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The formation of magnetic edge states along with corresponding classical trajectories is investiga
for a magnetic quantum dot with inhomogeneous distributions of magnetic fields. The magnetic e
states are found to circulate either clockwise or counterclockwise along the boundary region of
quantum dot, depending on the number of missing flux quanta, and exhibit quite different properties
compared to the conventional ones which are induced by electrostatic confinements in the quantum
system. [S0031-9007(98)05359-9]
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In past decades, advances in microfabrication tec
niques have made it possible to further confine
two-dimensional electron gas (2DEG) through built-i
electrostatic potentials such as quantum wires, dots,
rings on a mesoscopic scale. Of special interest in the
confined systems is the electron transport behavior
the quantum Hall regime, where the current-carryin
edge states, formed near the boundary region, play
important role in describing the resonant tunnelin
Aharonov-Bohm oscillation, nonlocal magnetoresistanc
and Coulomb-blockade oscillation, etc. Recently, wi
the application of spatially inhomogeneous magne
fields, a number of alternative magnetic structures we
proposed on the 2DEG, such as magnetic quantum d
using a scanning tunneling microscope lithograph
technique [1], magnetic superlattices by the patterning
ferromagnetic materials integrated by semiconductors [
type-II superconducting materials deposited on conve
tional heterostructures [3], and nonplanar 2DEG syste
grown by a molecular beam epitaxy [4].

For the 2DEG applied by inhomogeneous magne
fields, which provide two different magnetic domains
as shown schematically in Fig. 1, the current-carryin
states (hereafter referred to as the magnetic edge state
close analogy with electrostatically induced convention
ones) exist near the boundary between the two doma
[5]. These magnetic edge states have quite differe
properties from the conventional ones; thus, a variety
new phenomena associated with the magnetic structu
are expected in the electron transport. However, to o
knowledge, very little attention has been paid to th
problem [6].

In this paper, we investigate the nature of magnetic ed
states in a magnetic quantum dot which is formed by inh
mogeneous magnetic fields; electrons are apparently c
fined to a plane and, within that plane, the magnetic fie
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is zero within a circular disk and constantB outside it [7].
We calculate exactly the single electron eigenstates a
energies of a magnetic quantum dot as a function of m
netic field, using a single scaled parameters ­ pr2

0 Byf0,
which represents the number of missing magnetic fl
quanta within the dot, wherer0 is the radius of the quantum
dot andf0s­ hyed is the flux quantum. We find two types
of edge states which circulate in opposite directions to ea
other along the boundary of the magnetic dot and exhi
quite different energy dependences on angular moment
We find a close relation between the quantum mechan
eigenstates and the classical trajectories in the magn
quantum dot; the quantum mechanical eigenstate co
sponds to a certain ensemble average of the classical
tions which consist of straight line paths in the dot regio
and cyclotron orbits with a quantized radius in the outsi
region. These radius and central positions of the cyclotr
orbits depend critically on the value ofs. For a small con-
ductor with a magnetic quantum dot at the center, the c
culated magnetoconductances show aperiodic oscillati
instead of the Aharonov-Bohm-type periodic oscillation
[8], and this behavior is attributed to the characteristi

FIG. 1. Schematic diagram of classical trajectories of ele
trons for the magnetic edge states on the magnetic dom
boundary.
© 1998 The American Physical Society 1501
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of the magnetic edge states, which are absent in the c
ventional ones.

The single particle Schrödinger equation for a two
dimensional magnetic quantum dot iss $p 1 e $Ad2y
s2mpdcs$rd ­ Ecs$rd, wheremp is the effective mass of
electron ande is the absolute value of the electron charg
In polar coordinatessr , ud on the plane, the vector po-
tential $A can be chosen as0 for r , r0 andsr2 2 r2

0 dBy
s2rdû for r . r0, so thatB ­ 0 for r , r0 and nonzero
Bẑ otherwise. The wave functions and the energies a
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easily determined by the continuity of the wave function
and their derivatives at the boundary of the dot. Since t
wave functions are separables, i.e.,cnms$rd ­ Rnmsrdeimu ,
wherem is the angular momentum quantum number an
n s­ 0, 1, 2, . . .d is the number of nodes in the radial wav
function, the equation for the radial part is written as√

d2

dr2
1

1
r

d
dr

2
m2

r2
1 2E

!
Rnmsrd ­ 0 sr , r0d ,

(1)
(
d2

dr2 1
1
r

d
dr

2
sm 2 sd2

r2 2 r2 1 2fE 2 sm 2 sdg

)
Rnmsrd ­ 0 sr $ r0d . (2)
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Here Rnmsrd ­ C1Jjmjs
p

2E rd for r , r0 andRnmsrd ­
C2r jm2sje2r2y2Usa, b; r2d for r $ r0. In this case, all
quantities are expressed in dimensionless units by
lowing h̄vLf­ h̄eBys2mpdg and the inverse lengthb ­p

mpvLyh̄ to be 1. Then, sincēh2ymp ­ h̄vLyb2 !

1 and r0 !
p

s, s ­ Bpr2
0eyh is only the relevant pa-

rameter. The functionJm is the Bessel function of or-
der m and U is the confluent hypergeometric function
with a ­ 2sE 2 meff 2 jmeffj 2 1dy2, b ­ jmeffj 1 1,
andmeff ­ m 2 s. It is noted that Eq. (2) has the sam
form as that of the uniform magnetic field case, except th
the angular momentumm is replaced by the effective an-
gular momentummeff.

To see the significance ofmeff, let us consider momen-
tarily the 2DEG in a uniform magnetic field, in which the
eigenstates are described by the degenerate Landau le
Ei ­ h̄vcsi 1 1y2d, where vc ­ eBymp. When the
symmetric gauge is chosen,n and m remain good quan-
tum numbers, and the probability density of the eigensta
sn ­ 0, md has a maximum atr ­

p
jmj in dimensionless

units. In this case, the quantum mechanical eigenst
sn, md with the eigenvalueEnm corresponds to the en-
semble average of the classical cyclotron motions [9] wi
the radiusri and its center located atrj from the origin,
which satisfies the following relations from the conserv
tions of energy and angular momentum:

ri ­

s
Enm

2
­

s
2n 1 jmj 1 m 1 1

2
,

rj ­
q

r2
i 2 m .

(3)

However, because of the uncertainty principle, the cent
position of the cyclotron orbit cannot be determine
quantum mechanically.

In the magnetic quantum dot, the Landau level dege
eracy is lifted for the states near the dot. From Eqs. (
and (2), if the effective potentialVeffsrd is defined as

Veffsrd ­

8>><>>:
m2

2r2
sr , r0d

m2
eff

2r2
1

r2

2
1 meff sr $ r0d

, (4)
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the minimum of Veffsrd always occurs atr ­ r0
s­

p
s d for the states withjmeffj , s, i.e., 0 , m , 2s,

which correspond to the magnetic edge states circulati
counterclockwise, as we will see below. Them ­ 0
state is widely distributed over the dot due to the lack o
the centrifugal force, and the minimum ofVeffsrd for the
states withjmeffj . s, i.e., m , 0 or m . 2s, is located
at r ­

p
jmeffj outside the quantum dot, similar to the

case of uniform magnetic fields. The states withm , 0,
which exist near the dot, give rise to the magnetic edg
states circulating clockwise. Figure 2 shows the energ
levels of the magnetic quantum dot for different value
of m at s ­ 5, the radius of which is about 500 Å for
magnetic fields of teslas. The lowest energy state occu
at m ­ 0 and the degeneracy of the Landau levels a
removed, as shown in Fig. 2. This result indicates th
the inhomogeneity of magnetic fields perturbs mostly th
states near the boundary of the quantum dot, and th
perturbation is caused by the missings flux quanta. The
probability currents [10]Inm ­

1
h

≠Enm

≠m for the perturbed
states are found to be nonzero, resulting in the magne
edge states; form . 0, Inm have positive values for
counterclockwise circulations, whereas form , 0, Inm

have negative values for clockwise circulations.
In Fig. 3, the energy levels are plotted as a function o

magnetic fields for different values ofsn, md, with the
energy h̄vL set to 1 ats ­ 5 and the radiusr0 fixed.

FIG. 2. Dependence of the energy eigenvaluesEnm on the
angular momentumm for s ­ 5. Dashed lines represent the
bulk Landau levels.
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FIG. 3. Energy spectra as a function ofs. The energy unit of
h̄vL ­ 1 at s ­ 5 is used. Dotted lines represent the Landa
levels.

As the magnetic field increases, the deviations of energ
from the bulk Landau levels become significant, whic
leads to the magnetic edge states near the boundary
the quantum dot. In the limit ofB ! `, we find that the
energies approach the conventional circular dot which
electrostatically confined by hard walls without magnet
fields. From the analysis used for the uniform field cas
we can also show that thesn, md state corresponds exactly
to the ensemble average of the classical motions whi
consist of the straight line paths in the dot region and th
cyclotron orbits with the radiusri and the center located
at rj outside the dot. These straight lines and cyclotro
orbits intersect each other at the dot boundary. In th
case, the relations [11] between thesn, md states and the
correspondingri and rj values are determined from
the conservations of energy and angular momentum
the magnetic quantum dot and are written as

ri ­

s
Enm

2
, rj ­

q
r2

i 2 meff . (5)

Equation (5) has the same form as Eq. (3), except th
Enm calculated from Eqs. (1) and (2) is lifted from the
bulk Landau level in Eq. (3) andm is replaced bymeff
due to the inhomogeneity of magnetic fields. The class
cal trajectories for thes0, 0d, s0, 21d, ands0, 1d states are
drawn in Fig. 4, showing a clear correspondence betwe
the quantum eigenstates and the classical motions;
probability densitiesjRnmsrdj2 and the directions of the
probability currentsInm correspond to the classical mo-
tions. The classical trajectory corresponding to thes0, 0d
state carries no current because it always passes thro
the origin, and the classical motions of thes0, 21d and
s0, 1d states correspond to the probability currents of th
states in the clockwise and counterclockwise direction
respectively. We find that our correspondence analy
may answer the important question as to whether the cl
sical motions corresponding to the quantum eigensta
u
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FIG. 4. Classical trajectories of electrons and correspondin
probability densities for the eigenstates (a)s0, 0d, (b) s0, 21d,
and (c)s0, 1d.

are periodic or not. In the magnetic quantum dot, period
motions occur if the anglea made by two lines connected
from the origin to the centers of two successive orbits [se
Fig. 4(c)] is 2ppyq, wherep and q are integers. From
a simple geometrical argument,a is found to satisfy the
relation cossay2d ­ sr2

i 1 r2
j 2 r2

0 dy2rirj . However, at
this moment, it is difficult to give a definite answer be-
cause of the numerical errors for evaluatingEnm.

Finally, we discuss the difference between the mag
netic edge states and conventional ones, by investigati
the quantum interference effect in the magnetic quantu
dot. We consider a small two-dimensional conducto
with a magnetic quantum dot at the center. For mag
netic fields which give the quantum Hall plateaus, th
transport along the boundary of the sample, which
usually promoted by conventional edge states, can
backscattered by the resonant tunneling into the ma
netic edge states along the boundary of the dot, becau
of the impurity effect in the narrow region between two
boundaries. In usual quantum dots or ring structure
the resonant tunneling effect in magnetoresistance me
surements gives rise to the Aharonov-Bohm oscillation
[8,12], which are periodic with magnetic field. In the
magnetic quantum dot considered here, we do not s
such periodic oscillations. We calculate the two-termina
conductance, which is the inverse of the sum of magnet
resistance and Hall resistance, taking into account th
1503
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FIG. 5. Magnetoconductance as a function ofs.

resonant backscattering via the magnetic edge chann
as follows:

GsBd ­
2e2

h

"
1 2

X
n,m

G2

fEF 2 EnmsBdg2 1 G2

#
, (6)

where G is the elastic resonance width and a consta
value ofG ­ 0.005 is used for simplicity. The calculated
conductance is plotted as a function of magnetic fie
in Fig. 5, with the Fermi energy ofEF ­ 2 in units of
Fig. 3. In this case, the magnetic fields represented
s are in then ­ 2 quantum Hall plateau region, where
n is the Landau level filling factor. We find that the
oscillations are not periodic, in contrast to the Aharono
Bohm-type oscillations. The first dip in the conductanc
at abouts ­ 3.7 is due to the resonant backscatterin
via the s1, 23d magnetic edge state. The other dips a
found to be associated with thes0, 3d, s1, 1d, s1, 22d,
and s1, 21d states in the increasing order ofs. In the
narrow ring structure of Jain [8], the intervals betwee
the dips were shown to be periodic, which indicates th
subsequent change of one flux quantum passing throu
the inner boundary. In our magnetic dot structure, th
resonances occur via the two different magnetic ed
states circulating in different directions, depending on th
sign of m. Since there is no magnetic field inside th
magnetic dot, the magnetic edge states may not encl
the magnetic flux, resulting in the missing of flux quanta
which is absent in the edge states formed by electrosta
confinements.

In conclusion, we have investigated the electronic stru
ture of a magnetic quantum dot, and the formation of th
edge states corresponded to the classical trajectories.
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The

magnetic edge states depend critically on the number
missing flux quanta and show quite distinctive aperiod
oscillations in magnetoconductance. The significance
this paper can be extended to more complex systems [
and applied to the edge states of composite fermions [1
in the fractional quantum Hall system with a spatiall
varying electrostatic potential, for example, in an ant
dot, because the effective magnetic field in the conte
of composite fermions varies with the density of compo
ite fermions.
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