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Size Scaling of Strength in Heterogeneous Materials
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The strength of planar arrays af elastic elements, having heterogeneous strengths and coupled by
elastic stress transfer, is studied by simulation and size-scaling analyses. Failure statistics for large
are shown to be controlled by a critical damage cluster of giz&hose failure statistics are the same
as theknownstatistics forn. elements failing under mean-field stress transfer. The largfatistics are
found analytically. Strength scales #1(n), accurate to= 10'! elements. These results suggest new
concepts for understanding scaling of failure in heterogeneous materials. [S0031-9007(98)05351-4]

PACS numbers: 46.30.Nz, 02.50.Ey, 02.70.Lq, 81.05.Mh

Fracture in heterogeneous systems has been an areaWhile intriguing, such relationships probably cannot be
active study in recent years due to its relevance in pracdgorously extended to predict the (size-dependent) failure
tical engineering materials such as polycrystals and fibestrength since phase transitions and mean-field theory
composites [1], biological materials such as bone [2], andnodels do not exhibit size scaling of any features such
possibly geological systems such as earthquake faults [3gs the critical field, coexistence line, or spinodal line.
Elastic stresses are long ranged, however, so that regioddso, the fracture problem does not even have a proper
of high local damage generate high local stresses whicthermodynamic limit since the strength approaches zero
start an avalanche of breaks across the entire macroscoyas the system size becomes infinite. Earlier works using
system. The major challenge in dealing with fracture probspring, resistor, and beam models to simulate fracture
lems is thus combining the statistical evolution of damagénighlighted the size dependence but were generally unable
initiating around the weaker heterogeneities with the assao predict the observed size dependences except for a
ciated stress redistributions to accurately predict the poirparticular distribution of heterogeneity for which mean-
of instability. Fracture problems therefore cannot be defield theories do seem to apply [14].
scribed by mean-field theories, in general. The heterogeneous failure problem has been studied in

A consequence of the localized nature of fracture is thatletail by statistical approaches [4—11]. The most widely
the strength at a fixed size is inherently statistically dis-studied problem is a linear array of elements in which
tributed. Nominally identical materials (same geometry,broken elements transfer stress only to the immediate two
underlying distribution of element strengths but a differentneighbors. Recursive and asymptotic solutions [5,9] show
statistical realization) have different strengths. Anotherll the features expected when there is local stress transfer:
consequence of the localized nature of the fracture instadecreasing strength with increasing size, weak-link scaling,
bility is that the fracture strength is governed by weak-linkand failure driven by the development of a local cluster
scaling. That s, a large system can be formally consideredf breaks that generates high local stress concentrations
as composed of a collection of independent subsystenmend leads to a cascade of breaks across the material.
coupled in series so that failure in the weakest subsysteffihe 1D array and extremely localized nature of the load
causes failure across the entire system. So, the strengttansfer make this problem of limited practical interest.
distributions at different sizes must be related as followsAnalyses of hexagonal arrays with nearest neighbor stress
Let H,(o) and H,,(o) be the cumulative failure proba- transfer [6] and linear arrays with next nearest neighbor
bility distributions (FPD) at stress for systems of size stress transfer [7] have been performed, but are not easily
n andn’, respectively. Considering the sizesystem as extended to realistic load sharing models.
composed ofi/n’ subsystems of size’ < n, the proba- Here, we study the fracture strength of a typical 3D
bility of survival at sizen, 1 — H, (o), is then simply the heterogeneous system (aligned array of elements with a
product of the probabilities of survival — H, (o) forthe  strength distribution) with elastic stress transfer from failed
n/n' subsystems. The FPB,(o) at sizen can thus be to unfailed elements, and provide a new perspective on
related to that of size’ by [4—11] the prediction of material strength and its size-scaling be-

1 n/n’ havior. Specifically, we demonstrate that a large system
Hu(0) =1 = [1 = Hu(@)]"". (1) of sizen can be viewed as a collection af/n. smaller

Recent work on the heterogeneous fracture problem has/stems of a critical size. where the fracture statistics
drawn some analogies between fracture and first-ordgiFPD) at sizen. are essentially identical to those of the
phase transitions [12], and also related the scaling ofame size:. system failing within a mean-field model (no
some subcritical damage events to predictions from mearecal stress transfer). In other words, at sizehe domi-
field theory for special distributions of heterogeneity [13]. nant fluctuations in the “local-field” (elastic stress transfer)
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and mean-field problems are the same. The sizef the We have utilized the technique sketched above to simu-
critical region is nonuniversal, depending on the elemenlate the evolving damage and failure of square arrays of
strength distribution and nature of the load sharing. Butstochastic elements as follows. Each element is assigned a
the local-field—mean-field correspondence appears univestrength randomly chosen from the Weibull distribution. A
sal and gives rise to a universal form for the size scalingtress is applied to the elements such that exactly one break
of the strength, which depends gfin(rn), and to quan- will occur. The load from this element is transferred to the
titatively accurate predictions for strength. These result®ther elements using the Green’s function method. The ap-
suggest that future work on failure in heterogeneous syslied load is then adjusted such that one more element has
tems should focus on understanding how the fluctuationa stress equal to its assigned strength, and that element is
in the local-field and mean-field problems can be identicabroken and the stresses redistributed to all remaining ele-
at a critical sizez. and on the prediction of the critical size. ments. The sequence of breaking an element, redistribut-
To begin, we first discuss the mean-field theory foring the loads, and adjusting the load to obtain one more
strength [15]. Consider a very large array ofele- broken element, is carried out many times. The maximum
ments in a plane with stress applied perpendicular to thapplied stress is the tensile strength of that sample. Simu-
plane. Let the FPD versus stressfor the elements fol- lations have been performed for = 3, 5, 10 (typical of
low the Weibull formPs(c) = 1 — ¢~ ", wherem isthe ~ many materials and fibers) and= 196,400, 900, 2500
“Weibull modulus” and stress is in units of the charac-(except form = 3). Generally, 500 simulations were per-
teristic (0.632 probability) strength. In mean-field theoryformed, with320 (m = 3, n = 900), 150 (m = 10, n =
[16], when a stressr is applied to the array some ele- 2500), and100 (m = 5, n = 2500) being the exceptions.
ments fail and the unbroken elements all carry a stfess The simulated FPD${,,(o) versus stress at each size
o. The fraction of surviving elements is— P;(T) and, n and Weibull modulusm are shown in Fig. 1 in a
since the average stressds one obtains the relationship form such that Gaussians plot as straight lines. Clearly,
o =Te . Maximizing o vs T gives the strength of at fixed m, the strength decreases with increasing size
e = (me)~'/™. For afinite-size arragn > 10), the fail-  and the distributions are not Gaussian. Figure 2 shows
ure probability distribution is a Gaussian with cumulative examples of the damage just at the maximum applied stress
probability denoted a9, (z),z = (¢ — w,)/v., With a in a typical 196-element array. The extent of damage
mean strengthu,, and a standard deviatiop, [10,15,16] increases substantially with decreasing Weibull modulus,
and macroscopic failure evolves from a localized, but not
Un = oo + 0.9962n 231371 /m =1 /m, (2)  compact, cluster of broken elements. Since the simulated
) FPD is size dependent (Fig. 1), and failure is driven by
Yn = %[1 - 0_317<@> m—2/3e4/3mn—4/3} (3) the unstable propagation of a critical cluster rather smaller
Yn than the sizex (Fig. 2), weak-link scaling should apply.
1 \!/m 1/2 We now hypothesize that, at fixed element strength dis-
n_1/2[< > e V/m(1 - e‘l/’”)} tribution (fixed m), there exists a critical size. and as-
sociated FPDH, (o) to which all distributionsH, (o) at
Now consider the problem in which broken elements
transfer stress predominantlyriearbyunbroken elements,
a problem more closely related to real materials and fiber
composites. Geometry how becomes relevant, and so we
place the elements in a square array. Hedgepeth and
Van Dyke developed a continuum model for the in-plane
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stress-transfer function that can be set to exactly the stress 4 //’ /

transfer of [17] in one limit [18]. In that limit, which we

use here, the stress transfer from an isolated broken fiber 0.4 0.5 0.6 0.7

is 0.1428 to the four near neighbors, 0.053 to the next Strength

neighbors, and decays as* at large distances. _Compact FIG. 1. Cumulative probability of failure versus applied

clusters of breaks lead to stress concentrations on thgress, plotted so that Gaussian distributions are straight

cluster perimeter that increase with increasing cluster sizknes. Simulation data for composite sizes 19@), 400

due to the long-range elastic interactions. The solutio®), 900 @), and 2500 A) are shown form = 3,5, 10.

method for obtaining the stress state in the presence giolid lines are each data set weak-link scaled back to a
. . . . ._.common Gaussian curve at critical sizewith n. = 30 (m =

an arbitrary array of breaks involves inversion of a matnxlo); ne =70 (m = 5); n. = 150 (m = 3). The probability of

that has a size equal to the number of breaks, not the tot@fjjure for the sizen. in the mean-field problem is shown as

number of elements, and is therefore optimally efficient. the straight solid lines.
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can use the weak-link scaling Eqg. (1) and known asymp-
totic analyses for Gaussian distributions [16,19] to obtain
the local-field FPDH (o) for arbitrary sizen as

Hy(0)=1— ¢ /" (4a)
with

g = /-L:;L - Yn. \/2|n(fl/l’lc)
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FIG. 2. Examples of fiber damage at the maximum stress in a

196 element array: (a = 10; (b) m = 5; () m = 3; (broken In(In(n/n.)) + In(4a)

fibers = @, unbroken fibers= O). Estimated critical damage X11-= ; (4b)
clusters are constructed by using (i) breaks within next nearest 4In(n/nc)

neighbor distance of another break in the cluster, (ii) unbroken F

near neighbor elements of these breaks, and (iii) unbroken m = v2In(n/n.). (4c)

elements having two breaks at the next neighbor distance. Vn,

The strength follows a Weibull FPD with characteristic
larger sizes are related via the weak-link scaling relationstrengthg and Weibull modulusz. The dominant size
ship of Eq. (1) (withn’ = n.) and thatH, (o) = ®, (z), scaling of the characteristic strength follow#n(n), and
i.e., at the size:, the FPD is identical to the mean-field depends on the standard deviatign, but not on the
FPD. To demonstrate the validity of these postulates, wenean bundle strengtje, [both depending onn since
() setn’ = n. in EQ. (1), (ii) use the simulation data for n. = n.(m)]. Therefore, the slight difference in mean
H,(o) at the various: in Eqg. (1), and (iii) search for an strength between local- and mean-field bundles atsize
n. for which the derivedi, (o) is a Gaussian distribution. (u, Vs w, ) persists with no change up to large sizes.

If the derived Gaussan distribution has the same mean and The predictions of Eq. (4b) for the characteristic
standard deviation as the mean-field system of the sanwrength & versus sizen can be directly compared to
size, our postulate is demonstrated. Note that the weakhe simulation data as follows. Suppose we desire the
link form of Eq. (1) does not in any way assure that (i) size n for which the characteristic strength é, i.e., n
the simulation data versus size will collapse onto a singlesuch thatH,(5) = 1 — ¢~!'. Setting the left-hand side
curve, (ii) the single curve will be Gaussian, or (iii) the of Eq. (1) equal tol — ¢!, the sizen having strength
Gaussian will have the same mean and standard deviatioss must satisfyn = —n'/In[1 — H,(6)] where H,,(5)
as the mean-field system of exactly the samemsizeSuch  at size n’ is presumed known. Using the simulation
a correspondence is thus highly nontrivial. data forn’ and H,/(&), the strengths obtained in this
Performing the weak-link scaling on each of the simu-way and as predicted by Eq. (4b) are shown versus
lated probability distributions at sizea = 196, 400, +/In(n) in Fig. 3. The agreement is excellent mainly
900, 2500 back to some common siz€ = n., the data because the critical size. was determined using the
for each Weibull modulus are found to collapse well ontosimulations, but this result also demonstrates the accuracy
a single Gaussian curve, as shown in Fig. 1. The criticabf the local-field—mean-field relationship at sizg. Of
sizesare, = 150 (m = 3), n, = 70 (m = 5), andn, = more importance, these results confirm the quantitative
30 (m = 10). For eachm, the standard deviation of the analytic scaling predictions at large sizes, which are
resulting Gaussian (the inverse slope in Fig. 1) is identical
to that for the mean-field problem of exactly the same 0.8
size n.. The mean strengths differ by less than 4%,

and this has no effect on the predicted scaling with size. 0.7 -
Furthermore, the sizes. derived purely by scaling are

comparable to the critical clusters that cause failure in < 0.6 -
the simulations (see Fig. 2)i. can thus be physically g
interpreted as the critical cluster size driving failure. 55 05 |

The above analysis shows that a large array: @le-
ments fails as if it is composed of a series collection of 0.4 -
n/n. bundles, the weakest of which causes failure. More )
importantly, the variability in failure strength at sizg is

identical to that in the mean-field system of sizg sug- 03 ' ’ ' ‘
gesting an intrinsic insensitivity of failure to stress transfer 1 2 3 4 5 6
at this size. sqrt(In(n))

Now we obtain an analytic form for the strength distribu- FIG. 3. Simulated and predicted characteristic strength versus

tipn. From above, the !ocal-field FPH{;L»(O') at Si;enc is size\/In(n) for m = 3,5,10. Form = 10, predictions use both
given by ®, (z) [Gaussian with meap,, (not quiteu,,) strengthsu;, from simulations (solid line) ang.. from the
and standard deviatioy),, ; see Egs. (2) and (3)]. Then, we infinite-size mean-field theory (dashed line).
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then expected to be quantitatively accurate out to sizegtely scale onto the mean-field result. Therefore, limit-
much larger than obtainable by simulationfhe present ing the failure to a precise region of sizg does not give
simulation data provides characteristic strengths out téthe mean-field fluctuations; the “wandering” of the criti-
sizes of=2 X 10°. To obtain the average strength at sizecal cluster appears important. These general ideas form the
n via simulations on size, requires~n/n, simulations. skeleton of further analytic work to assess how the local-
Composites commonly tested in laboratory specimenand mean-field problems can be identical at a critical size
correspond to sizes of at leagd® (/In(n) = 4.292) and  and to determine the critical size.
actual components can be orders of magnitude larger. The author thanks the NSF for support through Grant
The sizes relevant to real materials are thus completelijdo. DMR-9420831, the Center for Collaborative Re-
inaccessible by direct simulation. Figure 3 suggests thagearch at the University of Tokyo, Dr. H. Scher for a
the strength predictions of the present analytic modetritical reading of the manuscript, and Dr. Scher and
will be highly accurate out tg/In(n) = 4 (n = 107), and  Dr. M. Ibnabdeljalil for very enlightening discussions.
quite good to at leasfIn(n) = 5 (n = 10'") and possibly
JIn(n) = 6 (n = 109); the present results thus have
significant practical importance to real material systems.
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