales (Lh and t ~ Lz

h) at play,
they must be related via the diffusion law (z ­ 2). It
has become customary to refer to the Coulomb intera
tion between electrons as the source of the “anomalou
z ­ 1. However, the long wavelength diffusion coeffi-
cient D ­ h21gcys≠ny≠md is finite in the interacting QH
system as well, since for disordered electrons the therm
dynamic density of states (DOS)≠ny≠m does not exhibit
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any singular behavior when the Coulomb interaction is
turned on, and we assume that the critical conductivitygc

also remains finite [5]. Likewise, the screening propertie
of the integer QH metal can be described in terms of th
usual random-phase approximation response. In fact, t
only peculiarity of the QH metallic phase, as compared
to a weakly disordered conventional metal, is a fracta
dispersion of the diffusion coefficient at largeq2yv [4].
Thus the attempt to explain the cutoffLh ~ t1yz by intro-
ducing t , T21 and settingz ­ 1 [3] is confronted by
the fact that electron dynamics at the critical point is dif-
fusive sz ­ 2d.

Another recent attempt to substantiate the observe
dynamical scaling relates [6] the apparent degradatio
z ­ 2 ! z ­ 1 to the linear vanishing of the one-
particle DOS r1svd ~ jvj at the Fermi level sv ­
0d. This fault with dimension counting underlines the
common misconception of the problem once more. Firs
it is misleading to insert the one-particle DOS in the
renormalization group machinery in place of≠ny≠m.
Moreover, there is every reason to question the ver
assumption thatr1 ~ jvj at the metallic critical point.
We argue below that in actual factr1svd vanishes at the
QH transition faster than any power ofv.

Apart from the purely scaling arguments, there is
controversy about the physical mechanism of the cutof
Again, if one follows [3] and identifies the cutoff with the
interaction-induced dephasing lengthLf, one encounters
the difficulty in trying to connect theT21 behavior of
Lh with the usual dependenceLf ~ T 21y2, which merely
reflects the diffusive character of transport of interacting
particles and should be valid at the QH critical point as
well. Hence the concept [3] of the quantum-classica
crossover controlled by the dephasing length appears
be inadequate to the physics of the QH transition. Note
however, that the discarding ofLf is not quite trivial
sinceLf ø Lh in the low-T limit, which means that the
shorterof the two length scales is irrelevant.

In this paper, we attempt to sort out the problem
of the dynamical scaling. Our findings are as follows
The scaling description of the integer QH transition
© 1998 The American Physical Society 1509
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for interactingelectrons includestwo independent length
scales,Lh ~ T 21 and Lf ~ T 21y2. They govern the
temperature driven scaling outwards and towards t
unstable fixed point [7], respectively (Fig. 1). Both ar
related to the corresponding temporal scalesth and tf

via the diffusion law (z ­ 2): th , DL2
h ~ T22 and

tf , DL2
f ~ T 21. The Coulomb interaction therefore

doesnot change thetrue dynamical exponentz from 2 to
1; instead, it leads to the emergence of the two differe
scales. It is only if one uses the usual representat
of the length scales in the formLh ~ T 21yz1 and Lf ~

T 21yz2 that there appears the dynamical exponentz1 ­ 1,
whereasz2 remains equal to 2 [8]. The typical energ
transfer is T and the phase-breaking ratet21

f is also
of order T ; however, the scattering ratet21

h behaves
as T 2. The corresponding cutoffLh has nothing to do
with the phase breaking: the temperature smearing
the transition is controlled by charging effects similar t
those in the Coulomb blockade regime. The shape
the Coulomb gap in the one-particle DOS at the critic
point has no direct relation to either of the dynamic
exponentsz1 or z2. Separately, we argue thatr1svd
vanishes as expf2a ln2sTcyjvjdg, where a , 1 and Tc

is a characteristic width of the gap.
Our basic point in the description of the dynamical sca

ing is that the QH system at the critical point is meta
lic (in contrast to the critical system at a convention
Anderson transition in three dimensions) and it mak
perfect sense to treat it as an ordinary dirty metal wi
g , 1. We therefore begin with the effect of electron
electron scattering on the quantum interference of d
fusons [9] in aweakly disordered metal (g ¿ 1) with
completely broken time-reversal symmetry. To the be
of our knowledge, this has not been spelled out clea

FIG. 1. Scaling with loweringT outwards and towards the
unstable fixed point is governed by different length scales w
temperature exponentsz1 ­ 1 andz2 ­ 2, respectively.
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in the literature. The diffusion propagatorD v0
vq for in-

teracting electrons is a function of two frequencies—
only in the absence of interactionsD v0

vq ~ dsv0d. It is
convenient to choose the mixed representation Dt0

vq ­R dv0

2p exps2iv0t0dD v0
vq and regard the delay timet0 as

a parameter. The Dyson’s equation assumes then the
gebraic formfDt0

vqg21 ­ fDs0d
vqg21 2 St0

vq, where the bare
propagator Ds0d

vq ­ 1ys2iv 1 Dq2d. We define thedif-

fuson decay rate1yt
D
f st0d ­ 2ReSt0

vq as a function of
t0 (assuming that the weak interaction does not renorma
ize Dt0

vq on the microscopic scale). Particle number con
servation dictates that1yt

D
f s0d ­ 0, since the dynamical

part of the density-density correlatorknnlvq is expressed
in terms of the integral

R dv0

2p D v0
vq. Thus, in contrast to

the more familiar Cooperon,D v0
vq cannot be character-

ized by asinglephase-breaking time (this should also be
contrasted with the cutoff of the full diffusion propaga-
tor by a constanttD

f , cf. [10]). To calculate1yt
D
f st0d,

we use the method [11], within the framework of which
the electron-electron interaction is mediated by therma
fluctuations of a classical (v ø T) electromagnetic field
with the correlatorkVV lvq ­ 4pe2ysTy´sv2 1 y2

s q2d,
whereys ­ se2y´h̄dg is the charge-spreading velocity,´

the bare dielectric constant (Nyquist noise). We trans
form to real space by writing the equation for the diffuson
in the form(

≠

≠t
2 D

≠2

≠r2
1

i
h̄

"
V

√
r, t 2

t0

2

!
2

V

√
r, t 1

t0

2

!#)
Dt0 sr, td ­ dsrddstd . (1)

Notice the crucial difference between this equation an
that for the Cooperon (cf. [11]): in the latter case the times
t andt0 are interchanged in the argument of the effective
potential; as a result,t0 becomes a “mute variable”—
the averaged Cooperon does not depend ont0 and this is
why it is characterized by the single timet

C
f. Calculating

the correlator of the potential in Eq. (1), we observe tha
t

D
f st0d can be obtained similarly totC

f by introducing
the effective interactionkVV lt0

vk ­ kVV lvks1 2 cosvt0d.
It follows immediately that in the limitt0 ¿ t

D
f st0d,

where the oscillating term cosvt0 can be safely ignored,
the particle-hole and particle-particle propagators deca
in the same way:tD

f s`d ­ t
C
f. The difference shows

up at smallert0: one gets with logarithmic accuracy
the equation for the decay rate of Dt0

vq: 1yt
D
f st0d ­

2
R d2k

s2pd2

R dv

2p kVV lt0
v,k1qReD

t0

vk . Solving it, we obtain the
compact expression

1

t
D
f st0d

­
T
g

ln
T

D maxhq2, sDt0d21, fyst
D
f st0dg22j

. (2)

This formula tells us that forq , fDt
D
f st0dg21y2, which

are relevant in the calculation of the conductivity, the
decay rate starts to fall off as lnsTt0d at t0 & t

D
f s`d.
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In the extreme of smallt0 ø T 21 the quasiclassical
treatment is no longer accurate, but an estimate can
readily obtained by cutting off the frequency integratio
at v , T —it follows that the dephasing rate vanishe
algebraically at zerot0: 1yt

D
f st0d , sTygd sTt0d2.

Now let us look at the effect of the interaction on th
quantum interference of diffusons. In the unitary limit
the leading weak-localization correction is given by th
familiar expressiondgD , g21 lnsLyld [9], wherel is the
mean free path (or the Larmor radius, when it is smalle
L an inelastic scattering length. However, the mechanis
of the infrared cutoff in the high-B limit deserves com-
ment, since the dephasing timet

D
f st0d tends to infinity as

t0 ! 0. The quasiclassical treatment of the Coulomb in
teraction allows one to calculate first the contribution tog
from diffusons Dt0 sr, td moving in a given (as if externally
applied) Nyquist potential. The Gaussian average ov
the thermal electromagnetic fluctuations (k. . .l below) can
then be safely performed. For the leading correction, th
gives dgD ­ g21

R`

0 dtkAstdl, whereA ­ A2 1 A3 is a
sum of two- and three-diffuson terms [9] (a proper cuto
on the ballistic scale is assumed). Consider the simpl
two-diffuson contribution

A2std ­ 2D2
Z t

0
dt0Dt02ts0, t0dDt0

s0, t 2 t0d , (3)

which already reveals the peculiarity of the dephasin
in the unitary case. Though one could have expect
that kA2stdl would decay exponentially att ¿ t

D
f s`d, it

can be readily seen from Eq. (3) thatkA2stdl remains
singular on the scale oftD

f s`d. The phase coherence
is preserved because of the vanishing of the dephas
rate at t0 ­ 0 and t0 ­ t. A similar “breakdown” of
the dephasing occurs inkA3stdl. However, adding all
the pieces, we find that the total contribution todgD,
kAstdl ~ expf2tyt

D
f s`dg, decays on the scale of the

shortest dephasing time. This proves that the interactio
induced cutoff fordgD is given by the phase-breaking
length related totD

f s`d (which contrasts with the result
of Ref. [12], where the inelastic cutoff of the weak
localization in the unitary limit was identified with a much
longer energy-relaxation length).

We turn now to the interaction-induced dephasing at th
integer QH transition. We assume that the interaction
weak enough not to break down the integer QH effec
i.e., e2y´l ø G, where l is the magnetic length,G
the width of the disorder-broadened Landau level. It
then legitimate to repeat the above analysis of the pha
breaking right at the QH metallic point by endowing
the diffusion coefficient with a strong dispersion a
Dq2yv * 1 [4]. The power-law dispersion at large
q2yv signals that the QH metal starts to develop th
critical eigenfunction correlations. However, as follow
from the calculation with constantD, this does not
change the dependence ofLf on T , since the relevant
Dq2yv are of order unity. Specifically, an estimate
can be readily obtained by settingg , 1 in Eq. (2),
which givesTt

D
f s`d , 1 and Lf , sDyT d1y2 (z2 ­ 2).
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Notice that when the Fermi energy coincides withEc, the
localization effects can be neglected at allv ø G, since
j ¿ sDyvd1y2 within the energy band of widthv around
Ec. In sum, the scale on which the dephasing occurs
the critical point is certainlysDyTd1y2 ø Lh. We are
led to conclude that while the phase breaking controls th
temperature scaling ofgc right at the critical point, it does
not control the observed metal-insulator crossover.

The reason for the strong increase of the cutoffLh as
compared toLf is that away from the critical point trans-
port is governed by charging effects: the Coulomb block
ade on the scale ofj drastically narrows the crossover
region. Indeed, one can identify two characteristic ene
gies on the scale ofj: the charging energyUc , e2y´j

and the “on-site” energy spacingD , 1ys≠ny≠mdj2.
Near the transitionUc ¿ D. The naive description of
scaling in terms ofLfyj amounts to the assumption that
the QH system shows crossover atTyD , 1. It is evi-
dent, however, that the system behaves as a metal only
T exceedsUc —otherwise the scattering is blocked as in
the usual Coulomb blockade regime. The QH system a
given EF can thus be modeled as a dense array of qua
tum dots of sizej coupled via the tunneling integral,D.
The scaling form ofg then reads

g ­ gcFsUcyT d , (4)

or, equivalently,g ­ gcFsLhyjd with Lh , e2y´T , so
thatz1 ­ 1 (these arguments parallel those in [13], where
Fsxd was argued to fall off atx ! ` as lnF , 2x1y2).
Hence, the scaling around the unstable fixed point indee
necessitates dealing withtwo scales,Lh andLf (Fig. 1).
Also, while the typical energy transfer and the dephasin
rate are both,T , the scattering ratet21

h , DL22
h is much

smaller:

1yth , T2yTc, Tc , e4y´2D . (5)

To test the two-scale picture withz1 fi z2 experi-
mentally, we suggest to measure the temperature d
pendent correction to the critical conductivitydgcsT d.
Specifically, according to numerical simulations [1,14],
the finite-size correction togc scales asL2y with y .
0.4 0.5 (in fact, it can be shown analytically [15] that
y is not an independent exponent; namely, there exis
the nontrivial relationy ­ h, whereh . 0.4 is the usual
critical exponent of eigenfunction correlations [4]). We
predict that, while the smearing of the transition is con
trolled by Lh (z1 ­ 1), the critical conductivity scales
with Lf (z2 ­ 2), i.e.,dgc ~ Tyy2. Another possible test
is based on the fact thatLf ø Lh. Naively, one may
well think that whenLh becomes larger, asT ! 0, than
the system sizeL, there must appear strong mesoscopi
fluctuations (say of the height of the conductivity peak)
However, our approach suggests that this is not true, sin
in the rangeLf ø L ø Lh the width of the critical re-
gion is alreadyT independent but the mesoscopic fluctua
tions are still suppressed (att

21
f , T , the only parameter

that governs the amplitude of the fluctuations isL2TyD).
1511
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The absence of the fluctuations atLh * L would give a
strong experimental support to the two-scale picture.

Finally, we discuss briefly the behavior of the one
particle DOS at the critical pointr1csvd. It is a popular
misconception that the reductionz1 ! 1 signifies the
linear vanishing ofr1csvd ~ jvj (see, e.g., [6]). In fact,
several aspects require comment. First, as argued abo
the true dynamical exponent is related togc and the
thermodynamicDOS ≠ny≠m, so that it is equal to 2 at
the QH transition (merely reflecting the Einstein relation
Second, away from the critical point, the quasipartic
DOSrh that appears in the hopping exponent [13] indee
behaves asrh , jvj´2ye4 at jvj & Uc; however, rh

doesnot coincide withr1 unless the system is classica
and electrons can be treated as point charges. T
difference is due to the fact that in the classical treatme
of the Coulomb gap [16]Dyjvj is sent to`, whereas
near the critical pointD is the smallest energy scale
As a result, the rate of the charge spreading become
crucial factor in the suppression ofr1c in the metallic
phase. The width of the interaction-induced gap in
metal grows with decreasingg as expf22spgd1y2g [17].
To calculater1csvd, we use the elegant quasiclassica
method suggested in [18], which works well in the
conducting phase even ifg , 1. Adjusting it to the high-
B limit (in our case the screening lengthDyys is larger
than the Larmor radius), we obtain atgc , 1

r1csvd ­ s≠ny≠md expf2Ssvdg ,

S . a ln2sTcyjvjd ,
(6)

where the numerical coefficienta , 1, and the width of
the gapTc is defined by Eq. (5). It is worth noticing
that the localization-induced dispersion of the diffusio
coefficient at largeq2yv, which is the only peculiarity of
the QH critical point as compared to the Drude metal,
of little importance here (in contrast to the conventiona
two-dimensional metal, where the localization effects g
in the way of the method [18] atv ! 0). Note also
the shape of the gap at the transition—r1c vanishes
faster than any power ofv. This should be contrasted
with both the power-law behavior ofr1 at the Anderson
transition in2 1 e dimensions [19] and the naive powe
counting at the QH transition [6]. This result also bring
up the question of whether the Hartree-Fock method [20
within the framework of which a linear vanishing of
r1c was observed numerically, captures all the essent
physics. Away from the critical point, the “log-normal”
suppression of the DOS saturates with decreasingv at
jvj , Uc (which means that the charge spreading sto
on the scale ofj). In the insulating phase, the linear [16
vanishing ofr1 should be expected atv ­ 0, but with a
slope suppressed by the factor of expf2SsUcdg.

To summarize, we have argued that the temperatu
driven scaling at the integer QH transition is governe
by two independent length scales with the temperatu
exponentsz1 ­ 1 and z2 ­ 2. The smearing of the
transition is controlled by charging effects (z1 ­ 1),
1512
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whereas the interaction-induced phase breakingsz2 ­ 2d
is responsible for corrections to the critical conductivity
We suggested experimental tests of the two-scale pictur
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