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The strength of planar arrays ofn elastic elements, having heterogeneous strengths and couple
elastic stress transfer, is studied by simulation and size-scaling analyses. Failure statistics for ln
are shown to be controlled by a critical damage cluster of sizenc whose failure statistics are the sam
as theknownstatistics fornc elements failing under mean-field stress transfer. The largen statistics are
found analytically. Strength scales as

p
lnsnd, accurate to$ 1011 elements. These results suggest ne

concepts for understanding scaling of failure in heterogeneous materials. [S0031-9007(98)0535

PACS numbers: 46.30.Nz, 02.50.Ey, 02.70.Lq, 81.05.Mh
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Fracture in heterogeneous systems has been an are
active study in recent years due to its relevance in pra
tical engineering materials such as polycrystals and fib
composites [1], biological materials such as bone [2], an
possibly geological systems such as earthquake faults [
Elastic stresses are long ranged, however, so that regi
of high local damage generate high local stresses whi
start an avalanche of breaks across the entire macrosco
system. The major challenge in dealing with fracture prob
lems is thus combining the statistical evolution of damag
initiating around the weaker heterogeneities with the ass
ciated stress redistributions to accurately predict the po
of instability. Fracture problems therefore cannot be d
scribed by mean-field theories, in general.

A consequence of the localized nature of fracture is th
the strength at a fixed size is inherently statistically dis
tributed. Nominally identical materials (same geometry
underlying distribution of element strengths but a differen
statistical realization) have different strengths. Anothe
consequence of the localized nature of the fracture ins
bility is that the fracture strength is governed by weak-lin
scaling. That is, a large system can be formally consider
as composed of a collection of independent subsyste
coupled in series so that failure in the weakest subsyste
causes failure across the entire system. So, the stren
distributions at different sizes must be related as follow
Let Hnssd and Hn0ssd be the cumulative failure proba-
bility distributions (FPD) at stresss for systems of size
n andn0, respectively. Considering the sizen system as
composed ofnyn0 subsystems of sizen0 , n, the proba-
bility of survival at sizen, 1 2 Hnssd, is then simply the
product of the probabilities of survival1 2 Hn0ssd for the
nyn0 subsystems. The FPDHnssd at sizen can thus be
related to that of sizen0 by [4–11]

Hnssd ­ 1 2 f1 2 Hn0ssdgnyn0

. (1)

Recent work on the heterogeneous fracture problem h
drawn some analogies between fracture and first-ord
phase transitions [12], and also related the scaling
some subcritical damage events to predictions from mea
field theory for special distributions of heterogeneity [13]
0031-9007y98y80(7)y1445(4)$15.00
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While intriguing, such relationships probably cannot b
rigorously extended to predict the (size-dependent) fail
strength since phase transitions and mean-field the
models do not exhibit size scaling of any features su
as the critical field, coexistence line, or spinodal lin
Also, the fracture problem does not even have a pro
thermodynamic limit since the strength approaches z
as the system size becomes infinite. Earlier works us
spring, resistor, and beam models to simulate fract
highlighted the size dependence but were generally una
to predict the observed size dependences except fo
particular distribution of heterogeneity for which mea
field theories do seem to apply [14].

The heterogeneous failure problem has been studie
detail by statistical approaches [4–11]. The most wide
studied problem is a linear array of elements in whi
broken elements transfer stress only to the immediate
neighbors. Recursive and asymptotic solutions [5,9] sh
all the features expected when there is local stress trans
decreasing strength with increasing size, weak-link scali
and failure driven by the development of a local clust
of breaks that generates high local stress concentrat
and leads to a cascade of breaks across the mate
The 1D array and extremely localized nature of the lo
transfer make this problem of limited practical interes
Analyses of hexagonal arrays with nearest neighbor str
transfer [6] and linear arrays with next nearest neighb
stress transfer [7] have been performed, but are not ea
extended to realistic load sharing models.

Here, we study the fracture strength of a typical 3
heterogeneous system (aligned array of elements wit
strength distribution) with elastic stress transfer from fail
to unfailed elements, and provide a new perspective
the prediction of material strength and its size-scaling b
havior. Specifically, we demonstrate that a large syst
of size n can be viewed as a collection ofnync smaller
systems of a critical sizenc where the fracture statistics
(FPD) at sizenc are essentially identical to those of th
same sizenc system failing within a mean-field model (no
local stress transfer). In other words, at sizenc the domi-
nant fluctuations in the “local-field” (elastic stress transfe
© 1998 The American Physical Society 1445
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and mean-field problems are the same. The sizenc of the
critical region is nonuniversal, depending on the eleme
strength distribution and nature of the load sharing. Bu
the local-field–mean-field correspondence appears univ
sal and gives rise to a universal form for the size scali
of the strength, which depends on

p
lnsnd, and to quan-

titatively accurate predictions for strength. These resu
suggest that future work on failure in heterogeneous s
tems should focus on understanding how the fluctuatio
in the local-field and mean-field problems can be identic
at a critical sizenc and on the prediction of the critical size

To begin, we first discuss the mean-field theory fo
strength [15]. Consider a very large array ofn ele-
ments in a plane with stress applied perpendicular to t
plane. Let the FPD versus stresss for the elements fol-
low the Weibull formPfssd ­ 1 2 e2sm

, wherem is the
“Weibull modulus” and stress is in units of the charac
teristic (0.632 probability) strength. In mean-field theor
[16], when a stresss is applied to the array some ele
ments fail and the unbroken elements all carry a stressT .

s. The fraction of surviving elements is1 2 PfsTd and,
since the average stress iss, one obtains the relationship
s ­ Te2Tm

. Maximizing s vs T gives the strength of
m` ­ smed21ym. For a finite-size arraysn . 10d, the fail-
ure probability distribution is a Gaussian with cumulativ
probability denoted asFnszd, z ­ ss 2 mndygn, with a
mean strengthmn and a standard deviationgn [10,15,16]

mn ­ m` 1 0.9962n22y3m21y321yme21ym; (2)

gn ­ g̃n

∑
1 2 0.317

µ
mn

gn

∂2

m22y3e4y3mn24y3

∏
; (3)

g̃n ­ n21y2

∑µ
1
m

∂1ym

e21yms1 2 e21ymd
∏1y2

.

Now consider the problem in which broken elemen
transfer stress predominantly tonearbyunbroken elements,
a problem more closely related to real materials and fib
composites. Geometry now becomes relevant, and so
place the elements in a square array. Hedgepeth
Van Dyke developed a continuum model for the in-plan
stress transfer around a broken element and a met
for calculating the stress in the presence of an arbitra
spatial distribution of broken elements [17]. We have al
developed a Green’s function method with an adjustab
stress-transfer function that can be set to exactly the str
transfer of [17] in one limit [18]. In that limit, which we
use here, the stress transfer from an isolated broken fi
is 0.1428 to the four near neighbors, 0.053 to the ne
neighbors, and decays asr23 at large distances. Compac
clusters of breaks lead to stress concentrations on
cluster perimeter that increase with increasing cluster s
due to the long-range elastic interactions. The soluti
method for obtaining the stress state in the presence
an arbitrary array of breaks involves inversion of a matr
that has a size equal to the number of breaks, not the to
number of elements, and is therefore optimally efficient
1446
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We have utilized the technique sketched above to sim
late the evolving damage and failure of square arrays on
stochastic elements as follows. Each element is assigne
strength randomly chosen from the Weibull distribution.
stress is applied to the elements such that exactly one br
will occur. The load from this element is transferred to th
other elements using the Green’s function method. The
plied load is then adjusted such that one more element
a stress equal to its assigned strength, and that eleme
broken and the stresses redistributed to all remaining e
ments. The sequence of breaking an element, redistrib
ing the loads, and adjusting the load to obtain one mo
broken element, is carried out many times. The maximu
applied stress is the tensile strength of that sample. Sim
lations have been performed form ­ 3, 5, 10 (typical of
many materials and fibers) andn ­ 196, 400, 900, 2500
(except form ­ 3). Generally, 500 simulations were per
formed, with320 sm ­ 3, n ­ 900d, 150 sm ­ 10, n ­
2500d, and100 sm ­ 5, n ­ 2500d being the exceptions.

The simulated FPDsHnssd versus stress at each siz
n and Weibull modulusm are shown in Fig. 1 in a
form such that Gaussians plot as straight lines. Clear
at fixed m, the strength decreases with increasing si
and the distributions are not Gaussian. Figure 2 sho
examples of the damage just at the maximum applied str
in a typical 196-element array. The extent of dama
increases substantially with decreasing Weibull modulu
and macroscopic failure evolves from a localized, but n
compact, cluster of broken elements. Since the simula
FPD is size dependent (Fig. 1), and failure is driven b
the unstable propagation of a critical cluster rather smal
than the sizen (Fig. 2), weak-link scaling should apply.

We now hypothesize that, at fixed element strength d
tribution (fixed m), there exists a critical sizenc and as-
sociated FPDHnc

ssd to which all distributionsHnssd at

FIG. 1. Cumulative probability of failure versus applied
stress, plotted so that Gaussian distributions are strai
lines. Simulation data for composite sizes 196 (d), 400
(r), 900 (j), and 2500 (m) are shown form ­ 3, 5, 10.
Solid lines are each data set weak-link scaled back to
common Gaussian curve at critical sizenc with nc ­ 30 sm ­
10d; nc ­ 70 sm ­ 5d; nc ­ 150 sm ­ 3d. The probability of
failure for the sizenc in the mean-field problem is shown as
the straight solid lines.
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FIG. 2. Examples of fiber damage at the maximum stress in
196 element array: (a)m ­ 10; (b) m ­ 5; (c) m ­ 3; (broken
fibers ­ d, unbroken fibers­ s). Estimated critical damage
clusters are constructed by using (i) breaks within next near
neighbor distance of another break in the cluster, (ii) unbrok
near neighbor elements of these breaks, and (iii) unbrok
elements having two breaks at the next neighbor distance.

larger sizes are related via the weak-link scaling relatio
ship of Eq. (1) (withn0 ­ nc) and thatHnc ssd ­ Fnc szd,
i.e., at the sizenc the FPD is identical to the mean-field
FPD. To demonstrate the validity of these postulates, w
(i) set n0 ­ nc in Eq. (1), (ii) use the simulation data for
Hnssd at the variousn in Eq. (1), and (iii) search for an
nc for which the derivedHnc ssd is a Gaussian distribution.
If the derived Gaussan distribution has the same mean a
standard deviation as the mean-field system of the sa
size, our postulate is demonstrated. Note that the wea
link form of Eq. (1) does not in any way assure that (
the simulation data versus size will collapse onto a sing
curve, (ii) the single curve will be Gaussian, or (iii) the
Gaussian will have the same mean and standard deviati
as the mean-field system of exactly the same sizenc. Such
a correspondence is thus highly nontrivial.

Performing the weak-link scaling on each of the simu
lated probability distributions at sizesn ­ 196, 400,
900, 2500 back to some common sizen0 ­ nc, the data
for each Weibull modulus are found to collapse well ont
a single Gaussian curve, as shown in Fig. 1. The critic
sizes arenc ­ 150 sm ­ 3d, nc ­ 70 sm ­ 5d, andnc ­
30 sm ­ 10d. For eachm, the standard deviation of the
resulting Gaussian (the inverse slope in Fig. 1) is identic
to that for the mean-field problem of exactly the sam
size nc. The mean strengths differ by less than 4%
and this has no effect on the predicted scaling with siz
Furthermore, the sizesnc derived purely by scaling are
comparable to the critical clusters that cause failure
the simulations (see Fig. 2);nc can thus be physically
interpreted as the critical cluster size driving failure.

The above analysis shows that a large array ofn ele-
ments fails as if it is composed of a series collection o
nync bundles, the weakest of which causes failure. Mo
importantly, the variability in failure strength at sizenc is
identical to that in the mean-field system of sizenc, sug-
gesting an intrinsic insensitivity of failure to stress transfe
at this size.

Now we obtain an analytic form for the strength distribu
tion. From above, the local-field FPDHnc

ssd at sizenc is
given byFnc szd [Gaussian with meanmp

nc
(not quitemnc )

and standard deviationgnc ; see Eqs. (2) and (3)]. Then, we
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can use the weak-link scaling Eq. (1) and known asym
totic analyses for Gaussian distributions [16,19] to obta
the local-field FPDHnssd for arbitrary sizen as

Hnssd ­ 1 2 e2ssys̃dm̃

, (4a)

with

s̃ ­ mp
nc

2 gnc

q
2 lnsnyncd

3

∑
1 2

ln sss lnsnyncdddd 1 lns4pd
4 lnsnyncd

∏
; (4b)

m̃ ­
s̃

gnc

q
2 lnsnyncd . (4c)

The strength follows a Weibull FPD with characteristic
strengths̃ and Weibull modulusm̃. The dominant size
scaling of the characteristic strength follows

p
lnsnd, and

depends on the standard deviationgnc but not on the
mean bundle strengthmp

nc
[both depending onm since

nc ­ ncsmd]. Therefore, the slight difference in mean
strength between local- and mean-field bundles at sizenc

(mp
nc

vs mnc
) persists with no change up to large sizes.

The predictions of Eq. (4b) for the characteristic
strength s̃ versus sizen can be directly compared to
the simulation data as follows. Suppose we desire th
size n for which the characteristic strength is̃s, i.e., n
such thatHnss̃d ­ 1 2 e21. Setting the left-hand side
of Eq. (1) equal to1 2 e21, the sizen having strength
s̃ must satisfyn ­ 2n0y lnf1 2 Hn0ss̃dg where Hn0ss̃d
at size n0 is presumed known. Using the simulation
data for n0 and Hn0ss̃d, the strengths obtained in this
way and as predicted by Eq. (4b) are shown versup

lnsnd in Fig. 3. The agreement is excellent mainly
because the critical sizenc was determined using the
simulations, but this result also demonstrates the accura
of the local-field–mean-field relationship at sizenc. Of
more importance, these results confirm the quantitativ
analytic scaling predictions at large sizes, which are

FIG. 3. Simulated and predicted characteristic strength vers
size

p
lnsnd for m ­ 3, 5, 10. For m ­ 10, predictions use both

strengthsmp
nc

from simulations (solid line) andm` from the
infinite-size mean-field theory (dashed line).
1447
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then expected to be quantitatively accurate out to siz
much larger than obtainable by simulation.The present
simulation data provides characteristic strengths out
sizes ofø2 3 105. To obtain the average strength at siz
n via simulations on sizens requiresønyns simulations.
Composites commonly tested in laboratory specime
correspond to sizes of at least108 s

p
lnsnd ­ 4.292d and

actual components can be orders of magnitude larg
The sizes relevant to real materials are thus complet
inaccessible by direct simulation. Figure 3 suggests t
the strength predictions of the present analytic mod
will be highly accurate out to

p
lnsnd ø 4 sn ø 107d, and

quite good to at least
p

lnsnd ø 5 sn ø 1011d and possiblyp
lnsnd ø 6 sn ø 1015d; the present results thus hav

significant practical importance to real material systems
We have shown here that the explicitly size-depende

stochastic phenomenon of failure driven by local stre
concentrations is actually controlled by the fluctuatio
that occur in a mean-field system at a critical sizenc. The
general mapping onto a mean-field problem is univer
(independent of element statistics for smooth distribution
load sharing [20], and possibly element geometry [21
Previous associations with a mean-field problem on
existed for special element strength distributions [13,1
We have then found a universal size-scaling behavior
the strength and accurate, quantitative predictions for
strength out to very large, practical, system sizes.

Our results raise the key conceptual question: Why a
the fluctuations of the local- (elastic stress transfer) a
mean-field problems the same at sizenc? We do not
have a definitive answer at present, but offer the follow
ing considerations. The sources of fluctuations in bo
problems are (i) element strength variations, (ii) spat
variations in the break locations, and (iii) fluctuations
the average stress due to variations in the average am
of damage locally. In the local-field problem there a
also fluctuations in the element-to-element local stress
Since the local-field problem at moderate size is controll
by the lower-strength regions of the sizenc mean-field
problem, the local occurrence of a cluster of particular
weak fibers may be the main common factor that links t
two problems. We also conjecture that, since failure r
quires some finite amount of damage evolution in a loc
region, the spatial heterogeneity of the damage homo
nizes the stress field over a size comparable tonc. This
reduces the local stress fluctuations that are particula
the local-field problem so that they are not dominant. F
nally, the large local-field system is not confined to an
preciseregion of space for locating the “critical” region
Rather, the evolving critical damage cluster can wand
searching out the relatively weaker environments. This
deduced from the fact that direct simulations of the si
nc problem do not produce a strength distribution iden
cal to the mean-field distribution, as seen in the data
Fig. 1 for n ­ 196 at m ­ 3 (close to the critical size
nc ­ 150): This is the only data set that does not acc
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rately scale onto the mean-field result. Therefore, limi
ing the failure to a precise region of sizenc does not give
the mean-field fluctuations; the “wandering” of the criti
cal cluster appears important. These general ideas form
skeleton of further analytic work to assess how the loca
and mean-field problems can be identical at a critical si
and to determine the critical size.
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