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Long Jumps in Surface Diffusion: A Microscopic Derivation of the Jump Frequencies

M. Azzouz and H. J. Kreuzer
Department of Physics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5

M. R. A. Shegelski
Department of Physics, University of Northern British Columbia, Prince George, British Columbia, Canada V2N

(Received 16 September 1997)

Starting from a microscopic Hamiltonian for a particle on the corrugated surface of a solid we derive
the master equation for phonon-mediated hopping and friction using the Wannier representation. For
a sinusoidal corrugation (in addition to a Morse surface potential) we investigate the role of interband
transitions and numerically calculate transition probabilities. We find that long hops beyond nearest
neighbor sites are significant, particularly for weakly coupled systems. [S0031-9007(97)05244-7]
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Diffusion of particles on solid surfaces is most ofte
controlled by a hopping mechanism by which the partic
resides in well-defined adsorption wells for times muc
longer than it takes to jump into neighboring sites [1
This idea goes back at least to Chudley and Elliott [2
who developed a lattice gas model for diffusion by discre
jumps. They suggested that in liquids jumps are n
only to nearest neighbor sites but that jumps into mo
distant sites must also be considered. Recent advan
in quasielastic helium scattering on surfaces [3–7] an
in field ion microscopy [8] have given ample evidenc
that on surfaces diffusion of adsorbed particles is n
restricted to jumps between nearest neighbor adsorpt
sites but that for weakly coupled adsorbates jumps
second and even third neighbor sites are non-negligib
This does not come as a total surprise because molecu
dynamics simulations—which one may view as numeric
experiments—have shown this repeatedly [9–15].

Apart from classical molecular dynamics simulation
almost all theoretical approaches to surface diffusion, a
also the analysis of experimental data [16], are bas
on the master equation for a kinetic lattice gas mod
with ad hoc hopping probabilities, and consequent sim
plifications to the Langevin, Kramers, or Fokker-Planc
equations. Several, more or less identical, calculatio
of the (phonon-mediated) friction coefficient have bee
published based on a correlation function approach with
classical statistical mechanics both for the motion perpe
dicular [17–19] and parallel to the surface [18–20] (wit
the exception of Refs. [21–23] where the friction coeffi
cient for the perpendicular motion is derived quantum m
chanically together with the Fokker-Planck and Krame
equations). It has also been discussed recently that ju
probabilities on surfaces (and as a result friction) are n
only due to the coupling of the adsorbate to the phono
of the substrate but also to the electronic degrees of fre
dom [15,20,24].

In this paper we will sketch a microscopic derivation
of the master equation, and thus of a kinetic lattice g
model, for surface diffusion. It is based on a quantu
0031-9007y98y80(7)y1477(4)$15.00
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mechanical treatment of the coupled solid-gas syst
which has been used before to derive the kinetic equati
for adsorption and desorption [21–23]. To study surfa
diffusion we will use the Wannier representation of th
wave functions for a periodic system that provide t
natural framework for the localization of the particle
at lattice sites. This approach has several advanta
(i) Being quantum mechanical, no assumptions need
be made concerning the mass of the diffusing partic
and the coupling to the substrate; (ii) we will ge
explicit expressions of the jump frequencies in terms
microscopic parameters of the coupled adsorbate-subs
system. Numerical results will be presented for on
dimensional motion.

We begin by considering a single particle of massm
on the surface of a solid (lateral interactions at nonz
coverages will be considered in the full account of th
work). Its Hamiltonian can be written

Hg ­ 2
h̄2

2m
≠2

≠r2 1 Vssz, Rd . (1)

Herer ­ sz, Rd with the z axis perpendicular to the sur
face andR a two-dimensional vector in the surface. W
assume that the surface potential has translational s
metry along the surface, i.e.,Vssz, R 1 Rld ­ Vssz, Rd,
where Rl ­ l1a1 1 l2a2 with l1 and l2 integers anda1

and a2 lattice vectors in two dimensions spanning a su
face unit cell.

Translational symmetry implies that we can write th
surface potential as

Vssz, Rd ­ V0szd 1
X

mfi0

Vmszd expsiKm ? Rd . (2)

The first term is the surface potential of a flat surface a
the sum extends over all the Fourier components describ
the surface corrugation whereKm ­ 2psm1b1 1 m2b2d
with m1 andm2 integers andbi reciprocal lattice vectors
such thatai ? bj ­ dij. Thez dependence of the highe
Fourier components,Vmszd, introduces some coupling be
tween the eigenstates ofV0szd (bound states and contin
uum) and of the Bloch states in the periodic potential alo
© 1998 The American Physical Society 1477
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the surface. Because of the extended (and periodic)
ture of the Bloch states they are not well suited to stud
localized hopping on the surface. We therefore switch
Wannier functions, constructed from the Bloch function
via a two-dimensional Fourier transform [25]. These func
tions are orthogonal in the band index and also on differe
lattice sites, but are not eigenfunctions of the (static) si
gle particle Hamiltonian (1). They are centered aroun
a particular unit cell of the surface with their localiza
tion within that cell being the highest for the lowest en
ergy band and becoming progressively more delocaliz
t

a
n

n

t

a
l
ly
h
r

h
e

1478
na-
y

to
s
-
nt
n-
d

-
-
ed

for higher bands. Because Bloch functions can be mu
plied by a phase factor that is an arbitrary function of t
wave vector, this phase factor makes the Wannier functi
nonunique and can be used to control their localizatio
This, of course, does not affect jump frequencies, frictio
and diffusion coefficients but can be used advantageou
in the numerical calculations.

Expanding the particle field operators in terms
Wannier functions we introduce creation and annihilati
operators, e.g.,by

n sRl, td creates a particle in bandn at
siteRl and timet. In terms of these operators the variou
contributions to the Hamiltonian read
H ­
X

n,Rl,R
0
l

EnsRl 2 R0
ldb

y
n sR0

l, tdbnsRl, td 1
X
J

h̄vJb
y
J bJ 1

X
n,Rl,n0,R0

l,J

X̃sn, Rl; n0, R0
l; Jdby

n0sR0
l, td

3 fby
J std 1 bJ stdgbnsRl, td , (3)
a-
rs
u-

n

where the energies are given in terms of the Bloc
eigenvaluesEnsRl 2 R0

ld ­
P

K En,Ke2iK?sRl2R0
ld. The

substrate degrees of freedom are excited by the opera
b

y
J and can be elastic, magnetic, or electronic in origin.

this Letter we will consider only coupling to the phono
bath of the substrate in which case the matrix eleme
X̃ involve the derivative of the surface potential, take
between Wannier states and can be expressed in term
matrix elements between Bloch states.

The master equation for phonon-mediated adsorpti
and desorption has been derived elsewhere [21–23] a
we follow the same procedure here to include the m
h

tors
In
n
nts
n
s of

on
nd

o-

tion parallel to the surface. We solve Heisenberg’s equ
tion of motion for the creation and annihilation operato
of Wannier states to second order in the phonon co
pling and get for the occupation probabilitiesfnsRl, td ­
kby

n sRl, tdbnsRl, tdl,

d
dt

fnsRl, td ­
X

n0 ,R0
l

fW sn, Rl; n0, R0
ldfn0sR0

l, td

2 W sn0, R0
l; n, RldfnsRl, tdg , (4)

where the transition probabilities (per unit time) are give
by
W sn0, R0
l; n, Rld ­

2p

h̄

X
J

jX̃sn, Rl; n0, R0
l; Jdj2

3 hnsphdsvJddfEn0s0d 2 Ens0d 2 h̄vJg 1 fnsphdsvJ d 1 1gdfEns0d 2 En0s0d 2 h̄vJgj . (5)
d
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In deriving the above master equation, we neglec
off-diagonal contributions of the kindkby

n sR0, tdbnsR, tdl
since such contributions decrease exponentially w
jR0

l 2 Rlj. This master equation describes the phono
mediated transitions between the states of the st
Hamiltonian. If, for the sake of a qualitative discussio
we neglect thez dependence in the higher Fourier com
ponents,Vmszd, of the surface potential, then adsorptio
and desorption are controlled mainly by the transitio
in V0szd with a cascade of transitions between the bou
states predating the final desorption transition into
continuum [23]. If the lowest two eigenstates ofV0szd
are further separated than the height of the surf
corrugation then diffusion along the surface is decoup
from the motion perpendicular to it. This is most like
the case for the light noble gases and for closed s
molecules such as N2 that are physisorbed. Howeve
for heavier particles (and, in particular, those that a
chemisorbed) the bound state levels inV0szd become
close (and a continuum in the classical limit) and t
surface corrugation becomes large so that one exp
ed
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significant coupling between the motion parallel an
perpendicular to the surface.

To confine the processes in (4) to surface diffusion on
we must restrict the eigenstates to the bound states of
system and consider only transitions between them.
further simplification results if the coupling to the sub
strate is sufficiently strong so that the adsorbate rema
in local equilibrium [23]. We then writefnsRl, td ­
fsRl, tde2EnykBT y

P
n0 e2En0 ykBT and sum the master equa

tion over all states to get
d
dt

fsRl, td ­
X
R0

l

fW sRl, R0
ldfsR0

l, td

2 WsR0
l, RldfsRl, tdg , (6)

where

W sR0
l, Rld ­

X
n,n0

W sn0, R0
l ; n, Rlde2bEn

¡ X
n00

e2bEn00 .

(7)

These probabilities do not only describe transitions b
tween nearest neighbor sites but also longer ranged jum
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Restricted to nearest neighbor jumps this is the ma
ter equation for a symmetrical (asymmetrical) one-st
process in the absence (presence) of an external field
can be solved by well-known methods [26].

Elsewhere [21–23], it has been shown how to extra
analytical forms for the friction coefficient (for the mo-
tion perpendicular to the surface) in terms of the micr
scopic parameters of the coupled adsorbate substrate
tem, and we will do the same for the motion parallel t
the surface in a longer paper. Here we will report on
some results on the jump frequencies for single and mu
ple site hops. To get some explicit results we take f
the corrugated potential a simple cosine form, name
VksRd ­ VLszd coss2pxyad 1 VLszd coss2pyybd. Here,
a and b stand for the lattice parameters in thex and y
directions, respectively. Ifs2

k ­ 2ma2VLyh̄2 ¿ 1, such
a potential has narrow atomiclike bands well below th
potential barrier, which widen for energies around the to
of the barrier and become free electronlike much abo
it [25,27]. Hopping involves foremost the transitions be
tween the two bands around the top of the barrier. A
suming that the occupations of the lowest levels are ke
in thermal equilibrium by fast transitions we can conce
trate on the above two bands. In this Letter we deal w
only light physisorbed particles with diffusion barriers s
small that a two-band approximation can be employe
s-
ep
and
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In one dimension we then get for the energy spectru

[28] E6sKd ­ s1y2d p s´1 1 ´2 6

q
s´1 2 ´2d2 1 V 2

L d
where ´1 ­ h̄2K2y2m and ´2 ­ h̄2sK 2 K0d2y2m. If,
for simplicity in this Letter, we take the corrugation of th
surface potential to be independent ofz, then the whole
surface potential is separable and there are two bands
the motion parallel to the surface for each (bound sta
eigenstate perpendicular to the surface. We then ge
set of two coupled master equations with intraband a
interband transition probabilities. In the case where t
transverse motion to the surface is negligible (when t
particle performs a very large number of hops before d
sorption can occur), only interband transitions contribut
For a semi-infinite continuum, these are given by

W sRl 2 R0
ld ­

3s
2
k

16p

m
Ms

µ
v0

vD

∂3

v0GsD, Rl 2 R0
ld

3
1

eDykBT 2 1
1

e2DykBT 1 1
, (8)

where D ­ N 21
P

K fE1sKd 2 E2sKdg, N being the
total number of sites on the solid surface. Herev

2
0 ­

4p2VLyma2 is the vibrational frequency at the bottom o
the corrugated surface potential, andvD is an average
Debye energy of the solid substrate. Moreover
GsD, Rl 2 R0
ld ­

D

VL

X
s­L,T ,T 0

v
3
D

v
3
Dssd

Z p

0
du

Z 2p

0
du sinusessd

x d2

3

É X
K­0,2pyN a,...

1
NK

( X
p­6

pfAK 2 AK12ppya2D cosf sinuy h̄cs
g

NK12ppya2D cosf sinuy h̄cs

1 AK

"
AK2D cosf sinuy h̄cs

NK2D cosf sinuy h̄cs

2
AK14pya2D cosf sinuy h̄cs

NK14pya2D cosf sinuy h̄cs

#

2
1

NK24pya2D cosf sinuy h̄cs

1
1

NK2D cosf sinuy h̄cs

)
eiKsRl2R0

ld

É2
(9)
t

een
free-
0]
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own
is a dimensionless quantity withNK ­
q

1 1 A2
K

AK ­ s
22
k fsKad2 2 sKa 2 2pd2g

2

q
fsKad2 2 sKa 2 2pd2g2 1 s

4
k , (10)

and e
sLd
x ­ sinu cosf, e

sTd
x ­ 2 cosu cosf, e

sT 0d
x ­

2 sinf are thex components of the polarization vector.
For low temperature,kBT ø D, the transition proba-

bilities (8) are of Arrhenius form for a thermally ac-
tivated process, but non-Arrhenius behavior sets in
the temperature is raised. The dependence of the jum
frequencies on the mass ratio, on the Debye frequen
vDssd ­ s 6p2r0

Ms
d1y3cs, and on the vibrational frequency

in the surface potential is analogous to that of the fric
tion coefficient for the motion perpendicular to the surfac
[21–23]. s refers to the (surface) phonon mode corre
as
p

cy

-
e
-

sponding to the velocitycs , andMs is the mass of the uni
cell of the solid. The (additional) functionGsD, Rl 2 R0

ld
incorporates the coupling to the phonon bath.G also con-
tains all the information about the energy transfer betw
the adsorbed particle and the substrate degrees of
dom. The earlier estimates of parallel friction [18–2
essentially assign a constant to this function.G also con-
trols the jump length in diffusion with the relative weigh
of jumps into first or further neighbor sites being co
trolled by s

2
k . For light physisorbed particless2

k is of
the order of 10–100, a range for which the two-band
proximation for the cosine potential is acceptable. F
the complete characterization of the system we introd
a second dimensionless parameter,a ­ h̄ymac, wherec
is an average phonon velocity.

Numerical values for the relative jump frequencies (w
respect to the jumps to nearest neighbor sites) are sh
1479
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TABLE I. Numerical values for relative jump frequencies.

s
2
k ! 1 10 50 50 50 4000 MD

a ! 0.1 0.1 0. 0.01 0.001 0.03

0 ! 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00
0 ! 2 0.6899 0.0870 0.1333 0.0406 0.0388 0.250 0.38
0 ! 3 0.4615 0.0178 0.0552 0.0077 0.0068 0.11 0.19
0 ! 4 0.2820 0.0014 0.0302 0.0023 0.0018 0.062 0.06
0 ! 5 0.1582 0.0003 0.0191 0.0009 0.0006 0.040 0.04
.
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d

in Table I for several situations. It is clear that the smalle
the s

2
k the more likely are longer jumps, the reason bein

that then the coupling to the phonon bath via the deriv
tive of the surface potential becomes weaker and frictio
is less efficient. We point out that the friction coefficien
can be obtained from the jump frequencies as their seco
moments. As a function ofa the jump frequencies first in-
crease reaching a maximum and then decrease. We fou
numerically that for largea the jump frequencies decay
like a Lorentzian over a considerable distance range. F
very large distances they must eventually decay faster
guarantee a finite diffusion coefficient. Indeed, for sma
a a faster decay than Lorentzian is observed even for t
smallest jump distances. For the last two columns in T
ble I we have chosen parameters such that the jump dis
bution obtained by Ellis and Toennies [15] [through molec
ular dynamics (MD) simulations for NayCu] is reproduced.

In this paper we have derived the master equation f
adsorption/desorption and diffusion and calculated fro
first principles the frequencies of long jumps. We confirm
that jumps to further than first neighbors are unavoidabl
particularly in weakly coupled systems. What remain
to be done is (i) to improve the treatment of the surfac
potential beyond a two-band approximation including th
coupling between the motion parallel and perpendicular
the surface, (ii) to include lateral interactions in the adso
bate and study finite coverage effects. Both problems fin
natural solutions in the Wannier function representatio
(iii) It is straightforward to derive a Kramers equation
from the master equation and to get microscopic e
pressions for friction and diffusion coefficients. (iv) The
Wannier representation is also a natural framework to de
with the interface between incommensurate lattices.
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