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Interpretation of the Neutron Scattering Data on Flux Lattices of Superconductors
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Small angle neutron scattering (SANS) experiments are analyzed using a recently developed and
properly generalized one-field effective free energy method. In the case of experiment of Keimer
et al. on YBa2Cu3O7, we show that the fourfold symmetry of the underlying crystal is explicitly broken,
but the reflection with respect to the [110] and [11̄0] axes remains a symmetry. The vortex lattice also
becomes generally oblique instead of rectangular body centered. An unexpectedly rich phase diagram
is described. [S0031-9007(97)04956-9]
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There are growing evidences that superconductivity
layered highTc cuprates is largely due to thedsx22y2d
pairing [1] with small mixing of s-wave component
[2–4]. The unconventional pairing mechanism make
an impact on the single vortex and the vortex lattic
structure. Recent studies on the detailed structure of
Abrikosov vortex lattice in YBa2Cu3O7 (YBCO), using
small angle neutron scattering (SANS) [5,6] and tunnelin
spectroscopy [7], show clear deviations from the standa
triangular lattice. It is natural to try to explain these
deviations theoretically with modified phenomenologica
Ginzburg–Landau (GL) theory. To investigated-wave
superconductors withs-wave mixing, Renet al. [8] and
Soininen et al. [9] both derived an effective GL type
theory using two order parameters:s and d. From this
effective action, or more fundamental equations [10
one obtains a characteristic four-lobe structure for a
isolated vortex and its associated magnetic field [11
The fourfold vortex core structure comes into conflic
with the high symmetry of the triangular lattice and ca
distort it at already accessible fields much lower tha
Hc2. The vortex lattices obtained within this approac
are basically centered rectangular lattice with chains
vortices oriented along crystalline axes [100] and [010
(see Fig. 1). They spontaneously break the fourfo
rotational symmetry (i.e., two different lattices related b
90± rotation), but preserve the reflections with respect
the axes [100] and [010].

These predictions come close to results of some e
periments [5,7], but clearly disagree with those of [6
According to the interpretation given in [6], the centere
rectangular vortex lattice gets rotated by 45± with respect
to the crystalline axes [see Fig. 2(a)], i.e., the chains
vortices lie along the diagonal directions [110] and [11̄0]
instead. A recent theoretical study by Renet al. [12]
has considered explicit breaking of the fourfold symmetr
within the two field framework. Their results, however
remain qualitatively the same as the case with fourfo
symmetry—only centered rectangular nonrotated vort
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lattices are obtained. So far, there is no theoretical in
terpretation for the lattice data observed in [6]. We sha
provide such an interpretation in this Letter. Our answe
is different from that provided in [6], however, the results
can still be derived from the GL theory with proper four-
fold symmetry breaking terms.

In this work we adopt a recently developed one-fiel
effective theory, first introduced by Afflecket al. [13] in
which they work mainly in the London limit, and later
by us [14] for static and moving vortex lattices nearHc2.
Most of the above mentioned results can be reproduced
this much simpler formulation in which only the fieldd is
introduced and the theory is based on the followingD4h

symmetric free energy:

Fefffdg ­
1

2md
jPdj2 2 adjdj2 1 bjdj4

2 hdp
≥
P2

y 2 P2
x

¥
2d , (1)

where P ­ 2i= 2 epA. The last term which we call
F4d parametrizes the breaking of full rotational symmetr
down to D4h and can be treated as a perturbation. Nea
Hc2, the linearized equation in the one-field approach ca
be solved perturbatively inh, which allows one to easily
generalize the description of the centered rectangul
lattices to the most general oblique lattices [14]. This wil
be crucial in the present work in which these more gener
lattices are indeed the ground state in some cases.

FIG. 1. The body-centered rectangular lattice obtained in th
fourfold symmetric case, the two lattices (a) and (b) are relate
by a rotation of 90± or reflection about the [110] axis.
© 1997 The American Physical Society 145
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FIG. 2. Keimer et al.’s SANS diffraction pattern and two
different interpretations. (a) Keimeret al.’s interpretation, and
(b) the interpretation given in this paper.

Note that the contributions to the coefficienth might
not only come from thed-s mixing which always gives
a positive h, but also from other sources [14]. The
possibility of having negativeh will be discussed later.
It is also important to realize that since this formulatio
utilizes only the symmetry properties, it can be applie
to the conventional type II superconductors withD4h

symmetry as well. In this case,h is proportional to
the angular average of products of Fermi velocities o
the Fermi surface, describing the deviation of the Ferm
surface from a perfect sphere [15]. The effective streng
of F4d can be characterized by a dimensionless parame
h0 ; hmdepH [14]. Using the free energy in Eq. (1),
one finds centered rectangular vortex lattices [see Fig.
with the anglea directly related to the coefficienth0.
The lattice becomes square whenh0 exceeds a critical
value h0

c ­ 0.0235 [14]. This can accommodate the
tunneling spectroscopy data of [7] and the SANS da
of [5] for YBCO, as well as a recent decoration an
neutron scattering data for a lowTc material ErNi2B2C
[16]. The analysis presented in [14] indicates that th
precise SANS data of [16] unambiguously shows th
for large h0, the vortex lattice becomes a square on
exhibiting perfectD4h symmetry. The less precise data
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of [7] gives an anglea ø 54±, which corresponds to
h0 ø 0.019 and is in the centered rectangular phase
These two experiments on two different samples bot
seem to show manifestation ofD4h symmetric GL free
energy and correspond to its two different phases. Th
transition from the centered rectangular vortex lattice t
the square lattice was observed in ErNi2B2C [16] and has
not been observed yet in highTc materials.

In order to explain the data in [6], we now general-
ize the formalism to include terms which break theD4h

symmetry. This can be also motivated by noting that i
many highTc cuprates theD4h symmetry is not exact.
For example, the CuO chains in YBCO break the fourfold
symmetry down to twofold [12]. Up to (scaling) dimen-
sion three, there are two possible terms that break fou
fold symmetry:Fx22y2 ­ 2mdpsP2

y 2 P2
xdd andFxy ­

2ldpsPxPy 1 PyPxdd. The first termFx22y2 describes
the asymmetry between [100] and [010] axes and ha
the reflection symmetriesx ! 2x, y ! y (sx) andx !

x, y ! 2y (sy). This term has already been consid-
ered in [12]. The second termFxy , on the other hand,
preserves the reflection symmetry with respect to th
[110] and [110] directions, that is,x ! y, y ! x and
x ! 2y, y ! 2x. In the BCS theory, the presence of
the second term requires that the shape of the Fermi su
face also breaks thesx andsy symmetries. Since this is
quite unlikely, we do not expect that it will occur in the
conventional superconductors. We will find, however, in
the case of Keimeret al.’s SANS experiment, theFxy

term is required to explain the data.
The method of calculation is quite analogous to tha

of the h correction explained in [14], so here we just
present the result. Leta, b be the two lattice constants
anda be the angle between the two basis vectors (Fig. 1
It will be convenient to introduce the complex variable
z ; b

a eia ; r 1 is. The angle between the vortex
lattice and the crystalline lattice will be denoted byw.
The Abrikosov’sbA ; kjdj4lykjdj2l is then given by
bAsr, sd ­ b0
Asr, sd 1

p
s

4
Re

(" X̀
n0­2`

exps22piz pn02d

# " X̀
n­2`

exps2piz n2dGsnd

#

1

µ
n ! n 1

1
2

, n0 ! n0 1
1
2

∂)
, (2)
ive

ng

s

to
whereb
0
Asr, sd can be found in a standard textbook or in

[14]. All the three anisotropic corrections are collected i
the prefactor

Gsnd ­ h0e4iws64p2s2n4 2 48psn2 1 3d

1 4m0e2iws8psn2 2 1d

1 4l0e2isw1py4ds8psn2 2 1d , (3)

wherem0 ; mmd , l0 ­ lmd .
The termFy22x2 in the effective energy preserves the

symmetries of the centered rectangular lattice and
n

is

therefore not expected to produce interesting qualitat
effects, so we will drop them0 term in the following
discussions; however, it is understood that in maki
quantitative comparison with data, them0 term may
have to be included. The remaining correction tobA

summarized inGsnd has two parts: the first one come
from the fourfold symmetric termF4d and hase4iw

angular dependence. The second one hase2isw1py4d

angular dependence and comes fromFxy. It is this
conflict between the two contributions that gives rise
the observed diffraction pattern. EitherF4d or Fxy alone
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will give reflection invariant lattices, i.e., rectangular bod
centered lattice aligned along [100] or [110], respectivel
The lattice structure is determined by minimizingbA with
respect tor, s, andw numerically. One obtains generally
nonrectangular oblique vortex lattices. It differs markedl
from theD4h symmetric case.

Figure 2(b) shows the diffraction pattern and the co
responding lattice structure that we obtained ath0 ­
0.019, l0 ­ 0.04. (Note that in 2D the reciprocal lattice
is nothing but a rotation of 90± of the real lattice.) In one
of the diffraction patterns, Fig. 2(a), one sees clearly tw
large peaks in the [110] direction and four weaker poin
on both sides of the [110] line, giving totally ten points
This was interpreted in Ref. [6] as a nearly rectangula
lattice with one of the basis vectors lying on [110], to
gether with its reflected version. (Presumably, the tw
lattice orientations are degenerate ground state and sh
up simultaneously as different domains in the sample
The points on the [110] line then coincide and produc
constructive interference. In comparison, in the previou
calculations, because the reflection symmetriessx and
sy are preserved, one always obtained rectangular lattic
which are aligned to either [100] or [010]. They posses
twofold symmetry and upon reflection one is unable t
produce different lattices. As a result, there will be onl
six points on the diffraction pattern and one cannot a
count for the data.

We notice an important difference here: The off diago
nal points (the four weaker points) are not really on th
line parallel to [110] as Keimeret al. claimed. One might
hope to tune the parameters such that when the two poi
on [110] merge into one, the off diagonal points will align
themselves as well, but this is not the case. In fact, th
will also merge with each other, and there will be no
splitting anymore. If one looks carefully at their contou
plot it is possible to tell the difference. Furthermore, th
lattice we obtained is not rectangular; this is consistent wi
their possibly5% difference between the length of the two
primitive basis vectors.

The vortex lattice phase diagram in thesh0, l0d plane is
presented in Fig. 3. Since changing the sign ofl0 only
reverses the roles of [110] and [11̄0] axes, it suffices to
show only the positivel0. First, consider theD4h sym-
metric case withl0 ­ 0. Then h0 ­ 0 corresponds to
the conventional triangular lattice with no special orien
tations. Forh0 , h0

c the lattice is centered rectangula
aligned to [100] and [010] with double degeneracy (re
lated by reflection about [110]). Increasingh0 elongates
lattices along either [100] or [010] so that whenh0 . h0

c,
the two degenerate lattices both becomes square and
full D4h symmetry is restored.

For l0 . 0, there are three phases and two phase tra
sition lines. The lattice, compared to the correspondin
l0 ­ 0 case, can in general be thought of as resultin
from a deformation in the [110] direction. (Forl0 , 0,
the corresponding deformation will be in the [11̄0] direc-
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FIG. 3. The phase diagram for the vortex lattice structure
a function of the fourfold anisotropy parameterh0 and the
twofold anisotropy parameterl0.

tion.) The lattice is centered rectangular for smaller valu
of h0, while it is rectangular (not centered) for larger va
ues ofh0. Symmetry of the unique ground state in eac
of these two cases is larger than that of the free ener
There is, however, no direct phase transition between the
Instead, in the region between these two phases boun
by l

0
1sh0d and l

0
2sh0d, there is a less symmetric phase i

which ground states are doubly degenerate. This com
from a nontrivial competition betweenF4d andFxy . The
two degenerate lattices are also related by the reflect
about [110] and are generally oblique. We see that t
data in [6] can be fitted into this phase. The transition lin
l

0
1sh0d starts from the origin and monotonically increase

with h0, while l
0
2sh0d starts fromsh0

c, 0d and also increases
monotonically. l

0
2sh0d appears to approachl0

1sh0d asymp-
totically. Sinceh0 is proportional to the magnetic fieldH,
one immediate implication of this phase diagram is tha
for a given sample, by increasingH one should encounter
two phase transitions. This prediction can be tested
rectly by a number of experimental techniques.

We would like to briefly describe here another, rath
exotic possibility. The one-field approach allows one
consider the negativeh case. This cannot be obtaine
from the two field formulation in whichh is always
positive if we only assume one critical temperature [8,9
However, the possibility of negativeh cannot be ruled
out theoretically. In the one component theory with exa
fourfold symmetry, the negativeh is equivalent to thedxy

pairing, while in the BCS theory, it could happen if th
Fermi surface is elongated along they ­ 6x direction.
When h0 is negative, the minus sign replacesw in the
exps4iwd factor in Eq. (3) byw 6 45±, and then both
F4d and Fxy will prefer the diagonal direction. As a
result there will be no competition and we will always ge
rectangular body centered lattices along [110] or [11̄0].
147
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.
d).
In conclusion, we have investigated the effects o
explicit fourfold symmetry breaking on the Abrikosov
lattice structure with the one-field formulation. The
complete phase diagram was constructed. We fou
a quite rich phase diagram with three different phas
separated by two phase transition lines. The vort
lattice observed in Keimeret al.’s experiment [6] can be
accommodated in the new phase diagram. It turns out t
the vortex lattices are no longer centered rectangular, b
rather general oblique ones. Other experiments fit qu
well into theD4h symmetric phase in which the triangula
to square phase transition takes place.
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