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Breakdown of Scale Invariance in the Coarsening of Phase-Separating Binary Fluids
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We present evidence, based on lattice Boltzmann simulations, to show that the coarsening of the
domains in phase-separating binary fluids is not a scale-invariant process. Moreover we emphasize that
the pathway by which phase separation occurs depends strongly on the relation between diffusive and
hydrodynamic time scales. [S0031-9007(98)05335-6]

PACS numbers: 47.20.Hw, 05.50.+q, 47.55.Kf, 61.20.Ja

Our aim in this Letter is to discuss domain growth into an attraction between them [4]. In a fluid they are able
two-dimensional binary fluid mixtures. When a binary to flow in response leading to a faster coalescence, but
mixture of fluids,A andB, say, is quenched below its criti- with « still 1/3.
cal point it phase separates into africh and aB-rich Hydrodynamic growth—For time scales over which
phase. This is achieved by domains of the two phaselydrodynamic modes can be excited bulk fluid flow is
forming and then growing. It has been widely assumedgossible [5]. This is a faster process which leads to
that the coarsening of the domains is a scale-invariard growth exponentx = 2/3 for fluids at long times.
process [1]. We present evidence, based on lattice Boltzdowever, as we shall demonstrate below, hydrodynamic
mann simulations [2], to show that this is not the casdlow, driven by the pressure difference between points of
for binary fluids where different growth mechanisms com-different curvature, is effective in reducing the interface
pete at all times. We also emphasize that the pathways Hgngth and making domains more nearly circular but not
which coarsening occurs have a strong qualitative deperin enhancing coalescence of domains.
dence on the relation between diffusive and hydrodynamic Noise-induced growth—Noise can lead to a growth
time scales. exponenta = 1/2 [6]. However, there is no noise in

There is a large body of numerical and experimental datéhe lattice Boltzmann results presented here, and this
on domain coarsening in systems without hydrodynamicsmechanism will not be relevant.
such as magnets or binary alloys. The conclusion is that, In this Letter we present evidence as follows: (1) The
after initial transients, the domain growth is scale invariantcompetition between diffusive and hydrodynamic growth
The morphology of the domain pattern remains statisticallyfeads to a breakdown of scale invariance. (2) For very
equivalent at all times apart from a change of the lengthow viscosities capillary waves are important and lead to
scale, and the correlation function of the order parameteyet another possible growth mechanism. (3) The relative
¢ obeys the scaling form magnitudes of the diffusion constant, viscosity, and sur-

(p(x + r,0)d(x,1) = f(r/R(1)), (1) face tension are qualitatively important in determining the
where(- - -) indicates a spatial average aR¢¥) is a length  route along which domain growth proceeds. In particu-
scale which is typically observed to grow as a power law lar, we clearly identify the double quench pathway first

R(t) ~ (t — 19)“. (2) described by Tanaka [7].
a, the growth exponent, is a universal constant which is Our evidence for the breakdown of scale invariance
expected to depend only on the growth mechanism anth hydrodynamic systems is encapsulated in Figs. 1,
not on the microscopic details of the system.is a zero 2, and 3 which correspond to high, intermediate, and
time that does not have to coincide with the start of thdow viscosities, respectively. The left-hand column of
simulation. snapshot pictures in each figure shows the domain pattern

Several different growth mechanisms have been identiat 3 times. Coarsening of the domains can be clearly
fied or proposed for bicontinuous two-dimensional binaryseen, and it is immediately apparent that the shapes
fluids. of the growing domains depend on the value of the

Diffusive growth—This is the mechanism by which viscosity.
domains grow by the diffusion of material between them To more easily compare the emerging patterns the
[3]. The growth is slow witha = 1/3 as material has to right-hand column of snapshots in each of the figures
diffuse across & domain to move betweefidomains and shows an enlargement of part of the corresponding left-
vice versa. This mechanism is common to all materialhand picture. The enlargement is by a factor(af 1)
with a conserved order parameter (e.g., binary alloys, spifor a picture at timer wheret; is the time of the final
systems with Kawasaki dynamics) and does not rely on thenapshot andv' is the growth exponent for the length
hydrodynamic properties of fluids. scaleR! defined below. If the system is scale invariant

Diffusion-enhanced collisions-In a system of concen- all the figures in the right-hand column would be expected
trated droplets the diffusion field around the droplets lead$o look (statistically) identical.
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FIG. 1. Evolution of phase-separating domains for a binary~!/G- 2. As Fig. 1 but for an intermediazt% value of the
fluid with high viscosity. The left-hand column shows the ViScosity. Scaling is by a factor ofr/6399)%". The lines
phase ordering process at three different times. The right-hangP'Tespond tar = 2/3 and1/3.

column shows each snapshot scaled by a factor/aB588)"/3.

The resulting box siz€L,, L,) is indicated. The graph at the . .
base of the figure shows the behavior ofRlras a function length are considered. Previous work [8] has concentrated

of Ins whereR is a length scale and the time. Different ©ON measuringR'(r), the inverse first moment of the
scales are distinguished ky(R"), A(R?), and=(R*). The line  circularly averaged structure factor. Here we also present
corresponds tar = 1/3. results for length scales derived from the length of the
interfaceL; and the number of domainé
To obtain a more quantitative measure of the growth, a
graph of InR(¢) as a function of In is also displayed for R(r) — Ly*Ly R (1) — L.Ly 3)
each value of the viscosity. Three different measures of L N
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breakdown of scale invariance which is further supported
by visual inspection of the growing domains.

We consider each value of the viscosity in turn. At very
high viscosities (Fig. 1) hydrodynamics is unimportant.
Therefore the system resembles model B (growth with
a conserved order parameter) in the language of criti-
cal phenomena. Diffusive growth, witx = 1/3, is
expected. The length scal®@$ andR° clearly show this

/ behavior. For early imeR* also scales as/?, but there
:’.‘ is a slower growth for later times. This was a feature of
all the simulations we ran and became more pronounced
for the larger systems. A possible explanation lies in the
lack of a bicontinuous structure in two dimensions which
leads to the formation of nested structures which affect the
growth. The snapshots on the right-hand side of Fig. 1
show no visual evidence for a breakdown of scaling.

Figure 2 shows results for intermediate viscosities
which are low enough to allow hydrodynamic flow but
sufficiently high to damp out capillary waves. The well-
known hydrodynamic growth exponegy3 is observed
for R! and R?, but for R* the growth exponent quickly
crosses over ta* = 1/3. This implies that the number
of domains is decreasing more slowly than in a scale-
invariant state. It occurs because, although the interface
curvature of the domains is rapidly decreased by the flow,
once the domains are circular hydrodynamics can only
assist the growth through the much slower diffusion-
enhanced collisions which proceed with= 1/3 [4].

As a result domains on large length scales are tortuous.
The smaller the domains the more circular they become.
The length scale of the crossover between these behaviors
increases with time. Hence, as time progresses an increas-
ingly deep hierarchy of circular domains within circular
domains results. Pictorial evidence for the lack of scale
invariance in the growth process can be seen in the scaled
snapshots in Fig. 2.

In most simulations of hydrodynamic growth results
have been limited toR' (but see [9] where several
different measures are used for a one-component fluid).
This gives most weight to the largest domains which
continue to grow via th&/3 power law, and this is the
exponent that has been widely reported [8]. The measure
RY is derived from the interface length. Initially this is
mostly in the larger domains, aRf is not sensitive to the
structural change. For late times there is some indication
FIG. 3. As Fig. 1 but for a low value of the viscosity. Scaling that the growth of this measure is slowing dow®*,
is by a factor of(1/6399)*. The lines correspond t8 = 2/3  however, is related to the number of domains and provides
and1/2. a good measure of the smaller scale features of the pattern.

At low viscosities (Fig. 3) the morphology of the
respectively, wherd., and L, are the linear dimensions domain growth is again altered. Now the damping of
of the simulation box. capillary waves is so small that their amplitude can be of

If the system is scale invariant all lengths should scalerder of the domain size. The real-space pictures of the
with the same value of. (This excludes microscopic growth show rugged interfaces. This enhances the domain
lengths, such as the lattice spacing and interface widthgoalescence, and the growth law ®f is changed from
which remain unchanged during the growth process.) We/3 to 1/2.
show that the different lengths do not scale in the same Finally, in Fig. 4 we show yet another pathway to
way for some values of the fluid viscosity. This implies aphase separation in a binary fluid, the double quench first
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of the continuity, Navier-Stokes, and convection-diffusion
equations describing the flow of binary fluids. There are
two particularly relevant advantages of the method. First,
it is possible to vary the diffusivity and the viscosity over
a wide range. Second, the equilibrium state minimizes an
input free energy which here is taken to be that of a model

binary fluid
N
time=32392

\I'=fdr|/;—n<l—%22>—T|:n+n;¢
v.io ov.‘ N Xln<n2¢>+n;¢ln<n;¢)]
:..00-0Q

.'-';O.Q * %(VW], (4)

99 =
. with n the total density,po the density difference be-
'.’. tween the phaseq; the temperature, and > 0, A > 0
i constants.
e e a’e To conclude, domain growth in binary fluids is a
time=21595 time=48588 richer phenomenon than hitherto described. The dominant

15 growth mechanism depends strongly on the viscosity
and diffusivity of the fluid and may be different at
different length and time scales. Many questions remain,
among them clarification of the growth mechanisms at
nonsymmetric compositions, investigation of the role of
noise, clarification of the importance of self-diffusion
. in liquid-gas systems, and assessment of the effect of
anisotropy in the dynamics of the two phases.

We thank G. Gonnella, E. Orlandini, B. Buck, and
A. Rutenberg for enlightening discussions. J.M.Y.

FIG. 4. The evolution with time of phase-separating domainsacknowledges support from the EPSRC Grant
for a binary fluid with intermediate viscosity but low diffusiv- No. GR/K97783.
ity. Domains quickly become circular but the order parameter

does not reach its equilibrium value. Hence a second crop of

domains forms by spinodal decomposition. Tanaka has termed

this a double quench.R(z) shows no clear scaling behavior
(see Fig. 1 caption for definition of symbols).
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